首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ontogeny of the meiotic spindle in hornworts was studied by light microscopy of live materials, transmission electron microscopy, and indirect immunofluorescence microscopy. As in monoplastidic meiosis of mosses and Isoetes, the single plastid divides twice, and the four resultant plastids migrate into the future spore domains where they organize a quadripolar microtubule system (QMS). Additionally, a unique axial microtubule system (AMS) was found to parallel the plastid isthmus at each division in meiosis, much as in the single plastid division of mitosis. This finding is used to make a novel comparison of mitotic and meiotic spindle development. The AMS contributes directly to development of the mitotic spindle, whereas ontogeny of the meiotic spindle is more complex. Nuclear division in meiosis is delayed until after the second plastid division; the first AMS disappears without spindle formation, and the two AMSs of the second plastid division contribute to development of the QMS. Proliferation of microtubules at each plastid results in the QMS consisting of four cones of microtubules interconnecting the plastids and surrounding the nucleus. The QMS contributes to the development of a functionally bipolar spindle. The meiotic spindle is comparable to a merger of two mitotic spindles. However, the first division spindle does not terminate in what would be the poles of mitosis; instead the poles converge to orient the spindle axis midway between pairs of non-sister plastids.  相似文献   

2.
R. C. Brown  B. E. Lemmon 《Protoplasma》1985,127(1-2):101-109
Summary An ultrastructural investigation of the monoplastidic microsporocytes ofSelaginella arenicola revealed a unique cytoskeletal array that predicts the future division plane before nuclear division takes place. By midprophase of the first meiotic division, the single plastid has divided once and the two plastids lie on opposite sides of the nucleus which is elongated in the plane of the incipient metaphase I spindle. A cytoplasmic structure, the procytokinetic plate (PCP), predicts the division plane of of both plastid and cytoplasm. The PCP consists of a distinct concentration of vesicles lying in the future division plane and an elaborate system of microtubules aligned parallel to the long axis of plastids and nucleus. Microtubules of the axially aligned system appear to terminate in clusters of vesicles in the central zone of the PCP. The PCP with axially aligned microtubules is as predictive of the division plane in these meiotic cells as is the girdling preprophase band of microtubules in mitotic cells.  相似文献   

3.
The quadripolar microtubule system (QMS) is a complex array that is associated with predivision establishment of quadripolarity in sporocytes of lower plants (bryophytes and lycopsids). The QMS unerringly predicts the polarity of the two meiotic divisions and plays a central role in development of both the mitotic apparatus (MA) and cytokinetic apparatus (CA) which together accomplish quadripartitioning of the sporocyte into four haploid spores. The QMS is typically, but not exclusively, associated with monoplastidy and precocious quadrilobing of the cytoplasm. In early meiotic prophase the single plastid divides and the resultant plastids migrate so that either the tips of two plastids or the four plastids resulting from a second division are located in the future spore domains. Microtubules that emanate from the plastid tips or from individual plastids in the spore domains interact in the future planes of cytokinesis and give rise to the QMS. The QMS, which encages the prophase nucleus, consists of at least four and usually six (when spore domains are in tetrahedral arrangement) bipolar spindle-like arrays of microtubules presumably with minus ends at plastids in spore domains and plus ends interacting in the future plane of cytokinesis. Each of the six arrays is essentially like the single axial microtubule system (AMS) that intersects the division site and is transformed into the spindle in monoplastidic mitosis in hornworts. As comparative data accumulate, it appears that the AMS is not unique to monoplastidic cell division but instead represents a basic microtubule arrangement that survives as spindle and phragmoplast in cell division of higher plants.  相似文献   

