首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ca2+ homeostasis mechanisms, in which the Ca2+ entry pathways play a key role, are critically involved in both normal function and cancerous transformation of prostate epithelial cells. Here, using the lymph node carcinoma of the prostate (LNCaP) cell line as a major experimental model, we characterize prostate-specific store-operated Ca2+ channels (SOCs)--a primary Ca2+ entry pathway for non-excitable cells--for the first time. We show that prostate-specific SOCs share major store-dependent, kinetic, permeation, inwardly rectifying, and pharmacological (including dual, potentiation/inhibition concentration-dependent sensitivity to 2-APB) properties with "classical" Ca2+ release-activated Ca2+ channels (CRAC), but have a higher single channel conductance (3.2 and 12pS in Ca2+- and Na+-permeable modes, respectively). They are subject to feedback inhibition via Ca2+-dependent PKC, CaMK-II and CaM regulatory pathways and are functionally dependent on caveolae integrity. Caveolae also provide a scaffold for spatial co-localization of SOCs with volume-regulated anion channels (VRAC) and their Ca2+-mediated interaction. The TRPC1 and TRPV6 members of the transient receptor potential (TRP) channel family are the most likely molecular candidates for the formation of prostate-specific endogenous SOCs. Differentiation of LNCaP cells to an androgen-insensitive, apoptotic-resistant neuroendocrine phenotype downregulates SOC current. We conclude that prostate-specific SOCs are important determinants in the transition to androgen-independent prostate cancer.  相似文献   

2.
Ca2+ homeostasis mechanisms, in which the Ca2+ entry pathways play a key role, are critically involved in both normal function and cancerous transformation of prostate epithelial cells. Here, using the lymph node carcinoma of the prostate (LNCaP) cell line as a major experimental model, we characterize prostate-specific store-operated Ca2+ channels (SOCs)—a primary Ca2+ entry pathway for non-excitable cells—for the first time. We show that prostate-specific SOCs share major store-dependent, kinetic, permeation, inwardly rectifying, and pharmacological (including dual, potentiation/inhibition concentration-dependent sensitivity to 2-APB) properties with “classical” Ca2+ release-activated Ca2+ channels (CRAC), but have a higher single channel conductance (3.2 and 12 pS in Ca2+- and Na+-permeable modes, respectively). They are subject to feedback inhibition via Ca2+-dependent PKC, CaMK-II and CaM regulatory pathways and are functionally dependent on caveolae integrity. Caveolae also provide a scaffold for spatial co-localization of SOCs with volume-regulated anion channels (VRAC) and their Ca2+-mediated interaction. The TRPC1 and TRPV6 members of the transient receptor potential (TRP) channel family are the most likely molecular candidates for the formation of prostate-specific endogenous SOCs. Differentiation of LNCaP cells to an androgen-insensitive, apoptotic-resistant neuroendocrine phenotype downregulates SOC current. We conclude that prostate-specific SOCs are important determinants in the transition to androgen-independent prostate cancer.  相似文献   

3.
Accumulating evidence indicate that the gap-junction inhibitor carbenoxolone (CBX) regulates neuronal synchronization, depresses epileptiform activity and has a neuroprotective action. These CBX effects do not depend solely on its ability to inhibit gap junction channels formed by connexins (Cx), but the underlying mechanisms remain to be elucidated. Here we addressed the questions whether CBX modulates volume-regulated anion channels (VRAC) involved in the regulatory volume decrease and regulates the associated release of excitatory amino acids in cultured rat cortical astrocytes. We found that CBX inhibits VRAC conductance with potency comparable to that able to depress the activity of the most abundant astroglial gap junction protein connexin43 (Cx43). However, the knock down of Cx43 with small interfering RNA (siRNA) oligonucleotides and the use of various pharmacological tools revealed that VRAC inhibition was not mediated by interaction of CBX with astroglial Cx proteins. Comparative experiments in HEK293 cells stably expressing another putative target of CBX, the purinergic ionotropic receptor P2X7, indicate that the presence of this receptor was not necessary for CBX-mediated depression of VRAC. Finally, we show that in COS-7 cells, which are not endowed with pannexin-1 protein, another astroglial plasma membrane interactor of CBX, VRAC current retained its sensitivity to CBX. Complementary analyses indicate that the VRAC-mediated release of excitatory amino acid aspartate was decreased by CBX. Collectively, these findings support the notion that CBX could affect astroglial ability to modulate neuronal activity by suppressing excitatory amino acid release through VRAC. They also provide a possible mechanistic clue for the neuroprotective effect of CBX in vivo.  相似文献   

