首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
Salmonella enterica is a species of bacteria that is a major cause of enteritis across the globe, while certain serovars cause typhoid, a more serious disease associated with a significant mortality rate. Type III secreted effectors are major contributors to the pathogenesis of Salmonella infections. Genes encoding effectors are acquired via horizontal gene transfer, and a subset are encoded within active phage lysogens. Because the acquisition of effectors is in flux, the complement of effectors possessed by various Salmonella strains frequently differs. By comparing the genome sequences of S. enterica serovar Typhimurium strain SL1344 with LT2, we identified a gene with significant similarity to SseK/NleB type III secreted effector proteins within a phage ST64B lysogen that is absent from LT2. We have named this gene sseK3. SseK3 was co-regulated with the SPI-2 type III secretion system in vitro and inside host cells, and was also injected into infected host cells. While no role for SseK3 in virulence could be identified, a role for the other family members in murine typhoid was found. SseK3 and other phage-encoded effectors were found to have a significant but sparse distribution in the available Salmonella genome sequences, indicating the potential for more uncharacterised effectors to be present in less studied serovars. These phage-encoded effectors may be principle subjects of contemporary selective processes shaping Salmonella-host interactions.  相似文献   

3.
4.
Type III secretion systems are central to the pathogenesis and virulence of many important Gram-negative bacterial pathogens, and elucidation of the secretion mechanism and identification of the secreted substrates are critical to our understanding of their pathogenic mechanisms and developing potential therapeutics. Stable isotope labeling with amino acids in cell culture-based mass spectrometry is a quantitative and highly sensitive proteomics tool that we have previously used to successfully analyze the type III secretomes of Citrobacter rodentium and Salmonella enterica serovar Typhimurium. In this report, stable isotope labeling with amino acids in cell culture was used to analyze the type III secretome of enteropathogenic Escherichia coli (EPEC), an important human pathogen, which, together with enterohemorrhagic E. coli and C. rodentium, represents the family of attaching and effacing bacterial pathogens. We not only confirmed all 25 known EPEC type III-secreted proteins and effectors previously identified by conventional molecular and bioinformatical techniques but also identified several new type III-secreted proteins, including two novel effectors, C_0814/NleJ and LifA, that were shown to be translocated into host cells. LifA is a known virulence factor believed to act as a toxin as well as an adhesin, but its mechanism of secretion and function is not understood. With a predicted molecular mass of 366 kDa, LifA is the largest type III effector identified thus far in any pathogen. We further demonstrated that Efa1, ToxB, and Z4332 (homologs of LifA in enterohemorrhagic E. coli) are also type III effectors. This study has comprehensively characterized the type III secretome of EPEC, expanded the repertoire of type III-secreted effectors for the attaching and effacing pathogens, and provided new insights into the mode of function for LifA/Efa1/ToxB/Z4332, an important family of virulence factors.  相似文献   

5.
During intracellular life, the bacterial pathogen Salmonella enterica translocates a complex cocktail of effector proteins by means of the SPI2-encoded type III secretions system. The effectors jointly modify the endosomal system and vesicular transport in host cells. SseF and SseG are two effectors encoded by genes within Salmonella Pathogenicity Island 2 and both effector associate with endosomal membranes and microtubules and are involved in the formation of Salmonella-induced filaments. Our previous deletional analyses identified protein domains of SseF required for the effector function. Here we present a detailed mutational analysis that identifies a short hydrophobic motif as functionally essential. We demonstrate that SseF and SseG are still functional if translocated as a single fusion protein, but also mediate effector function if translocated in cells co-infected with sseF and sseG strains. SseF has characteristics of an integral membrane protein after translocation into host cells.  相似文献   

6.
A Salmonella typhi chromosomal locus composed of five adjacent genes, designated sipEBCDA , was identified by transposon mutagenesis as being essential for cell invasion. Products of the sip genes exhibit extensive sequence similarities to the effectors of Shigella entry into epithelial cells encoded by the virulence plasmid-borne ipa operon. Expression of sipE and sipB in a Shigella non-invasive ipaB mutant restored the ability to invade epithelial cells. The structural and functional conservation of the Sip and Ipa proteins suggests that Salmonella and Shigella entry processes are promoted by similar effectors.  相似文献   