4.
Summary Changes in the pattern of microtubules during the cell cycle of the hepaticReboulia hemisphaerica (Bryophyta) were studied by indirect immunofluorescence using conventional and confocal laser scanning microscopy (CLSM). The first indication that a cell is preparing for division is fusiform shaping of the nucleus accompanied by the appearance of well-defined polar organizers (POs) at the future spindle poles. Microtubules emanating from the POs ensheath the nucleus and eventually develop into the half-spindles of mitosis. Some of the microtubules from each PO pass tangential to the nucleus and interact in the region of the future mitotic equator. A preprophase band (PPB) forms in this region later in prophase and coexists with the prophase spindle. Thus, the plane of division appears to be determined by interaction of opposing arrays of microtubules emanating from POs. Prometaphase is marked by disappearance of the POs, loss of astral microtubules, and conversion of the fusiform spindle of prophase to a truncated, barrel-shaped spindle more typical of higher plants. Restoration of cortical microtubules in daughter cell occurs on the cell side distal to the new cell plate, but nucleation of microtubules is associated with the nuclear envelope and not with organized POs. At the next division POs appear at opposite poles of preprophase nuclei with no evidence of division and migration that is characteristic of cells with centriolar centrosomes. These data lend additional support for the view that mitosis in hepatics is transitional between green algae and higher plants.Abbreviations AMS axial microtubule system - CLSM confocal laser scanning microscopy - MTOC microtubule organizing center - PO polar organizer - PPB preprophase band of microtubules - QMS quadripolar microtubule system - TEM transmission electron microscopy  相似文献   

5.
R. C. Brown  B. E. Lemmon 《Protoplasma》1989,152(2-3):136-147
Summary The large megasporocytes ofIsoetes provide an exceptional system for studying microtubule dynamics in monoplastidic meiosis where plastid polarity assures coordination of plastid and nuclear division by the intimate association of MTOCs with plastids. Division and migration of the plastid in prophase establishes the tetrahedrally arranged cytoplasmic domains of the future spore tetrad and the four plastid-MTOCs serve as focal points of a unique quadripolar microtubule system (QMS). The QMS is a dynamic structure which functions in plastid deployment and contributes directly to development of both first and second division spindles. The nucleation of microtubules at discrete plastid-MTOCs is compared with centrosomal nucleation of microtubules in animal cells where growth of microtubules involves dynamic instability.Abbreviations AMS axial microtubule system - MTOC microtubule organizing center - N nucleus - QMS quadripolar microtubule system - P plastid - PPB preprophase band of microtubules  相似文献   

6.
Summary Immunofluorescence and TEM studies of meiosis in two mosses (Bryophyta) provide evidence that the prophasic tetrahedral system of microtubules contributes directly to the metaphase I spindle. Intense staining of tubulin, conspicuously absent around the nuclear envelope, is first seen associated with plastids. By mid-prophase, microtubules radiate from the plastids to the nuclear envelope and become organized into six bands that interconnect the four plastids, forming a tetrahedral cytoskeleton surrounding the nucleus. During transition of prophase to metaphase, the four poles of the tetrahedral microtubule system converge in pairs toward opposite cleavage furrows. Opposite furrows occupy mutually perpendicular planes and the pair of microtubule focal points straddling one furrow lies at right angles to the pair straddling the opposite furrow. Additional microtubules terminate in numerous small clusters in the concave polar regions arching over the cleavage furrows. By early anaphase, the microtubule focal points lie very close to the division axis. We conclude that microtubules recruited from the prophasic quadripolar system are incorporated into the mature metaphase I spindle and the two principal focal points at each pole are those derived from poles of the prophasic quadripolar system.  相似文献   

7.
Summary Mitotic cell division of monoplastidic sporogones was investigated in the mossTimmiella barbuloides (Brid.) Moenk. (Pottiales, Bryophyta) by TEM. Division polarity of sporogones is established by the interphase position of the single oblong cup-shaped plastid, which is orientated with its long axis parallel to one of the cell walls. In preprophase the plastid elongates and its extremities bend at right angles. Plastid growth is directed by microtubules and accompanied by plastid tubules. The plastid begins the process of duplication by constricting centrally in the plane of the future cytokinetic septum. There is no preprophase band of microtubules at the division site. The large central nucleus becomes fusiform and aligned parallel to the main plastid axis. By the end of prophase the daughter plastids are positioned at the opposite poles of the nucleus where they probably function as nucleating or organizing centres for the spindle microtubules. Metaphase and anaphase spindles contain long sheets of ER. Cytokinesis involves the formation of a well developed phragmoplast.Abbreviations TEM transmission electron microscopy - PPB preprophase band of microtubules - ER endoplasmic reticulum  相似文献   

