首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Doubly transfected human embryonal kidney cells (clone E2M11 of the HEK 293 cell line) expressing both thyrotropin-releasing hormone (TRH) receptors and G11alpha protein in high amounts were used to analyze the desensitization phenomenon of the Ca2+-mobilizing pathway. Quite unexpectedly, we did not observe any significant desensitization of the [Ca2+]i response to TRH in these cells after repeated or prolonged incubation with the hormone (up to 5 h). Under the same conditions, the TRH-induced [Ca2+]i response was completely desensitized in the parent cell line (293-E2 cels) expressing TRH receptors alone. In both cell lines, inositol phosphate response was desensitized after TRH exposure, although basal levels of inositol phospates in TRH-pretreated cells were much higher than in "naive" TRH-unexposed cells. These data suggest a significant role of the G protein G11alpha in desensitization of the Ca2+-mobilizing pathway occuring after repeated or long-term exposure of target cells to TRH-receptor agonists.  相似文献   

2.
Activation of pituitary angiotensin (ANG II) type 1 receptors (AT1) mobilizes intracellular Ca2+, resulting in increased prolactin secretion. We first assessed desensitization of AT1 receptors by testing ANG II-induced intracellular Ca2+ concentration ([Ca2+](i)) response in rat anterior pituitary cells. A period as short as 1 min with 10(-7) M ANG II was effective in producing desensitization (remaining response was 66.8 +/- 2.1% of nondesensitized cells). Desensitization was a concentration-related event (EC(50): 1.1 nM). Although partial recovery was obtained 15 min after removal of ANG II, full response could not be achieved even after 4 h (77.6 +/- 2.4%). Experiments with 5 x 10(-7) M ionomycin indicated that intracellular Ca2+ stores of desensitized cells had already recovered when desensitization was still significant. The thyrotropin-releasing hormone (TRH)-induced intracellular Ca2+ peak was attenuated in the ANG II-pretreated group. ANG II pretreatment also desensitized ANG II- and TRH-induced inositol phosphate generation (72.8 +/- 3.5 and 69.6 +/- 6.1%, respectively, for inositol triphosphate) and prolactin secretion (53.4 +/- 2.3 and 65.1 +/- 7.2%), effects independent of PKC activation. We conclude that, in pituitary cells, inositol triphosphate formation, [Ca2+](i) mobilization, and prolactin release in response to ANG II undergo rapid, long-lasting, homologous and heterologous desensitization.  相似文献   

3.
We coexpressed Kaposi's sarcoma-associated herpesvirus G protein-coupled receptors (KSHV-GPCRs) with thyrotropin-releasing hormone (TRH) receptors or m1-muscarinic-cholinergic receptors in Xenopus oocytes and in mammalian cells. In oocytes, KSHV-GPCR expression resulted in pronounced (81%) inhibition (heterologous desensitization) of Ca(2+)-activated chloride current responses to TRH and acetylcholine. Similar inhibitions of cytoplasmic free Ca(2+) responses to TRH were observed in human embryonic kidney HEK 293 EM cells and in mouse pituitary AtT20 cells. Further study of oocytes showed that this inhibition was partially reversed by interferon-gamma-inducible protein 10 (IP-10), an inverse agonist of KSHV-GPCR. The basal rate of (45)Ca(2+) efflux in oocytes expressing KSHV-GPCRs was 4.4 times greater than in control oocytes, and IP-10 rapidly inhibited increased (45)Ca(2+) efflux. In the absence of IP-10, growth-related oncogene alpha caused a further 2-fold increase in (45)Ca(2+) efflux. In KSHV-GPCR-expressing oocytes, responses to microinjected inositol 1,4,5-trisphosphate were inhibited by 74%, and this effect was partially reversed by interferon-gamma-inducible protein 10. Treatment with thapsigargin suggested that the pool of calcium available for mobilization by TRH was decreased in oocytes coexpressing KSHV-GPCRs. These results suggest that constitutive signaling by KSHV-GPCR causes heterologous desensitization of responses mediated by other receptors, which signal via the phosphoinositide/calcium pathway, which is caused by depletion of intracellular calcium pools.  相似文献   

