首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L-threonine aldolase is not a genuine enzyme in rat liver.   总被引:1,自引:0,他引:1       下载免费PDF全文
Activity of L-threonine aldolase in rat liver cytosolic extract was not affected by the omission of alcohol dehydrogenase in a previously established NADPH-linked alcohol dehydrogenase-coupled assay. The liver extract was able to catalyse the dehydrogenation of NADPH with either acetaldehyde (a product of L-threonine aldolase action) or 2-oxobutyrate (a product of L-threonine dehydratase action). When the liver extract was chromatographed on a Sephacryl S-200 column, no threonine aldolase activity was detected in the eluate. However, activity of threonine aldolase re-appeared when the fractions with highest activity of lactate dehydrogenase and threonine dehydratase were mixed. Activity of threonine aldolase could also be abolished by removing threonine dehydratase from the liver extract with a specific antibody. Hence L-threonine aldolase should not be a genuine enzyme in the rat liver, and the apparent enzyme activity may result from a combined effect of threonine dehydratase and lactate dehydrogenase (or an oxo acid-linked NADPH dehydrogenase) in the liver cytosolic extract.  相似文献   

2.
A gel electrophoretic technique was used to demonstrate an interaction with the soluble enzymes aldolase, glyceraldehydephosphate dehydrogenase, pyruvate kinase and muscle type lactate dehydrogenase to the cytoskeletal protein tubulin. It is suggested that tubulin, like actin, is a key cytoskeletal structure with which soluble proteins may associate.  相似文献   

3.
The Escherichia coli gene which encodes N-acetylneuraminic acid aldolase was isolated by the polymerase chain reaction, cloned into the inducible expression vector pTTQ18, and overexpressed in E. coli. The high yield of aldolase was achieved through both optimum growth of cells and efficient expression of the aldolase gene (20-30% soluble cellular protein). The recombinant enzyme was purified to homogeneity with an activity of 1.2-2.2 U/mg, which compared favorably with that of commercial preparations of E. coli aldolase (1.1 U/mg) and Clostridium perfringens aldolase (0.4 U/mg). The cloning strategy, fermentation conditions, purification protocol, and activity assay are described.  相似文献   

4.
This study was undertaken to determine the influence of dietary carbohydrate sources: wheat meal, bread meal, soluble corn starch, native potato starch and sorghum meal, on soluble protein, enzyme activity (aldolase) and glucose concentration in muscle and liver of European eels (Anguilla anguilla). There was less soluble protein in both muscle and liver of eels fed 30% wheat meal or bread meal than the other experimental groups. However, eels fed 30% bread meal or soluble corn starch had a higher glucose concentration in muscle and liver than the other experimental groups. High enzyme activity (aldolase) was found in the liver of eels fed 30% wheat meal, bread meal or soluble starch.  相似文献   

5.
The cellular distribution of free and bound glycolytic enzymes in vivo was estimated by means of a model based on previously determined association constants for individual binding interactions and in vivo protein concentrations. The calculations revealed that a significant proportion of the enzymes would be either associated with F-actin, or bound in binary enzyme-enzyme complexes in vivo. An analysis of the relative concentration, and relative activity, of F-actin-bound enzymes suggested that a complete glycolytic complex, composed of all enzymatic steps from phosphofructokinase (PFK) to lactate dehydrogenase (LDH) does not exist. This was indicated by a very low concentration of F-actin-associated phosphoglycerate kinase (PGK) and by a very low activity of F-actin bound aldolase and PGK; this model showed that aldolase and PGK would be absent from any F-actin bound complex. An analysis of soluble enzyme-enzyme associations indicated that formation of binary enzyme complexes may lead to an increased overall flux through glyceraldehyde 3-phosphate dehydrogenase and LDH, but would serve to decrease flux through PFK and aldolase. A 1.4-fold activation of PFK, which occurs when the soluble enzyme binds to F-actin, suggested that reversible binding of PFK to F-actin may represent a novel cellular mechanism for controlling glycolytic flux during periods of increased metabolic demand by controlling the key regulatory enzyme of glycolysis.  相似文献   