8.
This is the first report on the organization of a quadripolar microtubule system (QMS) in polyplastidic meiosis of a hepatic with polar organizers (POs). Unlike the monoplastidic sporocytes of mosses and hornworts, in which meiotic quadripolarity can be traced to plastid division and migration, sporocytes of Aneura pinguis are polyplastidic and tetrahedrally lobed before the QMS is organized. Whereas the QMS in mosses and hornworts is plastid-based, the QMS of A. pinguis is focused at four POs where gamma tubulin (-tubulin) is concentrated. An aster of microtubules emanates from each PO centered in the four cytoplasmic lobes and the opposing radial microtubules interact to form the QMS that envelops the nucleus. A functionally bipolar spindle is gradually formed as the four poles converge in pairs on either side of opposite cleavage furrows. The resulting spindle remains quadripolar. Although -tubulin is most concentrated in the deeply concave poles straddling cleavage furrows, it also extends into the spindle itself. Telophase groups of chromosomes curve around the polar cleavage furrows and a phragmoplast that originates in the interzonal region guides a cell plate that extends to the equatorial cleavage furrows. Discrete POs are reformed at opposite tips of the elongated dyad nuclei in prophase II and microtubules radiating from them give rise to the spindles of second meiosis. Spindles remain sharply focused and -tubulin extends into distal portions of the spindle. Interzonal phragmoplasts that expand to join with pre-established cleavage furrows mediate cytokinesis resulting in a tetrad of spores. Each young tetrad member has a radial microtubule system emanating from the nucleus.  相似文献   

9.
Microsporogenesis in Zea mays, the meiotic reduction of diploid sporocytes to haploid microspores, proceeds through a well-defined developmental sequence. The ability to generate mutants that affect the process makes this an ideal system for elucidating the role of the cytoskeleton during plant development. We have used immunofluorescence microscopy to compare microtubule distribution in wild-type and mutant microsporocytes. During normal meiosis the distribution of microtubules follows a specific temporal and spatial pattern that reflects the polar nature of microspore formation. Perinuclear microtubule staining increases and the nucleus elongates in the future spindle axis during late prophase I. Metaphase I spindles with highly focused poles align along the long axis of the anther locule. Cytokinesis occurs perpendicular to the spindle axis. The second division axis shifts 90 degrees with respect to the first division plane, thereby yielding an isobilateral tetrad of microspores. Microtubule distribution patterns during meiosis suggest that a nuclear envelope-associated microtubule organizing center (MTOC) controls the organization of cytoplasmic microtubules and contributes to spindle formation. The meiotic mutant dv is defective in the transition from a prophase microtubule array to a metaphase spindle. Instead of converging to form focused poles, the metaphase spindle poles remain diffuse as in prometaphase. This defect correlates with several abnormalities in subsequent developmental events including the formation of multinucleate daughter cells, multiple microspindles during meiosis II, multiple phragmoplasts, polyads of microspores, and cytoplasmic microtubule foci. These results suggest that dv is a mutation that affects MTOC organization.  相似文献   

10.
Brown RC  Lemmon BE 《Protoplasma》2006,227(2-4):77-85
Summary. Meiosis in Aneura pinguis is preceded by extensive cytoplasmic preparation for quadripartitioning of the diploid sporocyte into a tetrad of haploid spores. In early prophase the four future spore domains are defined by lobing of the cytoplasm and development of a quadripolar prophase spindle focused at polar organizers (POs) centered in the lobes. Cells entering the reproductive phase become isolated and, instead of hooplike cortical microtubules, have endoplasmic microtubule systems centered on POs. These archesporial cells proliferate by mitosis before entering meiosis. In prophase of each mitosis, POs containing a distinct concentration of γ-tubulin appear de novo at tips of nuclei and initiate the bipolar spindle. Cells entering meiosis become transformed into quadrilobed sporocytes with four POs, one in each lobe. This transition is a complex process encompassing assembly of two opposite POs which subsequently disperse into intersecting bands of microtubules that form around the central nucleus. The girdling bands define the future planes of cytokinesis and the cytoplasm protrudes through the restrictive bands becoming quadrilobed. Two large POs reappear in opposite cleavage furrows. Each divides and the resulting POs migrate into the tetrahedral lobes of cytoplasm. Cones of microtubules emanating from the four POs interact to form a quadripolar microtubule system (QMS) that surrounds the nucleus in meiotic prophase. The QMS is subsequently transformed into a functionally bipolar metaphase spindle by migration of poles in pairs to opposite cleavage furrows. These findings contribute to knowledge of microtubule organization and the role of microtubules in spatial regulation of cytokinesis in plants. Correspondence and reprints: Department of Biology, University of Louisiana-Lafayette, Lafayette, LA 70504-2451, U.S.A.  相似文献   