4.
We monitored the radioligand-binding characteristics of thyrotropin-releasing hormone (TRH) receptors, functional activity of G(q/11)alpha proteins, and functional status of the whole signaling cascade in HEK293 expressing high levels of TRH receptors and G(11)alpha. Our analyses indicated that disruption of plasma membrane microdomains by cholesterol depletion did not markedly influence the binding parameters of TRH receptors, but it altered efficacy of signal transduction. The functional coupling between TRH receptor and G(q/11)alpha was assessed by agonist-stimulated [(35)S]GTPgammaS binding, and results of these measurements pointed out to significantly lower potency of TRH to mediate G protein activation in the plasma membrane fraction isolated from cholesterol-depleted cells; there was a shift in sensitivity by one order of magnitude to the higher concentrations. A markedly lower sensitivity to stimulation with TRH was also observed in our experiments dealing with determination of hormone-induced Ca(2+) response. These data suggest that the intact structure of plasma membranes is an important optimum signal transduction initiated by TRH receptors and mediated by G(q/11)alpha proteins.  相似文献   

5.
Bovine adrenocortical cells express bTREK-1 K(+) (bovine KCNK2) channels that are inhibited by ANG II through a Gq-coupled receptor by separate Ca(2+) and ATP hydrolysis-dependent signaling pathways. Whole cell and single patch clamp recording from adrenal zona fasciculata (AZF) cells were used to characterize Ca(2+)-dependent inhibition of bTREK-1. In whole cell recordings with pipette solutions containing 0.5 mM EGTA and no ATP, the Ca(2+) ionophore ionomycin (1 μM) produced a transient inhibition of bTREK-1 that reversed spontaneously within minutes. At higher concentrations, ionomycin (5-10 μM) produced a sustained inhibition of bTREK-1 that was reversible upon washing, even in the absence of hydrolyzable [ATP](i). BAPTA was much more effective than EGTA at suppressing bTREK-1 inhibition by ANG II. When intracellular Ca(2+) concentration ([Ca(2+)](i)) was buffered to 20 nM with either 11 mM BAPTA or EGTA, ANG II (10 nM) inhibited bTREK-1 by 12.0 ± 4.5% (n=11) and 59.3 ± 8.4% (n=4), respectively. Inclusion of the water-soluble phosphatidylinositol 4,5-bisphosphate (PIP(2)) analog DiC(8)PI(4,5)P(2) in the pipette failed to increase bTREK-1 expression or reduce its inhibition by ANG II. The open probability (P(o)) of unitary bTREK-1 channels recorded from inside-out patches was reduced by Ca(2+) (10-35 μM) in a concentration-dependent manner. These results are consistent with a model in which ANG II inhibits bTREK-1 K(+) channels by a Ca(2+)-dependent mechanism that does not require the depletion of membrane-associated PIP(2). They further indicate that the Ca(2+) source is located in close proximity within a "Ca(2+) nanodomain" of bTREK-1 channels, where [Ca(2+)](i) may reach concentrations of >10 μM. bTREK-1 is the first two-pore K(+) channel shown to be inhibited by Ca(2+) through activation of a G protein-coupled receptor.  相似文献   

6.
Angiotensin (ANG) IV stimulation of pulmonary artery (PA) endothelial cells (PAECs) but not of PA smooth muscle cells (PASMCs) resulted in significant increased production of cGMP in PASMCs. ANG IV receptors are not present in PASMCs, and PASMC nitric oxide synthase activity was not altered by ANG IV. ANG IV caused a dose-dependent vasodilation of U-46619-precontracted endothelium-intact but not endothelium-denuded PAs, and this response was blocked by the ANG IV receptor antagonist divalinal ANG IV but not by ANG II type 1 and 2 receptor blockers. ANG IV receptor-mediated increased intracellular Ca(2+) concentration ([Ca(2+)](i)) release from intracellular stores in PAECs was blocked by divalinal ANG IV as well as by the G protein, phospholipase C, and phosphoinositide (PI) 3-kinase inhibitors guanosine 5'-O-(2-thiodiphosphate), U-73122, and LY-294002, respectively, and was regulated by both PI 3-kinase- and ryanodine-sensitive Ca(2+) stores. Basal and ANG IV-mediated vasorelaxation of endothelium-denuded PAs was restored by exogenous PAECs but not by exogenous PAECs pretreated with the intracellular Ca(2+) chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM. These results demonstrate that ANG IV-mediated vasodilation of PAs is endothelium dependent and regulated by [Ca(2+)](i) release through receptor-coupled G protein-phospholipase C-PI 3-kinase signaling mechanisms.  相似文献   