4.
Wang Y  Deshpande M  Payne R 《Cell calcium》2002,32(4):209-216
2-Aminoethoxydiphenyl borate (2-APB) is a membrane-permeable modulator that inhibits the activation of inositol (1,4,5) trisphosphate (InsP(3)) receptors, store operated channels (SOCs) and TRP channels in cells that utilize the phosphoinositide cascade for cellular signaling. In Limulus ventral photoreceptors, light-induced calcium release via the phosphoinositide cascade is thought to activate the photocurrent. Injection of either exogenous InsP(3) or calcium ions can therefore mimic excitation by light. One hundred micromolar 2-APB reversibly inhibited the photocurrent of ventral photoreceptors in a concentration-dependent manner, acting on at least two processes thought to mediate the visual cascade. 2-APB reversibly inhibited both light and InsP(3)-induced calcium release, consistent with its role as an inhibitor of the InsP(3) receptor. In addition, 2-APB reversibly inhibited the activation of depolarizing current flow through the plasma membrane caused by pulsed pressure injection of calcium ions into the light-sensitive lobe of the photoreceptor. We also found that 100 micro M 2-APB reversibly inhibited both transient and sustained voltage-activated potassium current during depolarizing steps. 2-APB has previously been shown to block phototransduction in Drosophila photoreceptors. The lack of specificity of the action of 2-APB in Limulus indicates that this blockade need not necessarily arise from inhibition of InsP(3)-induced calcium release.  相似文献   

5.
We have investigated Ca(2+) release and receptor- and store-operated Ca(2+) influxes in Chinese hamster ovary-K1 (CHO) cells, SH-SY5Y human neuroblastoma cells and RBL-1 rat basophilic leukemia cells using Fura-2 and patch-clamp measurements. Ca(2+) release and subsequent Ni(2+)-sensitive, store-operated influx were induced by thapsigargin and stimulation of G protein-coupled receptors. The alleged noncompetitive IP3 receptor inhibitor,2-aminoethoxydiphenyl borate (2-APB) rapidly blocked a major part of the secondary influx response in CHO cells in a reversible manner. It also reduced Mn(2+) influx in response to thapsigargin. Inhibition of Ca(2+) release was also seen but this was less complete, slower in onset, less reversible, and required higher concentration of 2-APB. In RBL-1 cells, I(CRAC) activity was rapidly blocked by extracellular 2-APB whereas intracellular 2-APB was less effective. Store-operated Ca(2+) influxes were only partially blocked by 2-APB. In SH-SY5Y cells, Ca(2+) influxes were insensitive to 2-APB. Ca(2+) release in RBL-1 cells was partially sensitive but in SH-SY5Y cells the release was totally resistant to 2-APB. The results suggest, that 2-APB (1) may inhibit distinct subtypes of IP3 receptors with different sensitivity, and (2) that independently of this, it also inhibits some store-operated Ca(2+) channels via a direct, extracellular action.  相似文献   

6.
The Rho/Rho-associated kinase (ROK) pathway has been shown to modulate volume-regulated anion channels (VRAC) in cultured calf pulmonary artery endothelial (CPAE) cells. Since Rho/ROK can increase myosin light chain phosphorylation, we have now studied the effects of inhibitors of myosin light chain kinase (MLCK) or myosin light chain phosphatase (MLCP) on VRAC in CPAE. Application of ML-9, an MLCK inhibitor, inhibited VRAC, both when applied extracellularly or when dialyzed into the cell. A similar inhibitory effect was obtained by dialyzing the cells with AV25, a specific MLCK inhibitory peptide. Conversely, NIPP1(191-210), an MLCP inhibitory peptide, potentiated the activation of VRAC by a 25% hypotonic stimulus. These data indicate that activation of VRAC is modulated by MLC phosphorylation.  相似文献   

