首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
MAPK信号转导通路对炎症反应的调控   总被引:16,自引:0,他引:16  
丝裂原活化蛋白激酶 (mitogen -activatedproteinkinase ,MAPK)是生物体内重要的信号转导系统之一 ,参与介导生长、发育、分裂、分化、死亡以及细胞间的功能同步等多种细胞过程。在哺乳动物细胞中已发现和克隆了ERKJNK/SAPK、p38/RK、ERK5/BMK1四个MAPK亚族。这些MAPK能被多种炎性刺激所激活 ,并对炎症的发生、发展起重要调控作用。研究感染和炎症反应过程中这些MAPK被激活的机制及其生物学效应 ,探讨MAPK特异性抑制剂的药理学作用及分子基础 ,对于感染的防治及炎症反应的控制有着广泛的应用前景。  相似文献   

3.
MAPK信号转导通路对炎证反应的调控   总被引:24,自引:2,他引:24  
Jiang Y  Gong XW 《生理学报》2000,52(4):267-271
丝裂原活化蛋白激酶(mitohen-actevatcd protein kinasa,MAPK)是生物体内重要的信号转导系统之一,参与介导生长、发育、化裂、分化、死亡以及细胞间的功能同步等多种细胞过程,在哺乳动物细胞中已发现和克隆了ERK、JNK/SAPK、p38/RK、ERK5/BMK1四个MAPK亚族。这些MAPK能被多种炎性刺激所激活,并对炎症的发生、发展起生重要调控作用。研究感染和炎症反应  相似文献   

4.
5.
Mammalian cells have the ability to recognize virus infection and mount a powerful antiviral response. Pattern recognition receptor proteins detect molecular signatures of virus infection and activate antiviral signaling cascades. The RIG-I-like receptors are cytoplasmic DExD/H box proteins that can specifically recognize virus-derived RNA species as a molecular feature discriminating the pathogen from the host. The RIG-I-like receptor family is composed of three homologous proteins, RIG-I, MDA5, and LGP2. All of these proteins can bind double-stranded RNA species with varying affinities via their conserved DExD/H box RNA helicase domains and C-terminal regulatory domains. The recognition of foreign RNA by the RLRs activates enzymatic functions and initiates signal transduction pathways resulting in the production of antiviral cytokines and the establishment of a broadly effective cellular antiviral state that protects neighboring cells from infection and triggers innate and adaptive immune systems. The propagation of this signal via the interferon antiviral system has been studied extensively, while the precise roles for enzymatic activities of the RNA helicase domain in antiviral responses are only beginning to be elucidated. Here, current models for RLR ligand recognition and signaling are reviewed.  相似文献   

6.
Mammalian cells have the ability to recognize virus infection and mount a powerful antiviral response. Pattern recognition receptor proteins detect molecular signatures of virus infection and activate antiviral signaling cascades. The RIG-I-like receptors are cytoplasmic DExD/H box proteins that can specifically recognize virus-derived RNA species as a molecular feature discriminating the pathogen from the host. The RIG-I-like receptor family is composed of three homologous proteins, RIG-I, MDA5, and LGP2. All of these proteins can bind double-stranded RNA species with varying affinities via their conserved DExD/H box RNA helicase domains and C-terminal regulatory domains. The recognition of foreign RNA by the RLRs activates enzymatic functions and initiates signal transduction pathways resulting in the production of antiviral cytokines and the establishment of a broadly effective cellular antiviral state that protects neighboring cells from infection and triggers innate and adaptive immune systems. The propagation of this signal via the interferon antiviral system has been studied extensively, while the precise roles for enzymatic activities of the RNA helicase domain in antiviral responses are only beginning to be elucidated. Here, current models for RLR ligand recognition and signaling are reviewed.  相似文献   