7.
ANG II is secreted into the lumens of proximal tubules where it is also synthesized, thus increasing the local concentration of the peptide to levels of potential physiological relevance. In the present work, we studied the effect of ANG II via the luminal membranes of LLC-PK(1) cells on Ca(2+)-ATPase of the sarco(endo)plasmic reticulum (SERCA) and plasma membrane (PMCA). ANG II (at concentrations found in the lumen) stimulated rapid (30 s) and persistent (30 min) SERCA activity by more than 100% and increased Ca(2+) mobilization. Pretreatment with ANG II for 30 min enhanced the ANG II-induced Ca(2+) spark, demonstrating a positively self-sustained stimulus of Ca(2+) mobilization by ANG II. ANG II in the medium facing the luminal side of the cells decreased with time with no formation of metabolites, indicating peptide internalization. ANG II increased heterodimerization of AT(1) and AT(2) receptors by 140%, and either losartan or PD123319 completely blocked the stimulation of SERCA by ANG II. Using the PLC inhibitor U73122, PMA, and calphostin C, it was possible to demonstrate the involvement of a PLC→DAG(PMA)→PKC pathway in the stimulation of SERCA by ANG II with no effect on PMCA. We conclude that ANG II triggers SERCA activation via the luminal membrane, increasing the Ca(2+) stock in the reticulum to ensure a more efficient subsequent mobilization of Ca(2+). This first report on the regulation of SERCA activity by ANG II shows a new mechanism for Ca(2+) homeostasis in renal cells and also for regulation of Ca(2+)-modulated fluid reabsorption in proximal tubules.  相似文献   

8.
ADP-ribosyl cyclase (ADPR-cyclase) produces a Ca(2+)-mobilizing second messenger, cADP-ribose (cADPR), from NAD(+). In this study, we investigated the molecular basis of ADPR-cyclase activation in the ANG II signaling pathway and cellular responses in adult rat cardiomyocytes. The results showed that ANG II generated biphasic intracellular Ca(2+) concentration increases that include a rapid transient Ca(2+) elevation via inositol trisphosphate (IP(3)) receptor and sustained Ca(2+) rise via the activation of L-type Ca(2+) channel and opening of ryanodine receptor. ANG II-induced sustained Ca(2+) rise was blocked by a cADPR antagonistic analog, 8-bromo-cADPR, indicating that sustained Ca(2+) rise is mediated by cADPR. Supporting the notion, ADPR-cyclase activity and cADPR production by ANG II were increased in a time-dependent manner. Application of pharmacological inhibitors and immunological analyses revealed that cADPR formation was activated by sequential activation of Src, phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B (Akt), phospholipase C (PLC)-gamma1, and IP(3)-mediated Ca(2+) signal. Inhibitors of these signaling molecules not only completely abolished the ANG II-induced Ca(2+) signals but also inhibited cADPR formation. Application of the cADPR antagonist and inhibitors of upstream signaling molecules of ADPR-cyclase inhibited ANG II-stimulated hypertrophic responses, which include nuclear translocation of Ca(2+)/calcineurin-dependent nuclear factor of activated T cells 3, protein expression of transforming growth factor-beta1, and incorporation of [(3)H]leucine in cardiomyocytes. Taken together, these findings suggest that activation of ADPR-cyclase by ANG II entails a novel signaling pathway involving sequential activation of Src, PI 3-kinase/Akt, and PLC-gamma1/IP(3) and that the activation of ADPR-cyclase can lead to cardiac hypertrophy.  相似文献   

