首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The availability of dolichyl phosphate is a major factor in the rate of formation of N-linked glycoproteins in mammalian cells. Recent studies in our laboratory suggested that glycoproteins required for seed germination and early plant development are formed via the dolichyl phosphate pathway. Soybean microsomes contain dolichol kinase and dolichyl phosphate phosphatase, enzymes that regulate dolichyl phosphate levels by interconversion of dolichyl phosphate and dolichol. In the present study, soybean microsomes were fractionated into rough and smooth endoplasmic reticulum and Golgi, and the activities of dolichol kinase and dolichyl phosphate phosphatase were measured in each. Submicrosomal fractions were obtained using a procedure developed for rat liver, and were characterized by marker enzymes, RNA content and electron microscopy. The site of N-glycosylation, the rough endoplasmic reticulum, contained high levels of both dolichol kinase and dolichyl phosphate phosphatase. This makes possible a mechanism whereby glycoprotein formation during seed germination is regulated by availability of dolichyl phosphate.  相似文献   

2.
Dolichyl phosphate phosphatase from Tetrahymena pyriformis.   总被引:1,自引:1,他引:0       下载免费PDF全文
A soluble dolichyl phosphate phosphatase from Tetrahymena pyriformis was purified about 68-fold. The enzyme appeared to be specific for dolichyl phosphate and existed in two interrelated forms, one of mol.wt. about 500000 and the other of mol.wt. about 63000. The enzyme was strongly inhibited by 5 mM-Mn2+ and was strongly stimulated by Mg2+. Tetrahymena in the exponential growth phase contained more of this enzymic activity than cells in stationary or lag phase. The dolichyl phosphate phosphatase may be loosely bound to mitochondrial membranes. Two roles proposed for this enzyme are (1) that of releasing dolichol from its phosphorylated biosynthetic form for its use in the cell as unesterified dolichol or dolichyl ester and/or (2) that of regulation of synthesis of glycoproteins or some other glycosylated compound.  相似文献   

3.
Intracellular signaling by the second messenger Ca2+ through its receptor calmodulin (CaM) regulates cell function via the activation of CaM-dependent enzymes. Previous studies have shown that cell cycle progression at G1/S and G2/M is sensitive to intracellular CaM levels. However, little is known about the CaM-regulated enzymes involved. Protein phosphorylation has been shown to be important for cell-cycle regulation. Because CaM regulates several protein kinases, and at least one protein phosphatase, our studies are focusing on the roles of these enzymes within the cell cycle. As an initial approach to this problem, cDNAs encoding either normal or mutant calcium/calmodulin kinase II (CaMKII) have been expressed in Schizosaccharomyces pombe. The results show that overexpression of a constitutively active mutant CaMKII caused cell-cycle arrest in G2. Arrest was associated with a failure to activate the p34/cdc2 protein kinase. Expression of the mutant CaMKII in strains of S. pombe with altered timing of mitosis revealed that this effect is not mediated either by cdc25+ or wee1+, suggesting that CaMKII may regulate G2/M progression by another mechanism.  相似文献   

4.
Epithelial cells of the rat small intestine were collected as a gradient of villus to crypt cells. Homogenates of these cells incubated with GDP-D-[14C]mannose in the presence of MnCl2 incorporated radioactivity into dolichyl mannosyl phosphate and a mixutre of dolichyl pyrophosphate oligosaccharides varying in the size of their oligosaccharide moiety. The labeled oligosaccharides formed in villus cell homogenates appeared shorter than those formed in crypt cell homogenates. The addition of dolichyl phosphate greatly stimulated the synthesis of dolichyl mannosyl phosphate. The initial rate of synthesis of dolichyl mannosyl phosphate from GDP-D-[14C]mannose and exogenous dolichyl phosphate was highest in an intermediate cell fraction having a low specific activity of sucrase and alkaline phosphatase and an intermediate specific activity of thymidine kinase. To compare the rates of dolichyl mannosyl phosphate synthesis in the different cell fractions, it was essential to control degradation of GDP-D-[14]mannose by the addition of AMP to the incubation, since villus cells degraded GDP-D-[14C]mannose much faster than crypt cells.  相似文献   