7.
Recent evidence implicates the volume-regulated anion current (VRAC) and other anion currents in control or modulation of cell cycle progression; however, the precise involvement of anion channels in this process is unclear. Here, Cl- currents in Ehrlich Lettre Ascites (ELA) cells were monitored during cell cycle progression, under three conditions: (i) after osmotic swelling (i.e., VRAC), (ii) after an increase in the free intracellular Ca2+ concentration (i.e., the Ca2+-activated Cl- current, CaCC), and (iii) under steady-state isotonic conditions. The maximal swelling-activated VRAC current decreased in G1 and increased in early S phase, compared to that in G0. The isotonic steady-state current, which seems to be predominantly VRAC, also decreased in G1, and increased again in early S phase, to a level similar to that in G0. In contrast, the maximal CaCC current (500 nM free Ca2+ in the pipette), was unaltered from G0 to G1, but decreased in early S phase. A novel high-affinity anion channel inhibitor, the acidic di-aryl-urea NS3728, which inhibited both VRAC and CaCC, attenuated ELA cell growth, suggesting a possible mechanistic link between cell cycle progression and cell cycle-dependent changes in the capacity for conductive Cl- transport. It is suggested that in ELA cells, entrance into the S phase requires an increase in VRAC activity and/or an increased potential for regulatory volume decrease (RVD), and at the same time a decrease in CaCC magnitude.  相似文献   

8.
The action of 2-aminoethoxydiphenyl borate (2-APB) on Ca(2+) signalling in HeLa cells and cardiac myocytes was investigated. Consistent with other studies, we found that superfusion of cells with 2-APB rapidly inhibited inositol 1,4,5-trisphosphate (InsP(3))-mediated Ca(2+) release and store-operated Ca(2+) entry (SOC). In addition to abrogating hormone-evoked Ca(2+) responses, 2-APB could antagonise Ca(2+) signals evoked by a membrane permeant InsP(3) ester. 2-APB also slowed the recovery of intracellular Ca(2+) signals consistent with an effect on Ca(2+) ATPases. The inhibitory action of 2-APB on InsP(3) receptors (InsP(3)Rs), SOC channels and Ca(2+) pumps persisted for several minutes after washout of the compound. Application of 2-APB to unstimulated cells had no effect on subsequent Ca(2+) responses suggesting that it has a use-dependent action. Mitochondria in cells treated with 2-APB showed a rapid and slowly reversible swelling. 2-APB did not cause the mitochondria to depolarise, but it reduced the extent of mitochondrial calcium uptake. Although 2-APB has been demonstrated not to affect voltage-operated Ca(2+) channels or ryanodine receptors, we found that it gave a concentration-dependent long-lasting inhibition of Ca(2+) signalling in electrically-stimulated cardiac myocytes, where InsP(3)Rs and SOC channels do not play a significant role. Our data suggest that 2-APB has multiple cellular targets, a use-dependent action, is difficult to reverse and may affect Ca(2+) signalling in cell types where InsP(3) and SOC are not active.  相似文献   

9.
2-Aminoethyl diphenylborinate (2-APB) is a known modulator of the IP3 receptor, the calcium ATPase SERCA, the calcium release-activated calcium channel Orai and TRP channels. More recently, it was shown that 2-APB is an efficient inhibitor of the epithelial calcium channel TRPV6 which is overexpressed in prostate cancer. We have conducted a structure–activity relationship study of 2-APB congeners to understand their inhibitory mode of action on TRPV6. Whereas modifying the aminoethyl moiety did not significantly change TRPV6 inhibition, substitution of the phenyl rings of 2-APB did. Our data show that the diaryl borinate moiety is required for biological activity and that the substitution pattern of the aryl rings can influence TRPV6 versus SOCE inhibition. We have also discovered that 2-APB is hydrolyzed and transesterified within minutes in solution.  相似文献   