9.
The diverse cellular changes brought about by the expression of a constitutively active receptor are poorly understood. QBI-human embryonic kidney 293A cells stably expressing the constitutively active N111G-AT(1) receptor (N111G cells) showed elevated levels of inositol phosphates and frequent spontaneous intracellular Ca(2+) oscillations. Interestingly, Ca(2+) transients triggered with maximal doses of angiotensin II were much weaker in N111G cells than in wild-type cells. These blunted responses were observed independently of the presence or absence of extracellular Ca(2+) and were also obtained when endogenous muscarinic and purinergic receptors were activated, revealing a heterologous desensitization process. The desensitized component of the Ca(2+) signaling cascade was neither the G protein G(q) nor phospholipase C. The intracellular Ca(2+) store of N111G cells and their mechanism of Ca(2+) entry also appeared to be intact. The most striking adaptive response of N111G cells was a down-regulation of their inositol 1,4,5-trisphosphate receptor (IP(3)R) as revealed by reduced IP(3)-induced Ca(2+) release, lowered [(3)H]IP(3) binding capacity, diminished IP(3)R immunoreactivity, and accelerated IP(3)R degradation involving the lysosomal pathway. Treatment with the inverse agonist EXP3174 reversed the desensitized phenotype of N111G cells. Down-regulation of IP(3)R represents a reversible adaptive response to protect cells against the adverse effects of constitutively active Ca(2+)-mobilizing receptors.  相似文献   

10.
In the rat and the rabbit, a number of studies have reported the effects of angiotensin II (ANG II) on Na(+) reabsorption by the proximal (PT) and distal (DT) convoluted tubules of the kidney. The aim of the present study was to examine the effect of ANG II on Ca(2+) uptake by the luminal membranes of the PT and DT of the rabbit. Incubation of PT and DT with 10(-12) M ANG II enhanced the initial Ca(2+) uptake in the two segments. Dose-response experiments revealed, for Ca(2+) as well as for Na(+) transport, a biphasic action with a maximal effect at 10(-12) M. Ca(2+) transport by the DT luminal membrane presents a dual kinetic. ANG II action influenced the high-affinity Ca(2+) channel, increasing maximal velocity from 0.72 +/- 0.03 to 0.90 +/- 0.05 pmol x microg(-1) x 10 s(-1) (P < 0.05, n = 3) and leaving the Michaelis-Menten constant unchanged. The effect of ANG II was abolished by losartan, suggesting that the hormone is acting through AT1 receptors. In the PT, calphostin C inhibited the effect of the hormone. It is therefore probable that protein kinase C is involved as a messenger. In the DT, however, neither Rp cAMP, calphostin C, nor econazole (a phospholipase A inhibitor) influenced the hormone action. Therefore, the mechanisms involved in the hormone action remain undetermined. Finally, we questioned whether ANG II acts in the same DT segment as does parathyroid hormone on Ca(2+) transport. The two hormones increased Ca(2+) transport, but their actions were not additive, suggesting that they both influence the same channels in the same segment of the distal nephron, i.e., the segment responsible for the high-affinity calcium channel.  相似文献   

11.
The medial region of the nucleus tractus solitarius (mNTS) is a key brain stem site controlling cardiovascular function, wherein ANG II modulates neuronal L-type Ca(2+) currents via activation of ANG II type 1 receptors (AT(1)R) and production of reactive oxygen species (ROS). ANG II type 2 receptors (AT(2)R) induce production of nitric oxide (NO), which may interact with ROS and modulate AT(1)R signaling. We sought to determine whether AT(2)R-mediated NO production occurs in mNTS neurons and, if so, to elucidate the NO source and the functional interaction with AT(1)R-induced ROS or Ca(2+) influx. Electron microscopic (EM) immunolabeling showed that AT(2)R and neuronal NO synthase (nNOS) are coexpressed in neuronal somata and dendrites receiving synapses in the mNTS. In the presence of the AT(1)R antagonist losartan, ANG II increased NO production in isolated mNTS neurons, an effect blocked by the AT(2)R antagonist PD123319, but not the angiotensin (1-7) antagonist D-Ala. Studies in mNTS neurons of nNOS-null or endothelial NOS (eNOS)-null mice established nNOS as the source of NO. ANG II-induced ROS production was enhanced by PD123319, the NOS inhibitor N(G)-nitro-l-arginine (LNNA), or in nNOS-null mice. Moreover, in the presence of losartan, ANG II reduced voltage-gated L-type Ca(2+) current, an effect blocked by PD123319 or LNNA. We conclude that AT(2)R are closely associated and functionally coupled with nNOS in mNTS neurons. The resulting NO production antagonizes AT(1)R-mediated ROS and dampens L-type Ca(2+) currents. The ensuing signaling changes in the NTS may counteract the deleterious effects of AT(1)R on cardiovascular function.  相似文献   