11.
Summary First and second division spindles and the three cell plates of moss meiosis are oriented in accordance with polarity established during meiotic prophase. Plastids are located at the second division poles and cytoplasmic infurrowing marks the planes along which the cytoplasm will cleave into four spores. Anaphase I spindles that terminate in two focal points of microtubules straddling opposite cleavage furrows reflect the unusual tetrahedral origin of the functionally bipolar spindle. The organelles (except for the plastids which remain in the four cytoplasmic lobes) are polarized in the first division equatorial region at the time of phragmoplast microtubule assembly and remain in a distinct band after microtubule disassembly. Prophasic spindles appear to be directly transformed into metaphase II spindles in the predetermined axes between mutually perpendicular pairs of plastids. Cell plates form by vesicle coalescence in the equatorial regions of the two sets of second division phragmoplasts at approximately the same time as a cell plate belatedly forms in the organelle band. The cytoplasmic markers (plastid migration, cytoplasmic lobing and infurrowing) that predict poles and cleavage planes in free cells lacking a preprophase band strongly strengthens the concept that division sites are capable of preserving preprogrammed signals that can be triggered later in the process of cell division.  相似文献   

12.
R. C. Brown  B. E. Lemmon 《Protoplasma》1998,203(3-4):168-174
Summary Establishment of division polarity and meiotic spindle organization in the lady's slipper orchidCypripedium californicum A. Gray was studied by immunocytochemistry, confocal and transmission electron microscopy. Prior to organization of the spindle for meiosis I, the cytoplasmic domains of the future dyad and spindle polarity are marked by: (1) constriction of the prophase nucleus into an hourglass shape; (2) reorganization of nuclear-based radial microtubules into two arrays that intersect at the constriction; and (3) redistribution of organelles into a ring at the boundary of the newly defined dyad domains. It is not certain whether the opposing microtubule arrays contribute directly to the anastral spindle which is organized in the perinuclear areas of the two hemispheres. By late prophase each half-spindle consists of a spline-like structure from which depart the kinetochore fibers. This peculiar spindle closely resembles the spline-like spindle of generative-cell mitosis in certain plants where the spindle is distorted by physical constraints of the slender pollen tube. In the microsporocyte, the elongate spindle of late prophase/metaphase is curved within the cell so that the poles are not actually opposite each other and chromosomes do not form a plate at the equator. By late telophase the poles of the shortened halfspindles lie opposite each other. Plasticity of the physically constrained plant spindle appears to be due to its construction from multiple units terminating in minipoles. Cytokinesis does not follow the first meiosis. However, the dyad domains are clearly defined by radial microtubules emanating from the two daughter nuclei and the domains themselves are separated by a disc-like band of organelles.  相似文献   

13.
Summary An extensive system of microtubules develops during meiotic prophase in the mossRhynchostegium serrulatum (Hedw.)Jaeg. &Sauerb. Development of the cytoskeleton can be traced to early prophase when the nucleus is acentric and the single plastid divides into four plastids. The cytoskeletal microtubules are associated with equidistant positioning of the four plastids at the distal tetrad poles and with migration of the nucleus to a central position in the sporocyte. The cytoskeleton, which interconnects plastids and encloses the nucleus, contributes to the establishment of moss sporocyte polarity. Just prior to metaphase I evidence of the prophase cytoskeleton is lost as the bipolar metaphase I spindle develops in association with discrete polar organizers located in opposite cleavage furrows between plastids.  相似文献   

14.
Emphasis is placed on three aspects of meiosis in the moss Amblystegium riparium (Hedw.) BSG: 1***) nature of the sporogenous layer; 2) prophasic microtubules and polarity; and 3) cleavage pattern. Spore tetrads develop while still encased by archesporial cell walls. The cellular nature of the sporogenous layer differs from the more usual occurrence of free sporocytes released into a common spore sac. Two important events mark the establishment of sporocyte polarity during meiotic prophase: 1) migration of the four plastids to the distal tetrad poles (telophase II poles); and 2) ingrowth of the sporocyte wall in eventual cleavage planes between the tetrad poles. An extensive, plastid-based microtubule system is associated with organelle migration during the establishment of sporocyte polarity in meiotic prophase. Disruption of the nuclear envelope in prometaphase I occurs at sites opposite the four plastids where microtubules extend from plastid envelope to nuclear envelope. Formation of a cell plate following the first meiotic division results in a dyad, whereas in many mosses meiosis is completed in the undivided sporocyte and is followed by simultaneous cleavage into a spore tetrad. Spore cleavage is accomplished by vesicular coalescence resulting in septa that coincide with the prophasic wall ingrowths.  相似文献   

