首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The capsular components of the human pathogen Cryptococcus neoformans are transported to the extracellular space and then used for capsule enlargement by distal growth. It is not clear, however, how the glucuronoxylomannan (GXM) fibers are incorporated into the capsule. In the present study, we show that concentration of C. neoformans culture supernatants by ultrafiltration results in the formation of highly viscous films containing pure polysaccharide, providing a novel, nondenaturing, and extremely rapid method to isolate extracellular GXM. The weight-averaged molecular mass of GXM in the film, determined using multiangle laser light scattering, was ninefold smaller than that of GXM purified from culture supernatants by differential precipitation with cetyl trimethyl ammonium bromide (CTAB). Polysaccharides obtained either by ultrafiltration or by CTAB-mediated precipitation showed different reactivities with GXM-specific monoclonal antibodies. Viscosity analysis associated with inductively coupled plasma mass spectrometry and measurements of zeta potential in the presence of different ions implied that polysaccharide aggregation was a consequence of the interaction between the carboxyl groups of glucuronic acid and divalent cations. Consistent with this observation, capsule enlargement in living C. neoformans cells was influenced by Ca(2+) in the culture medium. These results suggest that capsular assembly in C. neoformans results from divalent cation-mediated self-aggregation of extracellularly accumulated GXM molecules.  相似文献   

2.
The major component of capsular material of Cryptococcus neoformans is glucuronoxylomannnan (GXM), a polysaccharide that exhibits potent immunosuppressive properties in vitro and in vivo. The results reported here show that 1) soluble purified GXM induces a prompt, long-lasting, and potent up-regulation of Fas ligand (FasL) on macrophages, 2) the up-regulation of FasL is related to induced synthesis and increased mobilization to the cellular surface, 3) this effect is largely mediated by interaction between GXM and TLR4, 4) FasL up-regulation occurs exclusively in GXM-loaded macrophages, 5) macrophages that show up-regulation of FasL induce apoptosis of activated T cells expressing Fas and Jurkat cells that constitutively express Fas, and 6) anti-Fas Abs rescue T cells from apoptosis induced by GXM. Collectively our results reveal novel aspects of the immunoregulatory properties of GXM and suggest that this nontoxic soluble compound could be used to dampen the immune response, to promote or accelerate the death receptor, and to fix FasL expression in a TLR/ligand-dependent manner. In the present study, we delineate potential new therapeutic applications for GXM that exploit death receptors as key molecular targets in regulating cell-mediated cytotoxicity, immune homeostasis, and the immunopathology of diseases.  相似文献   

3.
Cryptococcus neoformans is an encapsulated pathogenic fungus. The cryptococcal capsule is composed of polysaccharides and is necessary for virulence. It has been previously reported that glucuronoxylomannan (GXM), the major capsular component, is synthesized in cytoplasmic compartments and transported to the extracellular space in vesicles, but knowledge on the organelles involved in polysaccharide synthesis and traffic is extremely limited. In this paper we report the GXM distribution in C. neoformans cells sectioned by cryoultramicrotomy and visualized by transmission electron microscopy (TEM) and polysaccharide immunogold staining. Cryosections of fungal cells showed high preservation of intracellular organelles and cell wall structure. Incubation of cryosections with an antibody to GXM revealed that cytoplasmic structures associated to vesicular compartments and reticular membranes are in close proximity to the polysaccharide. GXM was generally found in association with the membrane of intracellular compartments and within different layers of the cell wall. Analysis of extracellular fractions from cryptococcal supernatants by transmission electron microscopy in combination with serologic, chromatographic and spectroscopic methods revealed fractions containing GXM and lipids. These results indicate an intimate association of GXM and lipids in both intracellular and extracellular spaces consistent with polysaccharide synthesis and transport in membrane-associated structures.  相似文献   