10.
2-Aminoethoxydiphenylborate (2-APB) inhibits the extent of inositol 1,4,5-trisphosphate (InsP(3))-induced Ca(2+) release from cerebellar microsomes with a potency that is dependent upon the InsP(3) concentration used. At high InsP(3) concentrations (10 microM), the concentration of 2-APB required to cause half-maximal InsP(3)-induced Ca(2+) release (IC(50)) was greater than 1 mM, while at 0.25 microM InsP(3) this reduced to 220 microM. The fact that the inhibition of the extent of InsP(3)-induced Ca(2+) release (IICR) by 2-APB was not restored to control levels by high concentrations of InsP(3), in addition to the fact 2-APB did not substantially inhibit [3H]InsP(3) binding to its receptor, indicates that the inhibition is not competitive in nature. Since the cooperativity of IICR as a function of InsP(3) was reduced in the presence of 2-APB (Hill coefficient changing from 1.9 in the absence of 2-APB to 1.4 in the presence of 1 mM 2-APB), this suggests that it is acting as an allosteric inhibitor. 2-APB also reduces the rate constants for IICR. In cerebellar microsomes this release process is biphasic in nature, with a fast and slow phase. 2-APB appears particularly to affect the fast-phase component. Although 2-APB does not inhibit the ryanodine receptor, it does inhibit the Ca(2+) ATPase activity as well store-operated Ca(2+) entry channels, which may limit its use as a specific membrane permeant InsP(3) receptor inhibitor.  相似文献   

11.
The mechanism for coupling between Ca(2+) stores and store-operated channels (SOCs) is an important but unresolved question. Although SOCs have not been molecularly identified, transient receptor potential (TRP) channels share a number of operational parameters with SOCs. The question of whether activation of SOCs and TRP channels is mediated by the inositol 1,4,5-trisphosphate receptor (InsP(3)R) was examined using the permeant InsP(3)R antagonist, 2-aminoethoxydiphenyl borate (2-APB) in both mammalian and invertebrate systems. In HEK293 cells stably transfected with human TRPC3 channels, the actions of 2-APB to block carbachol-induced InsP(3)R-mediated store release and carbachol-induced Sr(2+) entry through TRPC3 channels were both reversed at high agonist levels, suggesting InsP(3)Rs mediate TRPC3 activation. However, electroretinogram recordings of the light-induced current in Drosophila revealed that the TRP channel-mediated responses in wild-type as well as trp and trpl mutant flies were all inhibited by 2-APB. This action of 2-APB is likely InsP(3)R-independent since InsP(3)Rs are dispensable for the light response. We used triple InsP(3)R knockout DT40 chicken B-cells to further assess the role of InsP(3)Rs in SOC activation. (45)Ca(2+) flux analysis revealed that although DT40 wild-type cells retained normal InsP(3)Rs mediating 2-APB-sensitive Ca(2+) release, the DT40InsP(3)R-k/o cells were devoid of functional InsP(3)Rs. Using intact cells, all parameters of Ca(2+) store function and SOC activation were identical in DT40wt and DT40InsP(3)R-k/o cells. Moreover, in both cell lines SOC activation was completely blocked by 2-APB, and the kinetics of action of 2-APB on SOCs (time dependence and IC(50)) were identical. The results indicate that (a) the action of 2-APB on Ca(2+) entry is not mediated by the InsP(3)R and (b) the effects of 2-APB provide evidence for an important similarity in the function of invertebrate TRP channels, mammalian TRP channels, and mammalian store-operated channels.  相似文献   

12.
2-Aminoethoxydiphenyl borate (2-APB) is a putative, membrane-permeable inhibitor of inositol 1,4,5-trisphosphate (InsP(3)) receptors, but it is the case that little is known about its action at the InsP(3) receptor level. Thus, we examined the effects of 2-APB on InsP(3) receptor-mediated effects in a range of cell types expressing different complements of InsP(3) receptor types. In experiments with permeabilized cells we found that 2-APB could inhibit InsP(3)-induced release of stored Ca(2+), but also that it released Ca(2+), and that the prevalence of these two effects varied between different cell types and did not correlate with the expression of a particular receptor type. These effects of 2-APB reflected an interaction distal to the ligand binding site of InsP(3) receptors, since InsP(3) binding was unaffected by 2-APB. In intact cells, we found only inhibitory effects of 2-APB on Ca(2+) mobilization, and that variation between cell types in the characteristics of this inhibition appeared to be due to differential entry of 2-APB. 2-APB also inhibited InsP(3) receptor ubiquitination and proteasomal degradation, which again was cell type dependent. In total, these data reveal a remarkable degree of variation between cell types in the effects of 2-APB, showing that its usefulness as a specific and universal inhibitor of InsP(3) receptors is limited. However, the ability of 2-APB to inhibit InsP(3) receptor ubiquitination and degradation indicates that 2-APB may block InsP(3)-induced conformational changes in the receptor, resulting in perturbation of multiple regulatory events.  相似文献   