12.
Caveolae are identifiable plasma membrane invaginations. The main structural proteins of caveolae are the caveolins. There are three caveolins expressed in mammals, designated Cav-1, Cav-2, and Cav-3. It has been postulated that Cav-1 acts as a scaffold protein for signaling proteins; these include ion channels, enzymes, and other ligand receptors like membrane-associated estrogen receptor (ER)alpha or ERbeta. Caveolae-associated membrane proteins are involved in regulating some of the rapid estrogenic effects of 17beta-estradiol. One important system related to the activity of ERalpha and caveolae is the renin-angiotensin system. Angiotensin II (ANG II) has numerous actions in vascular smooth muscle, including modulation of vasomotor tone, cell growth, apoptosis, phosphatidylinositol 3-kinase (PI3K)/Akt activation, and others. Many proteins associated with caveolae are in close relation with the scaffolding domain of Cav-1 (82-101 amino acid residues). It has been proposed that this peptide may acts as a kinase inhibitor. Therefore, to explore the ability of Cav-1 scaffolding peptide (CSP-1) to regulate ANG II function and analyze the relationship between ERalpha and ANG II type 1 and 2 (AT(1) and AT(2)) receptors, we decided to study the effects of CSP-1 on ANG II-induced intracellular Ca(2+) kinetics and the effect of 17beta-estradiol on this modulation using human smooth muscle cells in culture, intracellular Ca(2+) concentration measurements, immuno- and double-immunocytochemistry confocal analysis of receptor expression, immunoblot analysis, and immunocoprecipitation assays to demonstrate coexpression. We hypothesized that CSP-1 inhibits ANG II-mediated increases in intracellular Ca(2+) concentrations by interfering with intracellular signaling including the PI3K/Akt pathway. We also hypothesize that AT(2) receptors associate with Cav-1. Our results show that there is a close association of AT(1), AT(2), and ERalpha with Cav-1 in human arterial smooth muscle cells in culture. CSP-1 inhibits ANG II-induced intracellular signaling.  相似文献   

13.
Aldosterone production in zona glomerulosa (ZG) cells of adrenal glands is regulated by various extracellular stimuli (K(+), ANG II, ACTH) that all converge on two major intracellular signaling pathways: an increase in cAMP production and calcium (Ca(2+)) mobilization. However, molecular events downstream of the increase in intracellular cAMP and Ca(2+) content are controversial and far from being completely resolved. Here, we found that Ca(2+)/calmodulin-dependent protein kinases (CaMKs) play a predominant role in the regulation of aldosterone production stimulated by ANG II, ACTH, and cAMP. The specific CaMK inhibitor KN93 strongly reduced ANG II-, ACTH-, and cAMP-stimulated aldosterone production. In in vitro kinase assays and intact cells, we could show that cAMP-induced activation of CaMK, using the adenylate cyclase activator forskolin or the cAMP-analog Sp-5,6-DCI-cBIMPS (cBIMPS), was not mediated by PKA. Activation of the recently identified cAMP target protein Epac (exchange protein directly activated by cAMP) by 8-pCPT-2'-O-Me-cAMP had no effect on CaMK activity and aldosterone production. Furthermore, we provide evidence that cAMP effects in ZG cells do not involve Ca(2+) or MAPK signaling. Our results suggest that ZG cells, in addition to PKA and Epac/Rap proteins, contain other as yet unidentified cAMP mediator(s) involved in regulating CaMK activity and aldosterone secretion.  相似文献   