5.
The in vivo and in vitro synthesis and turnover of dolichol and dolichyl phosphate have been studied over the course of early development in sea urchin embryos. Synthesis of dolichol and dolichyl phosphate was studied in vivo and in vitro using [3H]acetate and [14C] isopentenylpyrophosphate, respectively, as precursors. Both the in vivo and in vitro results indicate that the principal labeled end product of de novo synthesis is the free alcohol, and that this alcohol is subsequently phosphorylated to produce dolichyl phosphate. The presence of 30 microM compactin inhibits the de novo synthesis of dolichol from [3H]acetate by greater than 90%, but has no effect on the incorporation of 32Pi into dolichyl phosphate for more than 6 h, thus suggesting that during this time interval the major source of dolichyl phosphate is preformed dolichol. The rate of turnover of the [3H]acetate-labeled polyisoprenoid backbone of dolichyl phosphate is very slow (t1/2 = 40-70 h). In contrast, the rate of loss of the [32P]phosphate headgroup is more rapid (t1/2 = 5.7-7.7 h) and increases over the course of development. Finally, dolichyl phosphate phosphatase activity has been measured in vitro. The activity of this enzyme, which can be distinguished from phosphatidic acid phosphatase, was found to increase as a function of development, in qualitative agreement with the increased turnover of 32P from dolichyl phosphate observed in vivo. These results suggest that the phosphate moiety of dolichyl phosphate is in a dynamic state, and that dolichol kinase and dolichyl phosphate phosphatase play key roles in regulating the cellular level of dolichyl phosphate.  相似文献   

6.
7.
Monocyte chemoattractant protein-1-induced protein 1 (MCPIP1) has a multidomain structure, which assures its pleiotropic activity. The physiological functions of this protein include repression of inflammatory processes and the prevention of immune disorders. The influence of MCPIP1 on the cell cycle of cancer cells has not been sufficiently elucidated. A previous study by our group reported that overexpression of MCPIP1 affects the cell viability, inhibits the activation of the phosphoinositide-3 kinase/mammalian target of rapamycin signalling pathway, and reduces the stability of the MYCN oncogene in neuroblastoma (NB) cells. Furthermore, a decrease in expression and phosphorylation levels of cyclin-dependent kinase (CDK) 1, which has a key role in the M phase of the cell cycle, was observed. On the basis of these previous results, the purpose of our present study was to elucidate the influence of MCPIP1 on the cell cycle of NB cells. It was confirmed that ectopic overexpression of MCPIP1 in two human NB cell lines, KELLY and BE(2)-C, inhibited cell proliferation. Furthermore, flow cytometric analyses and imaging of the cell cycle with a fluorescence ubiquitination cell-cycle indicator test, demonstrated that overexpression of MCPIP1 causes an accumulation of NB cells in the G1 phase of the cell cycle, while the possibility of an increase in G0 phase due to induction of quiescence or senescence was excluded. Additional assessment of the molecular machinery responsible for the transition between the cell-cycle phases confirmed that MCPIP1 overexpression reduced the expression of cyclins A2, B1, D1, D3, E1, and E2 and decreased the phosphorylation of CDK2 and CDK4, as well as retinoblastoma protein. In conclusion, the present results indicated a relevant impact of overexpression of MCPIP1 on the cell cycle, namely a block of the G1/S cell-cycle checkpoint, resulting in arrest of NB cells in the G1 phase.  相似文献   

8.
Cdc7-Dbf4 serine/threonine kinase is essential for initiation of DNA replication. It was previously found that overexpression of certain replication proteins such as Cdc6 and Cdt1 in fission yeast resulted in multiple rounds of DNA replication in the absence of mitosis. Since this phenomenon is dependent upon the presence of wild-type Cdc7/Hsk1, we hypothesized that high levels of Cdc7 and/or Dbf4 could also cause multiple rounds of DNA replication, or could facilitate entry into S phase. To test this hypothesis, we transiently overexpressed hamster Cdc7, Dbf4 or both in CHO cells. Direct observations of individual cells by fluorescence microscopy and flow cytometric analysis on cell populations suggest that overexpression of Cdc7 and/or Dbf4 does not result in multiple rounds of DNA replication or facilitating entry into S phase. In contrast, moderately increased levels of Dbf4, but not Cdc7, cause cell-cycle arrest in G2/M. This G2/M arrest coincides with hyperphosphorylation of Cdc2/Cdk1 at Tyr-15, raising the possibility that high levels of Dbf4 may activate a G2/M cell-cycle checkpoint. Further increase in Cdc7 and/or Dbf4 by 2–4 fold can arrest cells in G1 and significantly slow down S-phase progression for the cells already in S phase.  相似文献   