13.
Activation of Ca(2+) release-activated Ca(2+) channels by depletion of intracellular Ca(2+) stores involves physical interactions between the endoplasmic reticulum Ca(2+) sensor, STIM1, and the channels composed of Orai subunits. Recent studies indicate that the Orai3 subtype, in addition to being store-operated, is also activated in a store-independent manner by 2-aminoethyldiphenyl borate (2-APB), a small molecule with complex pharmacology. However, it is unknown whether the store-dependent and -independent activation modes of Orai3 channels operate independently or whether there is cross-talk between these activation states. Here we report that in addition to causing direct activation, 2-APB also regulates store-operated gating of Orai3 channels, causing potentiation at low doses and inhibition at high doses. Inhibition of store-operated gating by 2-APB was accompanied by the suppression of several modes of Orai3 channel regulation that depend on STIM1, suggesting that high doses of 2-APB interrupt STIM1-Orai3 coupling. Conversely, STIM1-bound Orai3 (and Orai1) channels resisted direct gating by high doses of 2-APB. The rate of direct 2-APB activation of Orai3 channels increased linearly with the degree of STIM1-Orai3 uncoupling, suggesting that 2-APB has to first disengage STIM1 before it can directly gate Orai3 channels. Collectively, our results indicate that the store-dependent and -independent modes of Ca(2+) release-activated Ca(2+) channel activation are mutually exclusive: channels bound to STIM1 resist 2-APB gating, whereas 2-APB antagonizes STIM1 gating.  相似文献   

14.
Human Intestine 407 cells respond to osmotic cell swelling by the activation of Cl(-)- and K(+)-selective ionic channels, as well as by stimulating an organic osmolyte release pathway readily permeable to taurine and phosphocholine. Unlike the activation of volume-regulated anion channels (VRAC), activation of the organic osmolyte release pathway shows a lag time of approximately 30-60 s, and its activity persists for at least 8-12 min. In contrast to VRAC activation, stimulation of organic osmolyte release did not require protein tyrosine phosphorylation, active p21(rho), or phosphatidylinositol 3-kinase activity and was insensitive to Cl(-) channel blockers. Treatment of the cells with putative organic anion transporter inhibitors reduced the release of taurine only partially or was found to be ineffective. The efflux was blocked by a subclass of organic cation transporter (OCT) inhibitors (cyanine-863 and decynium-22) but not by other OCT inhibitors (cimetidine, quinine, and verapamil). Brief treatment of the cells with phorbol esters potentiated the cell swelling-induced taurine efflux, whereas addition of the protein kinase C (PKC) inhibitor GF109203X largely inhibited the response, suggesting that PKC is involved. Increasing the level of intracellular Ca(2+) by using A-23187- or Ca(2+)-mobilizing hormones, however, did not affect the magnitude of the response. Taken together, the results indicate that the hypotonicity-induced efflux of organic osmolytes is independent of VRAC and involves a PKC-dependent step.  相似文献   