6.
A novel approach has been elaborated to identify the mechanism of intermediate transfer in interacting enzyme systems. The aldolase/glycerol-3-phosphate-dehydrogenase enzyme system was investigated since complex formation between these two enzymes had been demonstrated. The kinetics of dihydroxyacetone phosphate conversion catalyzed by the dehydrogenase in the absence and presence of aldolase was analyzed. It was found that the second-order rate constant (kcat/Km) of the enzymatic reaction decreases due to the formation of a heterologous complex. The decrease could be attributed to an increase of the Km value since kcat did not change in the presence of aldolase. In contrast, an apparent increase in the second-order rate constant of dihydroxyacetone phosphate conversion by the dehydrogenase was observed if the triose phosphate was produced by aldolase from fructose 1,6-bisphosphate (consecutive reaction). Moreover, no effect of dihydroxyacetone phosphate on the dissociation constant of the heterologous enzyme complex could be detected by physico-chemical methods. The results suggest that the endogenous dihydroxyacetone phosphate produced by aldolase complexed with dehydrogenase is more accessible for the dehydrogenase than the exogenous one, the binding of which is impeded due to steric hindrance by bound aldolase.  相似文献   

7.
Vacuolar H(+)-ATPases (V-ATPases) are a family of highly conserved proton pumps that couple hydrolysis of cytosolic ATP to proton transport out of the cytosol. How ATP is supplied for V-ATPase-mediated hydrolysis and for coupling of proton transport is poorly understood. We have reported that the glycolytic enzyme aldolase physically associates with V-ATPase. Here we show that aldolase interacts with three different subunits of V-ATPase (subunits a, B, and E). The binding sites for the V-ATPase subunits on aldolase appear to be on distinct interfaces of the glycolytic enzyme. Aldolase deletion mutant cells were able to grow in medium buffered at pH 5.5 but not at pH 7.5, displaying a growth phenotype similar to that observed in V-ATPase subunit deletion mutants. Abnormalities in V-ATPase assembly and protein expression observed in aldolase deletion mutant cells could be fully rescued by aldolase complementation. The interaction between aldolase and V-ATPase increased dramatically in the presence of glucose, suggesting that aldolase may act as a glucose sensor for V-ATPase regulation. Taken together, these findings provide functional evidence that the ATP-generating glycolytic pathway is directly coupled to the ATP-hydrolyzing proton pump through physical interaction between aldolase and V-ATPase.  相似文献   

8.
Three monoclonal antibodies (MAbs1A2, 3C5, and 4C2) for human aldolase A [EC 4.1.2.13] were established. MAbs1A2, 3C5, and 4C2 were shown to belong to subclasses IgM, IgG1, and IgG2a, respectively. None of the MAbs inhibits aldolase A activity. Their epitopes were mapped in detail on the molecule by examining the reactivities of the MAbs to chimeric proteins between aldolases A and B [Kitajima et al. (1990) J. Biol. Chem. 265, 17493-17498] in ELISA and to the CNBr-cleaved fragments of aldolase A in immuno-blotting. MAbs1A2 and 3C5 reacted with sites located within amino acid residues 306-363 at the C-terminal region of the enzyme. MAb4C2 recognized an epitope of the enzyme present within amino acid residues 34-108 at the N-terminal region. In a competitive binding assay, MAbs1A2 and 3C5 competed with each other for binding to the antigen and also interfered with the binding of MAb4C2, whereas MAb4C2 failed to inhibit the binding of MAbs1A2 and 3C5 to the antigen. MAb3C5 showed a species-specificity in the reaction with the antigen; it reacted with human and rabbit aldolase A with similar reactivity but not at all with the rat and mouse enzymes, which differ from the human and rabbit enzymes in two amino acid residues at positions 328 and 348. Reactivities of MAbs to aldolase A were further examined with engineered enzymes containing an amino acid substitution.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The microcompartmentation of aldolase and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) was investigated in four different cell types (3T3 cells, SV 40 transformed 3T3 cells, mouse fibroblasts, chick embryo cardiomyocytes) combining cell permeabilization and indirect immunofluorescence technique. Permeabilization of the cells prior to fixation released the soluble fractions, whilst the total amount of enzymes was preserved in nonpermeabilized cells. Both enzymes exist in a soluble as well as in a structure-bound form. The soluble fraction of aldolase and GAPDH is distributed homogeneously throughout the cytoplasm, excluding the nucleus and vesicles. The permeabilization-resistant form is associated with the actin cytoskeleton. A considerable amount of both enzymes is located in the perinuclear region and cannot be attributed to a definite structure. Comparing the staining patterns of aldolase and GAPDH in four different cell types we found that the distribution of the enzymes corresponds with diverse forms of actin cytoskeletal organization of these cells. The codistribution is maintained in cells treated with cytochalasin D.  相似文献   