9.
I Hoffmann  G Draetta    E Karsenti 《The EMBO journal》1994,13(18):4302-4310
Progression through the cell cycle is monitored at two major points: during the G1/S and the G2/M transitions. In most cells, the G2/M transition is regulated by the timing of p34cdc2 dephosphorylation which results in the activation of the kinase activity of the cdc2-cyclin B complex. The timing of p34cdc2 dephosphorylation is determined by the balance between the activity of the kinase that phosphorylates p34cdc2 (wee1 in human cells) and the opposing phosphatase (cdc25C). Both enzymes are regulated and it has been shown that cdc25C is phosphorylated and activated by the cdc2-cyclin B complex. This creates a positive feed-back loop providing a switch used to control the onset of mitosis. Here, we show that another member of the human cdc25 family, cdc25A, undergoes phosphorylation during S phase, resulting in an increase of its phosphatase activity. The phosphorylation of cdc25A is dependent on the activity of the cdc2-cyclin E kinase. Microinjection of anti-cdc25A antibodies into G1 cells blocks entry into S phase. These results indicate that the cdc25A phosphatase is required to enter S phase in human cells and suggest that this enzyme is part of an auto-amplification loop analogous to that described at the G2/M transition. We discuss the nature of the in vivo substrate of the cdc25A phosphatase in S phase and the possible implications for the regulation of S phase entry.  相似文献   

10.
The subcellular localization of enzymes of dolichol metabolism in rat liver   总被引:1,自引:0,他引:1  
Dolichyl phosphate is an intermediate in the glycosylation of N-glycosamidic linked glycoproteins in mammalian systems, and its availability may be a limiting factor in glycoprotein biosynthesis. The basic kinetics and subcellular distribution of enzymes which may influence the concentration of dolichyl phosphate in rat liver have therefore been investigated. These include dolichyl phosphate phosphatase, dolichol phosphokinase, dolichyl fatty acyl ester synthetase, GDP-mannose dolichyl phosphate mannosyl transferase, and UDP-glucose dolichyl phosphate glucosyl transferase. The specific activity of the enzymes was highest in the microsomes, except for dolichyl phosphate phosphatase and dolichyl fatty acyl ester synthetase, which were most concentrated in the plasma membrane and the cytosol fraction, respectively. The nuclei contained all of the enzyme activities while the mitochondria and cytoplasm were generally less active. The presence of both dolichol phosphokinase and dolichyl phosphate phosphatase in microsomes and nuclei, which contain the highest glycosyl transferase activities, may provide a means for direct enzymatic control of levels of dolichyl phosphate.  相似文献   

11.
Using an asynchronously growing cell population, we investigated how X-irradiation at different stages of the cell cycle influences individual cell–based kinetics. To visualize the cell-cycle phase, we employed the fluorescent ubiquitination-based cell cycle indicator (Fucci). After 5 Gy irradiation, HeLa cells no longer entered M phase in an order determined by their previous stage of the cell cycle, primarily because green phase (S and G2) was less prolonged in cells irradiated during the red phase (G1) than in those irradiated during the green phase. Furthermore, prolongation of the green phase in cells irradiated during the red phase gradually increased as the irradiation timing approached late G1 phase. The results revealed that endoreduplication rarely occurs in this cell line under the conditions we studied. We next established a method for classifying the green phase into early S, mid S, late S, and G2 phases at the time of irradiation, and then attempted to estimate the duration of G2 arrest based on certain assumptions. The value was the largest when cells were irradiated in mid or late S phase and the smallest when they were irradiated in G1 phase. In this study, by closely following individual cells irradiated at different cell-cycle phases, we revealed for the first time the unique cell-cycle kinetics in HeLa cells that follow irradiation.  相似文献   

12.
The effect of sterol carrier protein-2 (SCP-2) on dolichol biosynthesis by rat liver microsomes was investigated. cis-Prenyltransferase activity was stimulated 7-fold in the presence of 5 micrograms of purified SCP-2/mg of microsomal protein, which was similar to the increase obtained by adding detergent. The polyisoprenoid pattern obtained in the presence of SCP-2 was the same as that present in rat liver, in contrast to the pattern appearing upon incubation of microsomes with detergent, which gave shorter polyisoprenoids. Like SCP-2, the cytosolic fraction from rat liver also stimulated cis-prenyltransferase. Incubation with cytosol pretreated with anti-SCP-2 showed no stimulatory effect and led to the accumulation of shorter polyisoprenoids. SCP-2 had no appreciable effect on polyprenol alpha-saturase, dolichol kinase, dolichyl phosphate phosphatase, or acyl-CoA:dolichol acyltransferase. The results demonstrate that SCP-2 greatly stimulates and may regulate the condensation reactions mediated by cis-prenyltransferase in the process of dolichol biosynthesis and permits polymerization of the polyisoprenoid to its natural chain length.  相似文献   