15.
Summary Studies of monoplastidic mitosis in hornworts (Bryophyta) using transmission electron microscopy and indirect immunofluorescence staining of microtubules have revealed that two mutually perpendicular microtubule systems predict division polarity in preprophase. Events of cytoplasmic reorganization in preparation for division occur in the following order: migration of the single plastid to a position perpendicular to the division site, constriction of the plastid where its midpoint intersects the division site, development of an axial system of microtubules parallel to the elongating plastid isthmus, and appearance of an atypical preprophase band of microtubules (PPB). The PPB is asymmetrical with a tight band of microtubules on the side over the plastid isthmus and a broad band of widely spaced microtubules over the nucleus. The axial system contributes directly to development of the spindle. In prometaphase, the axial system separates at the equator and additional microtubule bundles project from polar regions, creating two opposing halfspindles. The PPB is still present during asymmetrical organization of the spindle and microtubules extending from the broad portion of the PPB to poles appear to be incorporated into the developing spindle. Dynamic changes in the microtubular cytoskeleton demonstrate (1) intimate relationship of plastid and nuclear division, (2) contribution of preprophase/prophase microtubule systems to spindle development in monoplastidic cells, and (3) dynamic reorientation of microtubules from one system to another.  相似文献   

16.
Summary Immunofluorescence microscopy, conventional and high voltage transmission electron microscopy were used to describe changes in the flagellar apparatus during cell division in the motile, coccolithbearing cells ofPleurochrysis carterae (Braarud and Fagerlund) Christensen. New basal bodies appear alongside the parental basal bodies before mitosis and at prophase the large microtubular (crystalline) roots disassemble as their component microtubules migrate to the future spindle poles. By prometaphase the crystalline roots have disappeared; the flagellar axonemes shorten and the two pairs of basal bodies (each consisting of one parental and one daughter basal body) separate so that each pair is distal to a spindle pole. By late prometaphase the pairs of basal bodies bear diminutive flagellar roots for the future daughter cells. The long flagellum of each daughter cell is derived from the parental basal bodies; thus, the basal body that produces a short flagellum in the parent produces a long flagellum in the daughter cell. We conclude that each basal body in these cells is inherently identical but that a first generation basal body generates a short flagellum and in succeeding generations it produces a long flagellum. At metaphase a fibrous band connecting the basal bodies appears and the roots and basal bodies reorient to their interphase configuration. By telophase the crystalline roots have begun to reform and the rootlet microtubules have assumed their interphase appearance by early cytokinesis.Abbreviations CR1, CR2 crystalline roots 1 and 2 - CT cytoplasmic tongue microtubules - DIC differential interference contrast light microscopy - H haptonema - HVEM high voltage transmission electron microscopy - IMF immunofluorescence microscopy - L left flagellum/basal body - M metaphase plate - MT microtubule - N nucleus - R right flagellum/basal body - R1, R2, R3 roots 1, 2, and 3 - TEM transmission electron microscopy  相似文献   

17.
To understand the cell cycle, we must understand not only mitotic division but also organelle division cycles. Plant and animal cells contain many organelles which divide randomly; therefore, it has been difficult to elucidate these organelle division cycles. We used the primitive red alga Cyanidioschyzon merolae, as it contains a single mitochondrion and plastid per cell, and organelle division can be highly synchronized by a light/dark cycle. We demonstrated that mitochondria and plastids multiplied by independent division cycles (organelle G1, S, G2 and M phases) and organelle division occurred before cell–nuclear division. Additionally, organelle division was found to be dependent on microtubules as well as cell–nuclear division. We have observed five stages of microtubule dynamics: (1) the microtubule disappears during the G1 phase; (2) α-tubulin is dispersed within the cytoplasm without forming microtubules during the S phase; (3) α-tubulin is assembled into spindle poles during the G2 phase; (4) polar microtubules are organized along the mitochondrion during prophase; and (5) mitotic spindles in cell nuclei are organized during the M phase. Microfluorometry demonstrated that the intensity peak of localization of α-tubulin changed in the order to spindle poles, mitochondria, spindle poles, and central spindle area, but total fluorescent intensity did not change remarkably throughout mitotic phases suggesting that division and separation of the cell nucleus and mitochondrion is mediated by spindle pole bodies. Inhibition of microtubule organization induced cell–nuclear division, mitochondria separation, and division of a single membrane-bound microbody, suggesting that similar to cell–nuclear division, mitochondrion separation and microbody division are dependent on microtubules.  相似文献   