4.
Several genes are essential for Cryptococcus neoformans capsule synthesis, but their functions are unknown. We examined the localization of glucuronoxylomannan (GXM) in strain B-3501 and in cap59 mutants B-4131 and C536. Wild-type strain B-3501 showed a visible capsule by India ink staining and immunofluorescence with anticapsular monoclonal antibodies (MAbs) 12A1 and 18B7. B-4131, a mutant containing a missense mutation in CAP59, showed no capsule by India ink staining but revealed the presence of capsular polysaccharide on the cell surface by immunofluorescence. The cap59 gene deletion mutant (C536), however, did not show a capsule by either India ink staining or immunofluorescence. Analysis of cell lysates for GXM by enzyme-linked immunosorbent assay revealed GXM in C536 samples. Furthermore, the epitopes recognized by MAbs 12A1, 2D10, 13F1, and 18B7 were each detected in the cytoplasm of all strains by immunogold electron microscopy, although there were differences in location consistent with differences in epitope synthesis and/or transport. In addition, the cells of B-3501 and B-4131, but not those of the cap59 deletant, assimilated raffinose or urea. Hence, the missense mutation of CAP59 in B-4131 partially hampered the trafficking of GXM but allowed the secretion of enzymes involved in hydrolysis of raffinose or urea. Furthermore, the cell diameter and volume for strain C536 are higher than those for strain B-3501 or B-4131 and may suggest the accumulation of cellular material in the cytoplasm. Our results suggest that CAP59 is involved in capsule synthesis by participating in the process of GXM (polysaccharide) export.  相似文献   

5.
The major virulence factor of the pathogenic fungi Cryptococcus neoformans and C. gattii is the capsule. Glucuronoxylomannan (GXM), the major component of the capsule, is a high-molecular-weight polysaccharide that is shed during cryptococcosis and can persist in patients after successful antifungal therapy. Due to the importance of T cells in the anticryptococcal response, we studied the effect of GXM on the ability of dendritic cells (DCs) to initiate a T-cell response. GXM inhibited the activation of cryptococcal mannoprotein-specific hybridoma T cells and the proliferation of OVA-specific OT-II T cells when murine bone marrow-derived DCs were used as antigen-presenting cells. Inhibition of OT-II T-cell proliferation was observed when either OVA protein or OVA323-339 peptide was used as antigen, indicating GXM did not merely prevent antigen uptake or processing. We found that DCs internalize GXM progressively over time; however, the suppressive effect did not require DCs, as GXM directly inhibited T-cell proliferation induced by anti-CD3 antibody, concanavalin A, or phorbol-12-myristate-13-acetate/ionomycin. Analysis of T-cell viability revealed that the reduced proliferation in the presence of GXM was not the result of increased cell death. GXM isolated from each of the four major cryptococcal serotypes inhibited the proliferation of human peripheral blood mononuclear cells stimulated with tetanus toxoid. Thus, we have defined a new mechanism by which GXM can impart virulence: direct inhibition of T-cell proliferation. In patients with cryptococcosis, this could impair optimal cell-mediated immune responses, thereby contributing to the persistence of cryptococcal infections.  相似文献   

6.
Flow cytometry and confocal microscopy were used to quantify and visualize FITC-lectin binding to cell-surface carbohydrate ligands of log and stationary phase acapsular and capsular Cryptococcus neoformans strains. Cell populations demonstrated marked avidity for terminal α-linked mannose and glucose specific FITC-Con A, mannose specific FITC-GNL, as well as N-acetylglucosamine specific FITC-WGA. Exposure to other FITC-lectins specific for mannose, fucose and N-acetylgalactosamine resulted in little cell-surface fluorescence. The nature of cell-surface carbohydrates was investigated further by measurement of the fluorescence from surfaces of log and stationary phase cell populations after exposing them to increasing concentrations of FITC-Con A and FITC-WGA. Cell fluorescence increased significantly with small increases in FITC-Con A and FITC-WGA concentrations attaining reproducible maxima. Measurements of this nature supported calculation of the lectin binding determinants EC 50, Hn, Fmax and relative Bmax values. EC50 values indicated that the yeast-cell surfaces had greatest affinity for FITC-WGA, however, relative Bmax values indicated that greater numbers of Con A binding sites were present on these same cell surfaces. Hn values suggested a co-operative lectin-carbohydrate ligand interaction. Imaging of FITC-Con A and FITC-WGA cell-surface fluorescence by confocal microscopy demonstrated marked localization of both lectins to cell surfaces associated with cell division and maturation, indicative of dynamic carbohydrate ligand exposure and masking. Some fluorescence was associated with entrapment of FITC-Con A by capsular components, but FITC-Con A and FITC-WGA readily penetrated the capsule matrix to bind to the same cell surfaces labelled in acapsular cells.  相似文献   