13.
14.
In response to induced DNA damage, proliferating cells arrest in their cell cycle or go into apoptosis. Ionizing radiation is known to induce degeneration of mammalian male germ cells. The effects on cell-cycle progression, however, have not been thoroughly studied due to lack of methods for identifying effects on a particular cell-cycle phase of a specific germ cell type. In this study, we have utilized the technique for isolation of defined segments of seminiferous tubules to examine the cell-cycle progression of irradiated rat mitotic (type B spermatogonia) and meiotic (preleptotene spermatocytes) G1/S cells. Cells irradiated as type B spermatogonia in mitotic S phase showed a small delay in progression through meiosis. Thus, it seems that transient arrest in the progression can occur in the otherwise strictly regulated progression of germ cells in the seminiferous epithelium. Contrary to the arrest observed in type B spermatogonia and in previous studies on somatic cells, X-irradiation did not result in a G1 delay in meiotic cells. This lack of arrest occurred despite the presence of unrepaired DNA damage that was measured when the cells had progressed through the two meiotic divisions.  相似文献   

15.
Visualizing spatiotemporal dynamics of multicellular cell-cycle progression   总被引:1,自引:0,他引:1  
The cell-cycle transition from G1 to S phase has been difficult to visualize. We have harnessed antiphase oscillating proteins that mark cell-cycle transitions in order to develop genetically encoded fluorescent probes for this purpose. These probes effectively label individual G1 phase nuclei red and those in S/G2/M phases green. We were able to generate cultured cells and transgenic mice constitutively expressing the cell-cycle probes, in which every cell nucleus exhibits either red or green fluorescence. We performed time-lapse imaging to explore the spatiotemporal patterns of cell-cycle dynamics during the epithelial-mesenchymal transition of cultured cells, the migration and differentiation of neural progenitors in brain slices, and the development of tumors across blood vessels in live mice. These mice and cell lines will serve as model systems permitting unprecedented spatial and temporal resolution to help us better understand how the cell cycle is coordinated with various biological events.  相似文献   

16.
Two heat-sensitive (arrested in G1 at 39.5°C) and two cold-sensitive (arrested in G1 at 33°C) clonal cell-cycle mutants that had been isolated from the same clone (K 21), of the murine mastocytoma P-815 cell line, were tested for thymidine kinase (EC 2.7.1.21) activity. After shift of mutant cells to the nonpermissive temperature, thymidine kinase activity decreased, and minimal levels (i.e., less than 3% of those observed for ‘wild-type’ K 21 cells at the respective temperature) were attained within 16 h in heat-sensitive and after 3–4 days in cold-sensitive mutants, which is in good agreement with kinetics of accumulation of heat-sensitive and cold-sensitive cells in G1 phase. After return of arrested mutant cells to the permissive temperature, thymidine kinase of heat-sensitive cells increased rapidly and in parallel with entry of cells into the S phase. In cultures of cold-sensitive cells, however, initiation of DNA synthesis preceded the increase of thymidine kinase activity by approx. one cell-cycle time. Thymidine kinase activities in revertants of the heat-sensitive and cold-sensitive mutants were similar to those of ‘wild-type’ cells. In ‘wild-type’ K 21 cells incubated at 39.5°C, thymidine kinase activity was approx. 30% of that at 33°C. This difference is attributable, at least in part, to a higher rate of inactivation of the enzyme at 39.5°C, as determined in cultures incubated with cycloheximide. The rapid increase of thymidine kinase activity that occurred after shift of K 21 cells and of arrested heat-sensitive mutant cells from 39.5°C to 33°C was inhibited by actinomycin D and cycloheximide.  相似文献   

17.
Cell cycle is one of the most fundamentally conserved biological processes of plants and mammals. Casein kinase1s (CK1s) are critical for cell proliferation in mammalian cells; however, how CK1s coordinate cell division in plants remains unknown. Through genetic and biochemical studies, here we demonstrated that plant CK1, Arabidopsis (Arabidopsis thaliana) EL1-like (AELs), regulate cell cycle/division by modulating the stability and inhibitory effects of Kip-related protein6 (KRP6) through phosphorylation. Cytological analysis showed that AELs deficiency results in suppressed cell-cycle progression mainly due to the decreased DNA replication rate at S phase and increased period of G2 phase. AELs interact with and phosphorylate KRP6 at serines 75 and 109 to stimulate KRP6’s interaction with E3 ligases, thus facilitating the KRP6 degradation through the proteasome. These results demonstrate the crucial roles of CK1s/AELs in regulating cell division through modulating cell-cycle rates and elucidate how CK1s/AELs regulate cell division by destabilizing the stability of cyclin-dependent kinase inhibitor KRP6 through phosphorylation, providing insights into the plant cell-cycle regulation through CK1s-mediated posttranslational modification.