15.
While high levels of glucose and saturated fatty acids are known to have detrimental effects on beta cell function and survival, the signalling pathways mediating these effects are not entirely known. In a previous study, we found that ADP regulates beta cell insulin secretion and beta cell apoptosis. Using MIN6c4 cells as a model system, we investigated if autocrine/paracrine mechanisms of ADP and purinergic receptors are involved in this process. High glucose (16.7 mmol/l) and palmitate (100 μmol/l) rapidly and potently elevated the extracellular ATP levels, while mannitol was without effect. Both tolbutamide and diazoxide were without effect, while the calcium channel blocker nifedipine, the volume-regulated anion channels (VRAC) inhibitor NPPB, and the pannexin inhibitor carbenoxolone could inhibit both effects. Similarly, silencing the MDR1 gene also blocked nutrient-generated ATP release. These results indicate that calcium channels and VRAC might be involved in the ATP release mechanism. Furthermore, high glucose and palmitate inhibited cAMP production, reduced cell proliferation in MIN6c4 and increased activated Caspase-3 cells in mouse islets and in MIN6c4 cells. The P2Y13-specific antagonist MRS2211 antagonized all these effects. Further studies showed that blocking the P2Y13 receptor resulted in enhanced CREB, Bad and IRS-1 phosphorylation, which are known to be involved in beta cell survival and insulin secretion. These findings provide further support for the concept that P2Y13 plays an important role in beta cell apoptosis and suggest that autocrine/paracrine mechanisms, related to ADP and P2Y13 receptors, contribute to glucolipotoxicity.  相似文献   

16.
Stim1 in the endoplasmic reticulum and the three Orai (also termed CRACM) channels in the plasma-membrane are main components of native Ca(2+) release-activated Ca(2+) channels. A pharmacological hallmark of these channels is their distinct sensitivity to 2-aminoethoxydiphenyl borate (2-APB). Here we report that Orai3 currents can be robustly stimulated by 75 microm 2-APB independent of Stim1, whereas 2-APB at similar concentrations inhibited store-operated Orai1 currents. 2-APB did not only promote currents through Orai3 channels but also dramatically altered ion selectivity of Orai3 channels. This allowed for permeation of monovalent cations both in the inward as well as outward direction, which is in sharp contrast to the high Ca(2+) selectivity of store-operated Orai3 currents. An Orai3-R66W mutant, which lacked in analogy to the severe combined immune deficiency mutant Orai1-R91W store-operated activation, was also found to be resistant to 2-APB stimulation. The change in selectivity by 2-APB was associated with an increase in Orai3 minimum pore size from about 3.8A to more than 5.34 A. In line with a potential interaction of 2-APB with the Orai3 pore, among three pore mutants tested, the Orai3 E165Q mutant particularly resembled in its permeation properties those of 2-APB stimulated Orai3 and additionally exhibited a reduced response to 2-APB. In aggregate, stimulation of Orai3 currents by 2-APB occurred along with an alteration of the permeation pathway that represents a unique mechanism for regulating ion channel selectivity by chemical compounds.  相似文献   

17.
We have investigated the effects of extracellular and intracellular pH on single channel and macroscopic (macropatches) currents through volume-regulated anion channels (VRAC) in endothelial cells. Protonation of extracellular binding sites with an apparent pK of 4.6 increased voltage independent of the single-channel amplitude. Cytosolic acidification had a dual effect on VRAC currents: on the one hand, it increased single channel conductance by ∼20% due to protonation of a group with an apparent pK of 6.5 and a Hill coefficient of 2. On the other hand, it reduced channel activity due to protonation of a group with an apparent pK of 6.3 and a Hill coefficient of 2.1. This dual effect enhances the macroscopic current at a slightly acidic pH but inhibits it at more acidic pH. Cytosolic alkalization also reduced channel activity with a pK of 8.4 and a Hill coefficient of 1.9, but apparently did not affect single-channel conductance. These data show that VRAC channels are maintained in an active state in a narrow pH range around the normal physiological pH and shut down outside this range. They also show that HEPES-buffered pipette solutions do not effectively buffer pH in the vicinity of the VRAC channels. Received: 31 January 2000/Revised: 21 April 2000  相似文献   