14.
ANG II constricts descending vasa recta (DVR) through Ca(2+) signaling in pericytes. We examined the role of PKC DVR pericytes isolated from the rat renal outer medulla. The PKC blocker staurosporine (10 microM) eliminated ANG II (10 nM)-induced vasoconstriction, inhibited pericyte cytoplasmic Ca(2+) concentration ([Ca(2+)](cyt)) elevation, and blocked Mn(2+) influx into the cytoplasm. Activation of PKC by either 1,2-dioctanoyl-sn-glycerol (10 microM) or phorbol 12,13-dibutyrate (PDBu; 1 microM) induced both vasoconstriction and pericyte [Ca(2+)](cyt) elevation. Diltiazem (10 microM) blocked the ability of PDBu to increase pericyte [Ca(2+)](cyt) and enhance Mn(2+) influx. Both ANG II- and PDBu-induced PKC stimulated DVR generation of reactive oxygen species (ROS), measured by oxidation of dihydroethidium (DHE). The effect of ANG II was only significant when ANG II AT(2) receptors were blocked with PD-123319 (10 nM). PDBu augmentation of DHE oxidation was blocked by either TEMPOL (1 mM) or diphenylene iodonium (10 microM). We conclude that ANG II and PKC activation increases DVR pericyte [Ca(2+)](cyt), divalent ion conductance into the cytoplasm, and ROS generation.  相似文献   

15.
Rat pinealocytes receive noradrenergic innervation that stimulates melatonin synthesis. Besides melatonin, we showed previously that pinealocytes accumulate L-glutamate in microvesicles and secrete it through an exocytic mechanism. The secreted glutamate binds to the class II metabotropic glutamate receptor and inhibits norepinephrine-stimulated melatonin synthesis in neighboring pinealocytes through an inhibitory cyclic AMP cascade. In this study, it was found that, in addition to metabotropic receptors, pinealocytes express functional ionotropic receptors. RT-PCR and northern analyses indicated the expression of mRNA for GluR1, KA2, and NR2C in pineal gland. The presence of GluR1 protein was confirmed by immunological techniques, but neither KA2 nor NR2C was detected. Consistent with this observation, the presence of (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid or kainate, non-N-methyl-D-aspartate receptor agonists, transiently stimulated increased the intracellular Ca(2+) concentration of cultured pinealocytes, whereas N-methyl-D-aspartate did not. These responses were prevented by 6-cyano-7-nitroquinoxaline-2,3-dione, a selective antagonist for non-N-methyl-D-aspartate receptors, by L-type Ca(2+) channel blockers such as nifedipine, or by omitting Ca(2+) or Na(+) in the medium. In the presence of Ca(2+) and Na(+), (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid or kainate evoked glutamate secretion from the cultured cells, which was prevented by 6-cyano-7-nitroquinoxaline-2,3-dione, L-type Ca(2+) channel blockers, type E or B botulinum neurotoxin, or incubation at <20 degrees C. These results strongly suggest that GluR1 is functionally expressed in pinealocytes and triggers microvesicle-mediated exocytosis of L-glutamate via activation of L-type Ca(2+) channels. It is possible that GluR1 participates in a signaling cascade that enhances and expands the L-glutamate signal throughout the pineal gland.  相似文献   

16.
HEK293 cells expressing the thyrotropin-releasing hormone (TRH) receptor were transfected with cameleon Ca(2+) indicators designed to measure the free Ca(2+) concentration in the cytoplasm, [Ca(2+)](cyt), and the endoplasmic reticulum (ER), [Ca(2+)](er). Basal [Ca(2+)](cyt) was about 50 nm; thyrotropin-releasing hormone (TRH) or other agonists increased [Ca(2+)](cyt) to 1 micrometer or higher. Basal [Ca(2+)](er) averaged 500 micrometer and fell to 50-100 micrometer over 10 min in the presence of thapsigargin. TRH consistently decreased [Ca(2+)](er) to 100 micrometer, independent of extracellular Ca(2+), whereas agonists for endogenous receptors generally caused a smaller decline. When added with thapsigargin, all agonists rapidly decreased [Ca(2+)](er) to 5-10 micrometer, indicating that there is substantial store refilling during signaling. TRH increased [Ca(2+)](cyt) and decreased [Ca(2+)](er) if applied after other agonists, whereas other agonists did not alter [Ca(2+)](cyt) or [Ca(2+)](er) if added after TRH. When Ca(2+) was added back to cells that had been incubated with TRH in Ca(2+)-free medium, [Ca(2+)](cyt) and [Ca(2+)](er) increased rapidly. The increase in [Ca(2+)](er) was only partially blocked by thapsigargin but was completely blocked if cells were loaded with 1, 2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. In conclusion, these new Ca(2+) indicators showed that basal [Ca(2+)](er) is approximately 500 micrometer, that [Ca(2+)](er) has to be >100 micrometer to support an increase in [Ca(2+)](cyt) by agonists, and that during signaling, intracellular Ca(2+) stores are continuously refilled with cytoplasmic Ca(2+) by the sarcoendoplasmic reticulum Ca(2+)-ATPase pump.  相似文献   