7.
A remarkable aspect of the interaction of Cryptococcus neoformans with mammalian hosts is a consistent increase in capsule volume. Given that many aspects of the interaction of C. neoformans with macrophages are also observed with amoebae, we hypothesized that the capsule enlargement phenomenon also had a protozoan parallel. Incubation of C. neoformans with Acanthamoeba castellanii resulted in C. neoformans capsular enlargement. The phenomenon required contact between fungal and protozoan cells but did not require amoeba viability. Analysis of amoebae extracts showed that the likely stimuli for capsule enlargement were protozoan polar lipids. Extracts from macrophages and mammalian serum also triggered cryptococcal capsular enlargement. C. neoformans capsule enlargement required expression of fungal phospholipase B, but not phospholipase C. Purified phospholipids, in particular, phosphatidylcholine, and derived molecules triggered capsular enlargement with the subsequent formation of giant cells. These results implicate phospholipids as a trigger for both C. neoformans capsule enlargement in vivo and exopolysaccharide production. The observation that the incubation of C. neoformans with phospholipids led to the formation of giant cells provides the means to generate these enigmatic cells in vitro. Protozoan- or mammalian-derived polar lipids could represent a danger signal for C. neoformans that triggers capsular enlargement as a non-specific defense mechanism against potential predatory cells. Hence, phospholipids are the first host-derived molecules identified to trigger capsular enlargement. The parallels apparent in the capsular response of C. neoformans to both amoebae and macrophages provide additional support for the notion that certain aspects of cryptococcal virulence emerged as a consequence of environmental interactions with other microorganisms such as protists.  相似文献   

8.
Defined Abs to the Cryptococcus neoformans capsular polysaccharide glucuronoxylomannan (GXM) have been shown to be protective against experimental cryptococcosis. This suggests that if a vaccine could induce similar Abs it might protect against infection. However, the potential use of a GXM-based vaccine has been limited by evidence that GXM is a poor immunogen that can induce nonprotective and deleterious, as well as protective, Abs, and that the nature of GXM oligosaccharide epitopes that can elicit a protective response is unknown. In this study, we investigated whether a peptide surrogate for a GXM epitope could induce an Ab response to GXM in mice. The immunogenicity of peptide-protein conjugates produced by linking a peptide mimetic of GXM, P13, to either BSA, P13-BSA, or tetanus toxoid, P13-tetanus toxoid, was examined in BALB/c and CBA/n mice that received four s.c. injections of the conjugates at 14- to 30-day intervals. All mice immunized with conjugate produced IgM and IgG to P13 and GXM. Challenge of conjugate-immunized mice with C. neoformans revealed longer survival and lower serum GXM levels than control mice. These results indicate that 1) P13 is a GXM mimotope and 2) that it induced a protective response against C. neoformans in mice. P13 is the first reported mimotope of a C. neoformans Ag. Therefore, the P13 conjugates are vaccine candidates for C. neoformans and their efficacy in this study suggests that peptide mimotopes selected by protective Abs deserve further consideration as vaccine candidates for encapsulated pathogens.  相似文献   

9.
The humoral immune response of patients infected with Cryptococcus neoformans var. neoformans and C. neoformans var. gattii to cytoplasmic (non-capsular) antigens from the two varieties of Cryptococcus has been investigated. Cytoplasmic antigens from C. neoformans (one clinical isolate and one acapsular mutant of var. neoformans and two clinical isolates from var. gattii) were subject to isoelectric focusing, SDS-PAGE and Western blotting; patients sera was then used in the immunoenzyme development of the Western blots. The humoral response from the 20 patients (all HIV+) infected with var. neoformans against the var. neoformans antigens was predominantly IgG based, with a large number of bands recognised; the most commonly recognised bands were at 26, 52, 74, 100, 115 and 144 kDa. The IgM response was less pronounced and the IgA response was practically non-existent. The humoral response of the sera from the 15 patients (all but one HIV-) infected with var. gattii against var. gattii antigens was also predominantly IgG based with bands at 37, 55, 65, 74, 94 and 115 kDa being most commonly recognised. Periodate treatment of cytoplasmic antigens reduced the intensity of antigen recognition, though it did not absolutely destroy reactivity to any individual antigen. Comparison of immunodevelopment of cytoplasmic antigens from both varieties grown at 25°C and 37°C revealed that culture temperature made no differences in the number of bands recognised although there were differences in the intensity of recognition. This is the first report on the pattern of serological recognition of the non-capsular antigens from the two varieties of Cryptococcus and it identifies a number of major antigenic components.  相似文献   