18.
In many bryophytes and vascular cryptogams mitosis and/or meiosis takes place in cells containing a single plastid. In monoplastidic cell division plastid polarity assures that nuclear and plastid division are infallibly coordinated. The two major components of plastid polarity are morphogenetic plastid migration and microtubule organization at the plastids. Before nuclear division the plastid migrates to a position intersecting the future division plane. This morphogenetic migration is a reliable marker of division polarity in cells with and without a preprophase band of microtubules (PPB). The PPB, which predicts the future division plane before mitosis, is a characteristic feature of land plants and its insertion into the cytokinetic apparatus marks the evolution of a cortical microtubule system and a commitment to meristematic growth. Microtubule systems associated with plastid division, the axial microtubule system (AMS) in mitosis and the quadripolar microtubule system (QMS) in meiosis, contribute to predictive positioning of plastids and participate directly in spindle ontogeny. Division polarity in monoplastidic sporocytes is remarkable in that division sites are selected prior to the two successive nuclear divisions of meiosis. Plastid arrangement prior to meiosis determines the future spore domains in monoplastidic sporocytes, whereas in polyplastidic sporocytes the spore nuclei play a major role in claiming cytoplasmic domains. It is hypothesized that predivision microtubule systems associated with monoplastidic cell division are early forming components of the mitotic apparatus that serve to orient the spindle and insure equal apportionment of nucleus and plastids. “Can it be supposed that cytoplasm would be intrusted with so important a task as the preparation of a chloroplast for each of the four nuclei that are later to preside over the spores before there is any indication that such nuclear division is to take place?” Bradley Moore Davis, 1899  相似文献   

19.
Sporogenesis in the hepatic Marchantia polymorpha L. provides an outstanding example of the pleiomorphic nature of the plant microtubule organizing center (MTOC). Microtubules are nucleated from γ-tubuUn in MTOCs that change form during mitosis and meiosis. Following entry of cells into the reproductive pathway of sporogenesis, successive rounds of mitosis give rise to packets of 4-16 sporocytes. Mitotic spindles are organized at discrete polar organizers (POs), a type of MTOC that is unique to this group of early divergent land plants. An abrupt and radical transformation in microtubule organization occurs when sporocytes enter meiosis: POs are lost and γ-tubulin is closely associated with surfaces of two large elongated plastids that subsequently divide into four. Migration of the four plastid MTOCs into a tetrahedral arrangement establishes the future spore domains and the division polarity of meiosis. As is typical of many bryophytes, cones of microtubules from the four plastid MTOCs initiate a quadripolar microtubule system (QMS) in meiotic prophase. At this point a transformation in the organization of the MTOCs occurs. The γ-tubulin detaches from plastids and forms a diffuse spheroidal pole in each of the spore domains. The plastids, which are no longer MTOCs, continue to divide. The diffuse MTOCs continue to nucleate cones of microtubules during transformation of the QMS to a bipolar spindle. Following meiosis I, γ-tubulin is associated with nuclear envelopes, and the spindles of meiosis II are organized from diffuse MTOCs at the tetrad poles. At simultaneous cytokinesis, radial microtubule systems are organized at nuclear envelope MTOCs in each of the tetrad members.  相似文献   

20.
Spermatogenesis and spermiogenesis in Ascaris lumbricoides Var. suum   总被引:1,自引:0,他引:1  
Reorganization of the prophase I nucleus marks the beginning of the first meiotic division. A pair of centrioles is present at each pole at metaphase I and mitochondria are not observed in the spindle area. A chromosomal pellicle, which resembles a kinetochore plate but has no apparent association with microtubules, surrounds each autosome at metaphase I and II. The sex body lags behind the autosomes at anaphase I and segregates differentially to one daughter cell. Mitochondria and a pair of centrioles are present in the spindle during the second meiotic division. Localized condensation of chromatin and fusion of the condensed chromatin of the secondary spermatocyte telophase nucleus results in a compact spermatid nucleus. Loss of spermatid cytoplasm is effected by the ejection of a cytophore vesicle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号