10.
Interaction of glycolytic enzymes with F-actin is suggested to be a mechanism for compartmentation of the glycolytic pathway. Earlier work demonstrates that muscle F-actin strongly binds glycolytic enzymes, allowing for the general conclusion that "actin binds enzymes", which may be a generalized phenomenon. By taking actin from a lower form, such as yeast, which is more deviant from muscle actin than other higher animal forms, the generality of glycolytic enzyme interactions with actin and the cytoskeleton can be tested and compared with higher eukaryotes, e.g., rabbit muscle. Cosedimentation of rabbit skeletal muscle and yeast F-actin with muscle fructose-1,6-bisphosphate aldolase (aldolase) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) followed by Scatchard analysis revealed a biphasic binding, indicating high- and low-affinity domains. Muscle aldolase and GAPDH showed low-affinity for binding yeast F-actin, presumably because of fewer acidic residues at the N-terminus of yeast actin; this difference in affinity is also seen in Brownian dynamics computer simulations. Yeast GAPDH and aldolase showed low-affinity binding to yeast actin, which suggests that actin-glycolytic enzyme interactions may also occur in yeast although with lower affinity than in higher eukaryotes. The cosedimentation results were supported by viscometry results that revealed significant cross-linking at lower concentrations of rabbit muscle enzymes than yeast enzymes. Brownian dynamics simulations of yeast and muscle aldolase and GAPDH with yeast and muscle actin compared the relative association free energy. Yeast aldolase did not specifically bind to either yeast or muscle actin. Yeast GAPDH did bind to yeast actin although with a much lower affinity than when binding muscle actin. The binding of yeast enzymes to yeast actin was much less site specific and showed much lower affinities than in the case with muscle enzymes and muscle actin.  相似文献   

11.
Muscle actin and fructose-1,6-bisphosphate aldolase (aldolase) were chemically crosslinked to produce an 80 kDa product representing one subunit of aldolase linked to one subunit of actin. Hydroxylamine digestion of the crosslinked product resulted in two 40.5 kDa fragments, one that was aldolase linked to the 12 N-terminal residues of actin. Brownian dynamics simulations of muscle aldolase and GAPDH with F-actin (muscle, yeast, and various mutants) estimated the association free energy. Mutations of residues 1-4 of muscle actin to Ala individually or two in combination of the first four residues reduced the estimated binding free energy. Simulations showed that muscle aldolase binds with the same affinity to the yeast actin as to the double mutated muscle actin; these mutations make the N-terminal of muscle actin identical to yeast, supporting the conclusion that the actin N-terminus participates in binding. Because the depth of free energy wells for yeast and the double mutants is less than for native rabbit actin, the simulations support experimental findings that muscle aldolase and GAPDH have a higher affinity for muscle actin than for yeast actin. Furthermore, Brownian dynamics revealed that the lower affinity of yeast actin for aldolase and GAPDH compared to muscle actin, was directly related to the acidic residues at the N-terminus of actin.  相似文献   

12.
When iodoacetate is added to denatured muscle aldolase undergoing renaturation, a major portion of the activity in the resulting enzyme remains in the monomeric form (of about 37,000 Mr). In the absence of iodoacetate, the renatured enzyme exists entirely as the tetramer. Iodoacetate treatment of native aldolase tetramer (Mr = 160,000) does not lead to dissociation. The stabilization of the monomer by iodoacetate treatment is presumably due to modification of a group at the intersubunit region. Active monomers of aldolase could be distinguished from native or renatured aldolase tetramer by gel-filtration and by the sensitivity of the monomer to inactivation in 2.3 m-urea.  相似文献   