10.
An alternative pathway to glucuronic acid-containing di- and trisaccharide thioglycoside building blocks, suitable for the synthesis of Cryptococcus neoformans capsular polysaccharide structures, has been developed. As opposed to our earlier synthesis, this approach features the introduction of the glucuronic acid motif at the di- and trisaccharide level through oxidation of a glucose residue. This approach circumvents problems encountered in glycosylations with glucuronic acid donors and benzylation of glucuronic acid-containing derivatives. Selective protection of primary alcohols was obtained at the di- and trisaccharide stage using TBDMS or trityl protecting groups, respectively. After benzylation of the secondary hydroxyl groups and subsequent removal of the TBDMS or trityl group, oxidation of the free primary alcohols to carboxylic acids was performed in high yield using the TEMPO-BAIB reagent mixture, which does not tend to oxidize thioglycosides. The new approach requires a number of extra steps, but has proven to be more reliable and easily reproducible.  相似文献   

11.
A yeast under cover: the capsule of Cryptococcus neoformans   总被引:5,自引:0,他引:5       下载免费PDF全文
  相似文献   

12.
13.
14.
The antigenic formula and chemical structure of capsular polysaccharide (CPS) of Cryptococcus albidus var. albidus (C. albidus) were studied in relation to those of C. neoformans var. neoformans serotype A (C. neoformans A). The results of slide agglutination tests with factor sera and reciprocal adsorption experiments showed that antigenic formula of C. albidus was the same as that of C. neoformans A. The soluble CPSs from the two species were obtained from culture supernatants by precipitation with ethanol followed by purification by chromatography on DEAE-cellulose column. The structural analyses of such CPSs from the two species showed that the antigenic CPS fractions consisted of a backbone of alpha(1-3)-linked D-mannopyranosyl residues with a single branch of beta(1-2)-xylose or glucuronic acid, and mostly with O-acetyl groups, in which side chains and O-acetyl groups were responsible for antigenic specificity. It was found that there was a minor difference between the CPS of C. neoformans A and that of C. albidus; in the former, unsubstituted mannose residues existed in a low frequency, but in the latter none. Moreover, the 1H-nuclear magnetic resonance spectra of partially hydrolyzed acidic fragments of the two CPSs indicated that two xylose side chains were present between glucuronic acid side chains. Taken together, it was suggested that these two species of C. neoformans A and C. albidus are closely related to each other in their CPSs.  相似文献   

15.
The fungal pathogen Cryptococcus neoformans is killed by the bacterium Staphylococcus aureus, and the killing is inhibited by soluble capsular polysaccharides. To investigate the mechanism of killing, cells in coculture were examined by scanning and transmission electron microscopy. S. aureus attached to the capsule of C. neoformans, and the ultrastructure of the attached C. neoformans cells was characteristic of dead cells. To identify the molecules that contributed to the fungal-bacterial interaction, we treated each with NaIO(4) or protease. Treatment of C. neoformans with NaIO(4) promoted adherence. It was inferred that cleavage of xylose and glucuronic acid side chains of glucuronoxylomannan (GXM) allowed S. aureus to recognize mannose residues in the backbone, which resisted periodate oxidation. On the other hand, treatment of S. aureus with protease decreased adherence, suggesting that protein contributed to attachment in S. aureus. In confirmation, side chain-cleaved polysaccharide or defined alpha-(1-->3)-mannan inhibited the killing at lower concentrations than native GXM did. Also, these polysaccharides reduced the adherence of the two species and induced clumping of pure S. aureus cells. alpha-(1-->3)-Mannooligosaccharides with a degree of polymerization (DP) of >/=3 induced cluster formation of S. aureus in a dose-dependent manner. Surface plasmon resonance analyses showed interaction of GXM and surface protein from S. aureus; the interaction was inhibited by oligosaccharides with a DP of > or =3. Conformations of alpha-(1-->3) oligosaccharides were predicted. The three-dimensional structures of mannooligosaccharides larger than triose appeared curved and could be imagined to be recognized by a hypothetical staphylococcal lectin. Native polyacrylamide gel electrophoresis of staphylococcal protein followed by electroblotting, enzyme-linked immunolectin assay, protein staining, and N-terminal amino acid sequencing suggested that the candidate protein was triosephosphate isomerase (TPI). The enzymatic activities were confirmed by using whole cells of S. aureus. TPI point mutants of S. aureus decreased the ability to interact with C. neoformans. Thus, TPI on S. aureus adheres to the capsule of C. neoformans by recognizing the structure of mannotriose units in the backbone of GXM; we suggest that this contact is required for killing of C. neoformans.  相似文献   