7.
Salmonella spp. are pathogenic enterobacteria that employ type III secretion systems to translocate effector proteins and modulate responses of host cells. The repertoire of translocated effector proteins is thought to define host specificity and epidemic virulence, and varies even between closely related Salmonella strains. Therefore, horizontal transfer of effector protein genes between Salmonella strains plays a key role in shaping the Salmonella-host interaction. Several effector protein genes are located in temperate phages. The P2-like phage SopE Phi encodes SopE and the lambda-like GIFSY phages encode several effector proteins of the YopM/IpaH-family. Lysogenic conversion with these phages is responsible for much of the diversity of the effector protein repertoires observed among Salmonella spp. However, free exchange of effector proteins by lysogenic conversion can be restricted by superinfection immunity. To identify genetic mechanisms that may further enhance horizontal transfer of effector genes, we have analyzed sopE loci from Salmonella spp. that do not harbor P2-like sequences of SopE Phi. In two novel sopE loci that were identified, the 723 nt sopE gene is located in a conserved 1.2 kb cassette present also in SopE Phi. Most strikingly, in Salmonella enterica subspecies I serovars Gallinarum, Enteritidis, Hadar and Dublin, the sopE-cassette is located in a cryptic lambda-like prophage with similarity to the GIFSY phages. This provides the first evidence for transfer of virulence genes between different phage families. We show that such a mechanism can circumvent restrictions to phage-mediated gene transfer and thereby enhances reassortment of the effector protein repertoires in Salmonella spp.  相似文献   

8.
9.
Effectors translocated into the host cell by Salmonella enterica serovar Typhimurium are critical for bacterial virulence. For many effectors, the mechanisms of their interactions with host pathways are not yet understood. We have recently found an interaction between the SPI-2 effector SseL and oxysterol-binding protein (OSBP). We show here that SseL binds the N-terminus of OSBP and that S. Typhimurium infection results in redistribution of OSBP. We furthermore demonstrate that OSBP is required for efficient replication of intracellular S. Typhimurium. This suggests that S. Typhimurium hijacks OSBP-dependent pathways to benefit its intracellular life-style, possibly by SseL- and OSBP-mediated manipulation of host lipid metabolism.  相似文献   

10.
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative facultative food-borne pathogen that causes gastroenteritis in humans. This bacterium has evolved a sophisticated machinery to alter host cell function critical to its virulence capabilities. Central to S. Typhimurium pathogenesis are two Type III secretion systems (T3SS) encoded within pathogenicity islands SPI-1 and SPI-2 that are responsible for the secretion and translocation of a set of bacterial proteins termed effectors into host cells with the intention of altering host cell physiology for bacterial entry and survival. Thus, once delivered by the T3SS, the secreted effectors play critical roles in manipulating the host cell to allow for bacteria invasion, induction of inflammatory responses, and the assembly of an intracellular protective niche created for bacterial survival and replication. Emerging evidence indicates that these effectors are modular proteins consisting of distinct functional domains/motifs that are utilized by the bacteria to activate intracellular signalling pathways modifying host cell function. Also, recently reported are the dual functionality of secreted effectors and the concept of 'terminal reassortment'. Herein, we highlight some of the nascent concepts regarding Salmonella effectors in the context of infection.  相似文献   

11.
Salmonella enterica are facultative intracellular bacterial pathogens that proliferate within host cells in a membrane-bounded compartment, the Salmonella -containing vacuole (SCV). Intracellular replication of Salmonella is mediated by bacterial effectors translocated on to the cytoplasmic face of the SCV membrane by a type III secretion system. Some of these effectors manipulate the host endocytic pathway, resulting in the formation in epithelial cells of tubules enriched in late endosomal markers, known as Salmonella -induced filaments (SIFs). However, much less is known about possible interference of Salmonella with the secretory pathway. Here, a small-interference RNA screen revealed that secretory carrier membrane proteins (SCAMPs) 2 and 3 contribute to the maintenance of SCVs in the Golgi region of HeLa cells. This is likely to reflect a function of SCAMPs in vacuolar membrane dynamics. Moreover, SCAMP3, which accumulates on the trans -Golgi network in uninfected cells, marked tubules induced by Salmonella effectors that overlapped with SIFs but which also comprised distinct tubules lacking late endosomal proteins. We propose that SCAMP3 tubules reflect a manipulation of specific post-Golgi trafficking that might allow Salmonella to acquire nutrients and membrane, or to control host immune responses.  相似文献   