13.
C D Kent  H G Lebherz 《Biochemistry》1984,23(22):5257-5261
Using a highly sensitive "subunit exchange" assay, we have studied the relative strengths of interactions between different subunit types (A and C) of fructosediphosphate aldolase and have determined the mode of dissociation of aldolase tetramers in vitro. Interactions between C subunits within C4 tetramers were found to be considerably more resistant to disruption than were interactions between A subunits in A4 tetramers with regard to increasing concentrations of H+, OH-, or urea. Slight dissociation of A4 was also observed in 1.2 M magnesium chloride. These observations suggest that the quaternary structure of aldolase C4 is inherently more stable than that of aldolase A4. Also, the symmetrical heterotetramer A2C2 was found to be more resistant to urea-mediated dissociation than was the aldolase A4 homotetramer; this observation suggests that, even when in heteromeric combination, C subunits have a stabilizing influence on the quaternary structure of aldolase tetramers. In no case did we find evidence for a stable dimeric intermediate in the dissociation of aldolase tetramers to monomers. These observations are considered in terms of the tetrahedral arrangement of subunits in the aldolase tetramer. The general applicability of the subunit exchange assay described here for studying the subunit structure and mode of dissociation of oligomeric enzymes is discussed.  相似文献   

14.
15.
The toxic nature of the secondary metabolite has been studied in rats. Changes in the concentration of a few key enzymes in carbohydrate metabolism have also been studied. In this, liver aldolase concentration was found to be significantly lowered. Since aldolase is one of the important bifunctional enzymes of glycolysis, it has been isolated and purified and studied on its kinetic properties were made. The kinetic studies did not show any significant variations in the properties of liver aldolase of normal and patulin treated animals. These results suggest that most probably, patulin toxicosis inhibits the biosynthesis of liver aldolase.  相似文献   

16.
Glycolytic enzyme levels in synaptosomes   总被引:2,自引:0,他引:2  
The specific activities of glucosephosphate isomerase, aldolase, triosephosphate isomerase, glyceraldehydephosphate dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutase, pyruvate kinase and lactate dehydrogenase were all higher in the synaptoplasmic fraction from rat brain than in 100,000 g supernatant fraction of rat brain homogenates when the supernatants were prepared in high ionic strength solutions. Four enzymes in synaptosomes and two enzymes in homogenates were associated with particulate fractions as indicated by the large increase in specific activity of the enzymes when samples were treated with 0.3 M KCl before centrifugation. Glucosephosphate isomerase, aldolase, pyruvate kinase and lactate dehydrogenase were the enzymes that showed a large increase in specific activity following salt treatment of isolated, synaptosomal membrane while aldolase and pyruvate kinase were the two enzymes which showed a large increase in specific activity in the high speed supernatant fractions. Because the specific activities of many enzymes are found to be elevated not only in synaptosomes but in synaptosomal membrane fractions it is suggested that these enzymes may provide the potential for significantly enhanced glycolysis at these locations.  相似文献   

17.
Rabbit skeletal muscle and liver fructose 1,6-diphosphate aldolases autophosphorylate in the presence of inorganic phosphate at physiological and alkaline pH. ATP as well as nonhydrolyzable ATP analogues inhibits autophosphorylation. Autophosphorylation of aldolases abolishes catalytic activity, which is restored upon treatment with alkaline phosphatase. Limited proteolysis of aldolase preferentially hydrolyzes the COOH terminus and liberates a phosphorylated peptide. Treatment of rabbit aldolases with carboxypeptidase, which liberates the COOH terminal residue Tyr 363, although modifying catalytic activity does not affect autophosphorylation. Amino acid analyses are consistent with results of autophosphorylation of the COOH terminus showing residue His 361 in muscle aldolase and Tyr 361 in liver aldolase. Phosphate lability in acid pH by phosphorylated muscle aldolase but not by phosphorylated liver aldolase corroborates the amino acid assignment. Autophosphorylation of the aldolases in the crystalline state is consistent with an intramolecular mechanism. The pH dependence of autophosphorylation being dependent on the enzyme's physical state (soluble or crystalline) is not inconsistent with crystallization stabilizing a conformer having different amino acid pka values and/or reactivities than those of the soluble state.  相似文献   