16.
Most mAbs to the capsular polysaccharide glucuronoxylomannan (GXM) of Cryptococcus neoformans are generated from the same VH and VL gene families. Prior Ab studies have assessed protective efficacy, Id structure and binding to capsular polysaccharides, and peptide mimetics. These data have been interpreted as indicating that most mAbs to GXM have the same specificity. A new approach to Ab specificity analysis was investigated that uses genetic manipulation to generate C. neoformans variants with structurally different capsules. C. neoformans mutants expressing GXM with defective O-acetylation were isolated and complemented by the C. neoformans gene CAS1, which is necessary for the O-acetylation of GXM. The mAbs exhibited differences in their binding to the GXM from these mutant strains, indicating previously unsuspected differences in specificity. Analysis of three closely related IgMs revealed that one (mAb 12A1) bound to an epitope that did not require O-acetylation, another (mAb 21D2) was inhibited by O-acetylation, and the third (mAb 13F1) recognized an O-acetylation-dependent conformational epitope. Furthermore, an IgG Ab (mAb 18B7) in clinical development retained binding to de-O-acetylated polysaccharide; however, greater binding was observed to O-acetylated GXM. Our findings suggest that microbial genetic techniques can provide a new approach for epitope mapping of polysaccharide-binding Abs and suggest that this method may applicable for studying the antigenic complexity of polysaccharide Ags in other capsulated microorganisms.  相似文献   

17.
An improved method has been developed for RNA interference in Cryptococcus neoformans, using opposing promoters to facilitate cloning and RNA interference targeting URA5 to allow selection of cells in which silencing is most effective. These advances significantly reduce the variability of silencing and the effort required for interference plasmid construction.  相似文献   

18.
目的构建新生隐球菌荚膜基因与绿色荧光蛋白的融合表达系统。方法PCR法扩增CAP60基因片段,测序验证其准确性。将其与多个必需基因共同连人穿梭质粒。结果获得6150bps大小的质粒,该质粒含有荚膜基因启动子、终止子及荧光蛋白的基因。结论将新生隐球菌荚膜基因与荧光蛋白基因融合表达,将会有利于对荚膜的生化合成途径作进一步研究。  相似文献   

19.
The most distinctive feature of the human pathogenic fungus is a polysaccharide capsule that is essential for virulence and is composed primarily of glucuronoxylomannan (GXM) and galactoxylomannan (GalXM). GXM mediates multiple deleterious effects on host immune function, yet relatively little is known about its physical properties. The average mass of Cryptococcus neoformans GXM from four antigenically different strains ranged from 1.7 to 7 x 10(6) daltons as calculated from Zimm plots of light-scattering data. GalXM was significantly smaller than GXM, with an average mass of 1 x 10(5) daltons. These molecular masses imply that GalXM is the most numerous polysaccharide in the capsule on a molar basis. The radius of gyration of the capsular polysaccharides ranged between 68 and 208 nm. Viscosity measurements suggest that neither polysaccharide altered fluid dynamics during infection since GXM behaved in solution as a polyelectrolyte and GalXM did not increase solution viscosity. Immunoblot analysis indicated heterogeneity within GXM. In agreement with this, scanning transmission electron microscopy of GXM preparations revealed a tangled network of two different types of molecules. Mass per length measurements from light scattering and scanning transmission electron microscopy were consistent and suggested GXM molecules self-associate. A mechanism for capsule growth is proposed based on the extracellular release and entanglement of GXM molecules.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号