7.
Our previous studies showed that platelet-derived growth factor (PDGF) modulated interleukin-1 (IL-1) activity and IL-1 binding to Balb/c3T3 fibroblasts (Bonin, P. D., and Singh, J. P. (1988) J. Biol. Chem. 263, 11052-11055). Subsequent studies have demonstrated an action of PDGF at the level of IL-1 receptor (IL-1R) gene expression. PDGF treatment of Balb/c3T3 cells produces a 10-20-fold stimulation of mRNA for IL-1 receptor. Investigation of the signal transduction pathways shows that activation of either the protein kinase C pathway or the cAMP-mediated pathway leads to the stimulation of IL-1 receptor expression in Balb/c3T3 cells. Treatment of Balb/c3T3 cells with phorbol 12-myristate 13-acetate (PMA), a known activator of protein kinase C, produced an increased 125I-IL-1 binding to cells and stimulation of IL-1R mRNA. Staurosporine, an inhibitor of protein kinase C, blocked the induction of IL-1 binding by PDGF or PMA. Down-regulation of protein kinase C by pretreatment with PMA reduced the subsequent stimulation by PDGF. Chronic treatment with PMA, however, did not produce a complete inhibition of PDGF effect on IL-1R. Further studies showed that the agents that stimulate cAMP accumulation (isobutyl methylxanthine, dibutyryl), directly stimulate adenylate cyclase (forskolin), or activate G protein (choleragen) stimulated 125I-IL-1 binding and IL-1R mRNA accumulation in Balb/c3T3 cells. These studies suggest that potentially two signal transduction pathways mediate IL-1 receptor expression in Balb/c3T3 fibroblasts. Evidence is presented that suggests that stimulation of IL-1R through these two pathways (PMA/PDGF-stimulated and cAMP-stimulated) occurs independent of each other.  相似文献   

8.
9.
The exercise-induced interleukin (IL)-6 production and secretion within skeletal muscle fibers has raised the question of a putative tissue-specific function of IL-6 in the energy metabolism of the muscle during and after the exercise. In the present study, we followed the hypothesis that IL-6 signaling may directly interact with insulin receptor substrate (IRS)-1, a keystone in the insulin signaling cascade. We showed that IL-6 induces a rapid recruitment of IRS-1 to the IL-6 receptor complex in cultured skeletal muscle cells. Moreover, IL-6 induced a rapid and transient phosphorylation of Ser-318 of IRS-1 in muscle cells and in muscle tissue, but not in the liver of IL-6-treated mice, probably via the IL-6-induced co-recruitment of protein kinase C-delta. This Ser-318 phosphorylation improved insulin-stimulated Akt phosphorylation and glucose uptake in myotubes since transfection with an IRS-1/Glu-318 mutant simulating a permanent phospho-Ser-318 modification increased Akt phosphorylation and glucose uptake. Noteworthily, two inhibitory mechanisms of IL-6 on insulin action, phosphorylation of the inhibitory Ser-307 residue of IRS-1 and induction of SOCS-3 expression, were only found in liver but not in muscle of IL-6-treated mice. Thus, the data provided evidence for a possible molecular mechanism of the physiological metabolic effects of IL-6 in skeletal muscle, thereby exerting short term beneficial effects on insulin action.  相似文献   

10.
11.
Interleukin-21 (IL-21) is a pleiotropic cytokine that regulates T-cell, B-cell, NK-cell, and myeloid-cell functions. IL-21 binds with its cognate receptor complex, which consists of the IL-21 receptor (IL-21R) and the common gamma chain (γc) receptor subunit. We identified novel IL-21R-binding molecule, WD-40 repeats containing SOCS-box-2, WSB-2. WSB-2 associated with the membrane-proximal intracytoplasmic region of IL-21R, including box1 and box2. Overexpression study of WSB-2 showed the reduction of IL-21R expression and IL-21-induced signal transduction. On the other hand, small interfering RNA for WSB-2 enhanced the expression level of IL-21R and IL-21-induced STAT3 activation, indicating that WSB-2 negatively controls the receptor expression. This report provides the first evidence that WSB-2 is a regulator of IL-21R expression and IL-21-induced signal transduction.  相似文献   

12.
13.
Gertsch J  Schoop R  Kuenzle U  Suter A 《FEBS letters》2004,577(3):563-569
Echinacea plant preparations are widely used in the prevention and treatment of common cold. However, so far no molecular mechanism of action has been proposed. We analyzed the standardized tincture Echinaforce and found that it induced de novo synthesis of tumor necrosis factor alpha (TNF-alpha) mRNA in primary human monocytes/macrophages, but not TNF-alpha protein. Moreover, LPS-stimulated TNF-alpha protein was potently inhibited in the early phase but prolonged in the late phase. A study of the main constituents of the extract showed that the alkylamides dodeca-2E,4E,8Z,10E/Z-tetraenoic acid isobutylamides (1/2), trienoic (3) and dienoic acid (4) derivatives are responsible for this effect. The upregulation of TNF-alpha mRNA was found to be mediated by CB2 receptors, increased cAMP, p38/MAPK and JNK signaling, as well as NF-kappaB and ATF-2/CREB-1 activation. This study is the first to report a possible molecular mechanism of action of Echinacea, highlighting the role of alkylamides as potent immunomodulators and potential ligands for CB2 receptors.  相似文献   