18.
Mutations in human bestrophin-1 are linked to various kinds of retinal degeneration. Although it has been proposed that bestrophins are Ca(2+)-activated Cl(-) channels, definitive proof is lacking partly because mice with the bestrophin-1 gene deleted have normal Ca(2+)-activated Cl(-) currents. Here, we provide compelling evidence to support the idea that bestrophin-1 is the pore-forming subunit of a cell volume-regulated anion channel (VRAC) in Drosophila S2 cells. VRAC was abolished by treatment with RNAi to Drosophila bestrophin-1. VRAC was rescued by overexpressing bestrophin-1 mutants with altered biophysical properties and responsiveness to sulfhydryl reagents. In particular, the ionic selectivity of the F81C mutant changed from anionic to cationic when the channel was treated with the sulfhydryl reagent, sodium (2-sulfonatoethyl) methanethiosulfonate (MTSES(-)) (P(Cs)/P(Cl) = 0.25 for native and 2.38 for F81C). The F81E mutant was 1.3 times more permeable to Cs(+) than Cl(-). The finding that VRAC was rescued by F81C and F81E mutants with different biophysical properties shows that bestrophin-1 is a VRAC in S2 cells and not simply a regulator or an auxiliary subunit. F81C overexpressed in HEK293 cells also exhibits a shift of ionic selectivity after MTSES(-) treatment, although the effect is quantitatively smaller than in S2 cells. To test whether bestrophins are VRACs in mammalian cells, we compared VRACs in peritoneal macrophages from wild-type mice and mice with both bestrophin-1 and bestrophin-2 disrupted (best1(-/-)/best2(-/-)). VRACs were identical in wild-type and best1(-/-)/best2(-/-) mice, showing that bestrophins are unlikely to be the classical VRAC in mammalian cells.  相似文献   

19.
Melastatin-like transient receptor potential 2 (TRPM2) channel activation/inhibition mechanisms in response to ADP-ribose (ADPR), oxidative stress, flufenamic acid (FFA) and 2-aminoethoxydiphenyl borate (2-APB) are not clear. We tested the effects of FFA and 2-APB on ADPR-induced TRPM2 cation channel currents in rat native bone marrow megakaryocytes. Megakaryocyte cells were freshly isolated from rat bone marrow and studied with the conventional whole-cell patch-clamp technique. Extracellular H2O2, FFA and 2-APB were added through the patch chamber, while intracellular ADPR was applied through the pipette. Nonselective cation currents were consistently induced by ADPR but not H2O2. Current density of ADPR in the cells was significantly (P < 0.001) higher than in control. The time courses of ADPR effects in the megakaryocytes were characterized by a delay of 2.24 ± 0.73. The ADPR-induced Ca2+ gate was not blocked by either the IP3 receptor inhibitor 2-APB or the PLC inhibitor FFA. In conclusion, TRPM2 channels were constitutively activated by intracellular ADPR, although the channel currents in rat native megakaryocytes were not affected by extracellular H2O2, 2-APB or FFA. Activation of TRPM2 channels in megakaryocytes seems to be intracellular and ADPR-dependent.  相似文献   

20.
Store-operated Ca2+ entry (SOCE) is likely the most common mode of regulated influx of Ca2+ into cells. However, only a limited number of pharmacological agents have been shown to modulate this process. 2-Aminoethyldiphenyl borate (2-APB) is a widely used experimental tool that activates and then inhibits SOCE and the underlying calcium release-activated Ca2+ current (I CRAC). The mechanism by which depleted stores activates SOCE involves complex cellular movements of an endoplasmic reticulum Ca2+ sensor, STIM1, which redistributes to puncta near the plasma membrane and, in some manner, activates plasma membrane channels comprising Orai1, -2, and -3 subunits. We show here that 2-APB blocks puncta formation of fluorescently tagged STIM1 in HEK293 cells. Accordingly, 2-APB also inhibited SOCE and I(CRAC)-like currents in cells co-expressing STIM1 with the CRAC channel subunit, Orai1, with similar potency. However, 2-APB inhibited STIM1 puncta formation less well in cells co-expressing Orai1, indicating that the inhibitory effects of 2-APB are not solely dependent upon STIM1 reversal. Further, 2-APB only partially inhibited SOCE and current in cells co-expressing STIM1 and Orai2 and activated sustained currents in HEK293 cells expressing Orai3 and STIM1. Interestingly, the Orai3-dependent currents activated by 2-APB showed large outward currents at potentials greater than +50 mV. Finally, Orai3, and to a lesser extent Orai1, could be directly activated by 2-APB, independently of internal Ca2+ stores and STIM1. These data reveal novel and complex actions of 2-APB effects on SOCE that can be attributed to effects on both STIM1 as well as Orai channel subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号