12.
Type III secretion systems (TTSS) are used by Gram-negative pathogens to translocate proteins into eukaryotic host cells. Salmonella enterica serovar Typhimurium (S. Typhimurium) has two of these specialized systems, which are encoded on separate Salmonella pathogenicity islands (SPI-1 and SPI-2) and translocate unique sets of effectors. The specific roles of these systems in Salmonella pathogenesis remain undefined, although SPI-1 is required for bacterial invasion of epithelial cells and SPI-2 for survival/replication in phagocytic cells. However, because SPI-1 TTSS mutants are invasion-incompetent, the role of this TTSS in post-invasion processes has not been investigated. In this study, we have used two distinct methods to internalize a non-invasive SPI-1 TTSS mutant (invA) into cultured epithelial cells: (i) co-internalization with wild-type S. Typhimurium (SPI-1-dependent) and (ii) complementation with the Yersinia pseudotuberculosis invasin (inv) gene (SPI-1-independent). In both cases, internalized invA mutants were unable to replicate intracellularly, indicating that SPI-1 effectors are essential for this process and cannot be complemented by wild-type bacteria in the same cell. Analysis of the biogenesis of SCVs showed that vacuoles containing mutant bacteria displayed abnormal maturation that was dependent on the mechanism of entry. Manipulation of Salmonella-containing vacuole (SCV) biogenesis by pharmacologically perturbing membrane trafficking in the host cell increased intracellular replication of wild-type but not mutant S. Typhimurium This demonstrates a previously unknown role for SPI-1 in vacuole biogenesis and intracellular survival in non-phagocytic cells.  相似文献   

13.
The severity of infections caused by Salmonella enterica serovar Typhimurium varies depending on the host species. Numerous virulence genes have been identified in S. Typhimurium, largely from studies in mice, but their roles in infections of other species remain unclear. In the most comprehensive survey of its kind, through the use of signature-tagged mutagenesis of S. Typhimurium we have identified mutants that were unable to colonize calf intestines, mutants unable to colonize chick intestines and mutants unable to colonize both species. The type three secretion systems encoded on Salmonella pathogenicity islands (SPIs) 1 and 2 were required for efficient colonization of cattle. However, disruption of these secretion systems only caused a minor defect in S. Typhimurium colonization of chicks. Transposon insertions in SPI-4 compromised S. Typhimurium colonization of cattle, but not chicks. This is the first data confirming a role for SPI-4 in pathogenesis. We have also been able to ascribe a role in colonization for cell surface polysaccharides, cell envelope proteins, and many 'housekeeping' genes and genes of unknown function. We conclude that S. Typhimurium uses different strategies to colonize calves and chicks. This has major implications for vaccine design.  相似文献   

14.
Salmonella enterica has two pathogenicity islands encoding separate type three secretion systems (T3SS). Proteins secreted through these systems facilitate invasion and survival. After entry, Salmonella reside within a membrane bound vacuole, the Salmonella containing vacuole (SCV), where translocation of a second set of effectors by the Salmonella pathogenicity island 2 (SPI-2) T3SS is initiated. SPI-2 secretion in vitro can be induced by conditions that mimic the Salmonella containing vacuole. Utilising high-throughput mass spectrometry, we mapped the surface-attached proteome of S. Typhimurium SL1344 grown in vitro under SPI-2-inducing conditions and identified 108 proteins; using secretion signal prediction software, 43% of proteins identified contained a signal sequence. Of these proteins, 13 were known secreted effector proteins including SPI-2 effector proteins SseB, SseC, SseD, SseL, PipB2 and SteC, although surprisingly five were SPI-1 proteins, SipA, SipB, SipC, SipD and SopD, while 2 proteins SteA and SlrP are secreted by both T3SSs. This is the first in vitro study to demonstrate dual secretion of SPI-1 and SPI-2 proteins by S. Typhimurium and demonstrates the potential of high-throughput LC-ESI/MS/MS sequencing for the identification of novel proteins, providing a platform for subsequent comparative proteomic analysis, which should greatly assist understanding of the pathogenesis and inherent variation between serovars of Salmonella and ultimately help towards development of novel control strategies.  相似文献   

15.
The Salmonella pathogenicity island 2 (SPI2) type III secretion system (TTSS) promotes Salmonella enterica serovar Typhimurium virulence for mice and increased survival and replication within eukaryotic cells. After phagocytosis, Salmonella serovar Typhimurium assembles the SPI2 TTSS to translocate over a dozen effector proteins across the phagosome membrane. SpiC has been previously shown to be a translocated effector with a large contribution to virulence (K. Uchiya, M. A. Barbieri, K. Funato, A. H. Shah, P. D. Stahl, and E. A. Groisman, EMBO J. 18:3924-3933, 1999). This report demonstrates by competitive index that the virulence phenotype of a spiC mutant is equivalent to that of a secretion component mutant. In addition, translocation of SPI2 effector proteins was shown to require SpiC. Thus, the severe virulence phenotype resulting from deletion of spiC is likely due to the inability to translocate all SPI2 effectors. SpiC was also required to secrete translocon proteins SseB and SseC but not translocated effector SseJ, indicating that lack of assembly of the translocon explains the spiC mutant phenotype.  相似文献   