18.
2-Keto-4-hydroxyglutarate aldolase, which catalyzes the reversible cleavage of 2-keto-4-hydroxyglutarate, yielding pyruvate plus glyoxylate, has been purified from extracts of bovine kidney to apparent homogeneity as judged by polyacrylamide gel electrophoresis, gel filtration chromatography, sucrose density gradient centrifugation, and meniscus depletion sedimentation equilibrium experiments. The enzyme from this source has a native and a subunit mass of 144 and 36 kDa, respectively; the pH-activity optimum is 8.8. Rather than being stimulated, aldolase activity is inhibited to varying degrees by added divalent metal ions, whereas a number of metal ion-chelating agents have no effect. An absolute requirement for added thiol compounds could not be shown, but 2-mercaptoethanol enhances activity 2-fold, and added Hg2+ as well as p-mercuribenzoate or dithiodipyridine markedly inhibit catalysis. Incubation of the enzyme with either pyruvate or glyoxylate in the presence of NaBH4 causes extensive loss of aldolase activity concomitant with stable binding of approximately 1.0-1.5 mol of 14C-labeled substrate/mol of enzyme. The circular dichroism spectrum for native aldolase is characteristic of an alpha-helix; incubation of the enzyme with glyoxylate has no effect on this spectrum, but it is considerably altered by pyruvate. Bovine kidney aldolase shows no stereospecificity in catalyzing the aldol cleavage of the two optical isomers of 2-keto-4-hydroxyglutarate, and although it also catalyzes the beta-decarboxylation of oxalacetate, its decarboxylase/aldolase activity ratio is lower than that seen with the pure enzyme from either bovine liver or Escherichia coli.  相似文献   

19.
Previous Brownian dynamics (BD) simulations identified specific basic residues on fructose-1,6-bisphophate aldolase (aldolase) (I. V. Ouporov et al., Biophysical Journal, 1999, Vol. 76, pp. 17-27) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (I. V. Ouporov et al., Journal of Molecular Recognition, 2001, Vol. 14, pp. 29-41) involved in binding F-actin, and suggested that the quaternary structure of the enzymes may be important. Herein, BD simulations of F-actin binding by enzyme dimers or peptides matching particular sequences of the enzyme and the intact enzyme triose phosphate isomerase (TIM) are compared. BD confirms the experimental observation that TIM has little affinity for F-actin. For aldolase, the critical residues identified by BD are found in surface grooves, formed by subunits A/D and B/C, where they face like residues of the neighboring subunit enhancing their electrostatic potentials. BD simulations between F-actin and aldolase A/D dimers give results similar to the native tetramer. Aldolase A/B dimers form complexes involving residues that are buried in the native structure and are energetically weaker; these results support the importance of quaternary structure for aldolase. GAPDH, however, placed the critical residues on the corners of the tetramer so there is no enhancement of the electrostatic potential between the subunits. Simulations using GAPDH dimers composed of either S/H or G/H subunits show reduced binding energetics compared to the tetramer, but for both dimers, the sets of residues involved in binding are similar to those found for the native tetramer. BD simulations using either aldolase or GAPDH peptides that bind F-actin experimentally show complex formation. The GAPDH peptide bound to the same F-actin domain as did the intact tetramer; however, unlike the tetramer, the aldolase peptide lacked specificity for binding a single F-actin domain.  相似文献   

20.
Vacuolar H(+)-ATPases (V-ATPases) are essential for acidification of intracellular compartments and for proton secretion from the plasma membrane in kidney epithelial cells and osteoclasts. The cellular proteins that regulate V-ATPases remain largely unknown. A screen for proteins that bind the V-ATPase E subunit using the yeast two-hybrid assay identified the cDNA clone coded for aldolase, an enzyme of the glycolytic pathway. The interaction between E subunit and aldolase was confirmed in vitro by precipitation assays using E subunit-glutathione S-transferase chimeric fusion proteins and metabolically labeled aldolase. Aldolase was isolated associated with intact V-ATPase from bovine kidney microsomes and osteoclast-containing mouse marrow cultures in co-immunoprecipitation studies performed using an anti-E subunit monoclonal antibody. The interaction was not affected by incubation with aldolase substrates or products. In immunocytochemical assays, aldolase was found to colocalize with V-ATPase in the renal proximal tubule. In osteoclasts, the aldolase-V-ATPase complex appeared to undergo a subcellular redistribution from perinuclear compartments to the ruffled membranes following activation of resorption. In yeast cells deficient in aldolase, the peripheral V(1) domain of V-ATPase was found to dissociate from the integral membrane V(0) domain, indicating direct coupling of glycolysis to the proton pump. The direct binding interaction between V-ATPase and aldolase may be a new mechanism for the regulation of the V-ATPase and may underlie the proximal tubule acidification defect in hereditary fructose intolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号