17.
The G protein-coupled thyrotropin-releasing hormone (TRH) receptor is phosphorylated and binds to beta-arrestin after agonist exposure. To define the importance of receptor phosphorylation and beta-arrestin binding in desensitization, and to determine whether beta-arrestin binding and receptor endocytosis are required for receptor dephosphorylation, we expressed TRH receptors in fibroblasts from mice lacking beta-arrestin-1 and/or beta-arrestin-2. Apparent affinity for [(3)H]MeTRH was increased 8-fold in cells expressing beta-arrestins, including a beta-arrestin mutant that did not permit receptor internalization. TRH caused extensive receptor endocytosis in the presence of beta-arrestins, but receptors remained primarily on the plasma membrane without beta-arrestin. beta-Arrestins strongly inhibited inositol 1,4,5-trisphosphate production within 10 s. At 30 min, endogenous beta-arrestins reduced TRH-stimulated inositol phosphate production by 48% (beta-arrestin-1), 71% (beta-arrestin-2), and 84% (beta-arrestins-1 and -2). In contrast, receptor phosphorylation, detected by the mobility shift of deglycosylated receptor, was unaffected by beta-arrestins. Receptors were fully phosphorylated within 15 s of TRH addition. Receptor dephosphorylation was identical with or without beta-arrestins and almost complete 20 min after TRH withdrawal. Blocking endocytosis with hypertonic sucrose did not alter the rate of receptor phosphorylation or dephosphorylation. Expressing receptors in cells lacking Galpha(q) and Galpha(11) or inhibiting protein kinase C pharmacologically did not prevent receptor phosphorylation or dephosphorylation. Overexpression of dominant negative G protein-coupled receptor kinase-2 (GRK2), however, retarded receptor phosphorylation. Receptor activation caused translocation of endogenous GRK2 to the plasma membrane. The results show conclusively that receptor dephosphorylation can take place on the plasma membrane and that beta-arrestin binding is critical for desensitization and internalization.  相似文献   

18.
A Fatatis  R J Miller 《FASEB journal》1999,13(11):1291-1301
The effects of growth factors have been shown to depend on the position of a cell in the cell cycle. However, the physiological basis for this phenomenon remains unclear. Here we show that the majority of both CEINGE clone3 (cl3) and human embryonic kidney 293 cells, when arrested in a quiescent phase (G(0)), responded to platelet-derived growth factor BB (PDGF-BB) with non-oscillatory Ca(2+) signals. Furthermore, the same type of Ca(2+) response was also observed in CEINGE cl3 cells (and to a lesser extent in HEK 293 cells) blocked at the G(1)/S boundary. In contrast, CEINGE cl3 cells synchronized in early G(1) or released from G(1)/S arrest responded in an oscillatory fashion. This cell cycle-dependent modulation of Ca(2+) signaling was not observed on epidermal growth factor and G-protein-coupled receptor stimulation and was not due to differences in the expression of PDGF receptors (PDGFRs) during the cell cycle. We demonstrate that inhibition of sphingosine-kinase, which converts sphingosine to sphingosine-1-phosphate, caused G(0) as well as G(1)/S synchronized cells to restore the oscillatory Ca(2+) response to PDGF-BB. In addition, we show that the synthesis of sphingosine and sphingosine-1-phosphate is regulated by the cell cycle and may underlie the differences in Ca(2+) signaling after PDGFR stimulation.  相似文献   