16.
17.
18.
Salmonella enterica serovar Typhimurium (S. typhimurium) is a gram-negative facultative intracellular pathogen that can infect a broad range of mammalian hosts. Following invasion of host cells, the majority of S. typhimurium are known to reside in a membrane-bound compartment known as the Salmonella-containing vacuole (SCV). S. typhimurium actively remodels this compartment using bacterial virulence proteins, called effectors, to establish a protected niche where it can replicate. S. typhimurium delivers more than 30 effectors into the host cell cytosol by bacterial type three secretion systems, encoded by Salmonella pathogenicity island 1 or 2 (SPI-1 or SPI-2). Recent studies have revealed a critical role for the SPI-1 effector SopB in 'directing traffic' at early stages of infection, allowing the bacteria to control SCV maturation by modulating its interaction with the endocytic system. At later stages of infection, the SCV establishes a 'nest' near the Golgi where optimal bacterial growth takes place. In this study, we highlight these recent developments in our understanding of SCV trafficking.  相似文献   

19.
The horizontal transfer and acquisition of virulence genes via mobile genetic elements have been a major driving force in the evolution of Salmonella pathogenicity. Serovars of Salmonella enterica carry variable assortments of phage-encoded virulence genes, suggesting that temperate phages play a pivotal role in this process. Epidemic isolates of S. enterica serovar Typhimurium are consistently lysogenic for two lambdoid phages, Gifsy-1 and Gifsy-2, carrying known virulence genes. Other serovars of S. enterica, including serovars Dublin, Gallinarum, Enteritidis, and Hadar, carry distinct prophages with similarity to the Gifsy phages. In this study, we analyzed Gifsy-related loci from S. enterica serovar Abortusovis, a pathogen associated exclusively with ovine infection. A cryptic prophage, closely related to serovar Typhimurium phage Gifsy-2, was identified. This element, named Gifsy-2AO, was shown to contribute to serovar Abortusovis systemic infection in lambs. Sequence analysis of the prophage b region showed a large deletion which covers genes encoding phage tail fiber proteins and putative virulence factors, including type III secreted effector protein SseI (GtgB, SrfH). This deletion was identified in most of the serovar Abortusovis isolates tested and might be dependent on the replicative transposition of an adjacent insertion sequence, IS1414, previously identified in pathogenic Escherichia coli strains. IS1414 encodes heat-stable toxin EAST1 (astA) and showed multiple genomic copies in isolates of serovar Abortusovis. To our knowledge, this is the first evidence of intergeneric transfer of virulence genes via insertion sequence elements in Salmonella. The acquisition of IS1414 (EAST1) and its frequent transposition within the chromosome might improve the fitness of serovar Abortusovis within its narrow ecological niche.  相似文献   

20.
The waa locus on the chromosome of Salmonella enterica encodes enzymes involved in the assembly of the core oligosaccharide region of the lipopolysaccharide (LPS) molecule. To date, there are two known core structures in Salmonella, represented by serovars Typhimurium (subspecies I) and Arizonae (subspecies IIIA). The waa locus for serovar Typhimurium has been characterized. Here, the corresponding locus from serovar Arizonae is described, and the molecular basis for the distinctive structures is established. Eleven of the 13 open reading frames (ORFs) are shared by the two loci and encode conserved proteins of known function. Two polymorphic regions distinguish the waa loci. One involves the waaK gene, the product of which adds a terminal alpha-1,2-linked N-acetylglucosamine residue that characterizes the serovar Typhimurium core oligosaccharide. There is an extensive internal deletion within waaK of serovar Arizonae. The serovar Arizonae locus contains a novel ORF (waaH) between the waaB and waaP genes. Structural analyses and in vitro glycosyltransferase assays identified WaaH as the UDP-glucose:(glucosyl) LPS alpha-1,2-glucosyltransferase responsible for the addition of the characteristic terminal glucose residue found in serovar Arizonae. Isolates comprising the Salmonella Reference Collections, SARC (representing the eight subspecies of S. enterica) and SARB (representing subspecies I), were examined to assess the distribution of the waa locus polymorphic regions in natural populations. These comparative studies identified additional waa locus polymorphisms, shedding light on the genetic basis for diversity in the LPS core oligosaccharides of Salmonella isolates and identifying potential sources of further novel LPS structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号