Plant casein kinases coordinate cell cycle by regulating the stability of a cyclin-dependent kinase inhibitor through promoting interaction with E3 ubiquitin ligases and proteasomal degradation by phosphorylation.  相似文献   

18.
Eukaryotic cells respond to DNA damage and S phase replication blocks by arresting cell-cycle progression through the DNA structure checkpoint pathways. In Schizosaccharomyces pombe, the Chk1 kinase is essential for mitotic arrest and is phosphorylated after DNA damage. During S phase, the Cds1 kinase is activated in response to DNA damage and DNA replication blocks. The response of both Chk1 and Cds1 requires the six 'checkpoint Rad' proteins (Rad1, Rad3, Rad9, Rad17, Rad26 and Hus1). We demonstrate that DNA damage-dependent phosphorylation of Chk1 is also cell-cycle specific, occurring primarily in late S phase and G2, but not during M/G1 or early S phase. We have also isolated and characterized a temperature-sensitive allele of rad3. Rad3 functions differently depending on which checkpoint pathway is activated. Following DNA damage, rad3 is required to initiate but not maintain the Chk1 response. When DNA replication is inhibited, rad3 is required for both initiation and maintenance of the Cds1 response. We have identified a strong genetic interaction between rad3 and cds1, and biochemical evidence shows a physical interaction is possible between Rad3 and Cds1, and between Rad3 and Chk1 in vitro. Together, our results highlight the cell-cycle specificity of the DNA structure-dependent checkpoint response and identify distinct roles for Rad3 in the different checkpoint responses. Keywords: ATM/ATR/cell-cycle checkpoints/Chk1/Rad3  相似文献   

19.
In this study we provide evidence that the low expression of IGF-1R at the cell surface of estrogen-independent breast cancer cells is due to a low rate of de novo synthesis of dolichyl phosphate. The analyses were performed on the estrogen receptor-negative breast cancer cell line MDA231 and, in comparison, the melanoma cell line SK-MEL-2, which expresses a high number of plasma membrane-bound IGF-1R. Whereas the MDA231 cells had little or no surface expression of IGF-1R, they expressed functional (i.e., ligand-binding) intracellular receptors. By measuring the incorporation of [3H]mevalonate into dolichyl phosphate, we could demonstrate that the rate of dolichyl phosphate synthesis was considerably lower in MDA231 cells than in SK-MEL-2 cells. Furthermore, N-linked glycosylation of the alpha-subunit of IGF-1R was 8-fold higher in the melanoma cells. Following addition of dolichyl phosphate to MDA231 cells, N-linked glycosylation of IGF-1R was drastically increased, which in turn was correlated to a substantial translocation of IGF-1R to the plasma membrane, as assayed by IGF-1 binding analysis and by Western blotting of plasma membrane proteins. The dolichyl phosphate-stimulated receptors were proven to be biochemically active since they exhibited autophosphorylation. Under normal conditions MDA231 cells, expressing very few IGF-1R at the cell surface, were not growth-arrested by an antibody (alphaIR-3) blocking the binding of IGF-1 to IGF-1R. However, after treatment with dolichyl phosphate, leading to a high cell surface expression of IGF-1R, alphaIR-3 efficiently blocked MDA231 cell growth. Taken together with the fact that the breast cancer cells produce IGF-1 and exhibit intracellular binding, our data suggest that the level of de novo -synthesized dolichyl phosphate may be critical for whether the cells will use an intracellular or an extracellular autocrine IGF-1 pathway.  相似文献   

20.
In diverse organisms, telomerase preferentially elongates short telomeres. We generated a single short telomere in otherwise wild-type (WT) S. cerevisiae cells. The binding of the positive regulators Ku and Cdc13p was similar at short and WT-length telomeres. The negative regulators Rif1p and Rif2p were present at the short telomere, although Rif2p levels were reduced. Two telomerase holoenzyme components, Est1p and Est2p, were preferentially enriched at short telomeres in late S/G2 phase, the time of telomerase action. Tel1p, the yeast ATM-like checkpoint kinase, was highly enriched at short telomeres from early S through G2 phase and even into the next cell cycle. Nonetheless, induction of a single short telomere did not elicit a cell-cycle arrest. Tel1p binding was dependent on Xrs2p and required for preferential binding of telomerase to short telomeres. These data suggest that Tel1p targets telomerase to the DNA ends most in need of extension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号