19.
To investigate the regulation of the CCR1 chemokine receptor, a rat basophilic leukemia (RBL-2H3) cell line was modified to stably express epitope-tagged receptor. These cells responded to RANTES (regulated upon activation normal T expressed and secreted), macrophage inflammatory protein-1alpha, and monocyte chemotactic protein-2 to mediate phospholipase C activation, intracellular Ca(2+) mobilization and exocytosis. Upon activation, CCR1 underwent phosphorylation and desensitization as measured by diminished GTPase stimulation and Ca(2+) mobilization. Alanine substitution of specific serine and threonine residues (S2 and S3) or truncation of the cytoplasmic tail (DeltaCCR1) of CCR1 abolished receptor phosphorylation and desensitization of G protein activation but did not abolish desensitization of Ca(2+) mobilization. S2, S3, and DeltaCCR1 were also resistant to internalization, mediated greater phosphatidylinositol hydrolysis and sustained Ca(2+) mobilization, and were only partially desensitized by RANTES, relative to S1 and CCR1. To study CCR1 cross-regulation, RBL cells co-expressing CCR1 and receptors for interleukin-8 (CXCR1, CXCR2, or a phosphorylation-deficient mutant of CXCR2, 331T) were produced. Interleukin-8 stimulation of CXCR1 or CXCR2 cross-phosphorylated CCR1 and cross-desensitized its ability to stimulate GTPase activity and Ca(2+) mobilization. Interestingly, CCR1 cross-phosphorylated and cross-desensitized CXCR2, but not CXCR1. Ca(2+) mobilization by S3 and DeltaCCR1 were also cross-desensitized by CXCR1 and CXCR2 despite lack of receptor phosphorylation. In contrast to wild type CCR1, S3 and DeltaCCR1, which produced sustained signals, cross-phosphorylated and cross-desensitized responses to CXCR1 as well as CXCR2. Taken together, these results indicate that CCR1-mediated responses are regulated at several steps in the signaling pathway, by receptor phosphorylation at the level of receptor/G protein coupling and by an unknown mechanism at the level of phospholipase C activation. Moreover selective cross-regulation among chemokine receptors is, in part, a consequence of the strength of signaling (i.e. greater phosphatidylinositol hydrolysis and sustained Ca(2+) mobilization) which is inversely correlated with the receptor's susceptibility to phosphorylation. Since many chemokines activate multiple chemokine receptors, selective cross-regulation among such receptors may play a role in their immunomodulation.  相似文献   

20.
Dai R  Ali MK  Lezcano N  Bergson C 《Neuro-Signals》2008,16(2-3):112-123
D1-like dopamine receptors stimulate Ca(2+) transients in neurons but the effector coupling and signaling mechanisms underlying these responses have not been elucidated. Here we investigated potential mechanisms using both HEK 293 cells that stably express D1 receptors (D1HEK293) and hippocampal neurons in culture. In D1HEK293 cells, the full D1 receptor agonist SKF 81297 evoked a robust dose-dependent increase in Ca(2+)(i) following 'priming' of endogenous G(q/11)-coupled muscarinic or purinergic receptors. The effect of SKF81297 could be mimicked by forskolin or 8-Br-cAMP. Further, cholera toxin and the cAMP-dependent protein kinase (PKA) inhibitors, KT5720 and H89, as well as thapsigargin abrogated the D1 receptor evoked Ca(2+) transients. Removal of the priming agonist and treatment with the phospholipase C inhibitor U73122 also blocked the SKF81297-evoked responses. D1R agonist did not stimulate IP(3) production, but pretreatment of cells with the D1R agonist potentiated G(q)-linked receptor agonist mobilization of intracellular Ca(2+) stores. In neurons, SKF81297 and SKF83959, a partial D1 receptor agonist, promoted Ca(2+) oscillations in response to G(q/11)-coupled metabotropic glutamate receptor (mGluR) stimulation. The effects of both D1R agonists on the mGluR-evoked Ca(2+) responses were PKA dependent. Altogether the data suggest that dopamine D1R activation and ensuing cAMP production dynamically regulates the efficiency and timing of IP(3)-mediated intracellular Ca(2+) store mobilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号