14.
Estrogen receptors (ERs)(1) highly expressed by multiple myeloma (MM) cells and stimulation of estrogenic ligands leads to cell apoptosis. Interleukin (IL)-6 is a major growth factor in the pathogenesis of MM. However, little is known concerning the molecular consequences of ER activation on IL-6-regulated MM cell growth. Here we show that the ER agonist 17 beta-estradiol completely abolished IL-6-inducible MM cell proliferation. By contrast, the ER antagonist ICI 182,780 overcame the inhibitory effect of estrogen. Estrogen blocked STAT3 DNA binding and transactivation but failed to affect the mRNA expression of IL-6 receptor chains or activation of JAK2 and STAT3. Estrogen-activated ER did not associate directly with STAT3. Estrogen induced the mRNA expression of PIAS3 (protein inhibitor of activated STAT3) and increased PIAS3 physical association with STAT3, suggesting a possible mechanism of STAT3 inhibition requiring PIAS3 as a co-regulator modulating the cross-talk between ER and STAT3. These data directly demonstrate STAT3 to be a molecular participant in ER inhibition of the IL-6 signaling pathway in human MM cells and provides the molecular basis for the potential use of estrogenic ligands in the treatment of MM or other tumors where IL-6 has an autocrine or paracrine role.  相似文献   

15.
In this study we have examined the effect of agents known to perturb certain signal transduction pathways on the biological responses of target cells to stimulation with interleukin-1 (IL-1). In the murine thymoma cell line EL4, IL-1 stimulation results in the secretion of interleukin-2 (IL-2), which was subsequently measured by proliferation of an IL-2-dependent cell line. Agents that elevated intracellular cAMP blocked or partially blocked IL-1 induction of IL-2 secretion, whereas agents that activated protein kinase C (PKC) resulted in a synergistic enhancement. Both pertussis and cholera toxins also inhibited IL-1-induced IL-2 secretion, although probably by acting at different levels. IL-1 simulation of human and murine fibroblasts resulted in release of prostaglandin E2. This response was inhibitable by pertussis toxin but not by cholera toxin, whereas co-stimulation of the fibroblasts with IL-1 and phorbol ester resulted in a synergistic response. Murine fibroblasts could also be stimulated to proliferate by IL-1, and this response was also inhibitable by pertussis toxin. These findings are consistent with coupling of the IL-1 receptor to a signalling pathway via a pertussis toxin substrate.  相似文献   

16.
17.
18.
Cellular responses to the vasoconstrictor peptide, endothelin, have been investigated in quiescent cultured human vascular smooth muscle cells (hVSMC). Endothelin caused intracellular alkalinization and activation of the protein synthetic enzyme S6-kinase, but such responses were not associated with any mitogenic effects of endothelin on hVSMC. In myo-[3H]inositol-prelabelled hVSMC endothelin elicited a rapid increase in inositol bis- and tris-phosphates and concomitant hydrolysis of polyphosphoinositol lipids. In [3H]arachidonate-prelabelled hVSMC endothelin promoted production of diacylglycerol, the early kinetics of which parallelled polyphosphoinositol lipid hydrolysis. Such phospholipase C activation by endothelin was sustained in hVSMC with accumulation of inositol polyphosphates being markedly protracted and the decay of diacylglycerol slow. Endothelin promoted extracellular release of [3H]arachidonate-labelled material from hVSMC which derived via deacylation of both phosphatidylinositol and phosphatidylcholine. This process was inhibited by phospholipase A2 and lipoxygenase inhibitors, but insensitive to phospholipase C and cyclooxygenase inhibitors. Endothelin-induced activation of phospholipase C and phospholipase A2 signal transduction pathways (EC50 approximately 5-8 nM for both) in hVSMC apparently proceed in an independent parallel manner rather than a sequential one.  相似文献   

19.
Interleukin-4 (IL-4) is a pleiotropic lymphokine which plays an important role in the immune system by regulating proliferation and differentiation of a wide variety of lymphoid and myeloid cells. These biological effects are manifested via binding of IL-4 to specific membrane-associated high affinity receptors. While the IL-4 receptor (IL-4R) cDNA expresses high affinity binding sites when transfected in COS7 cells, its intracellular domain lacks consensus motifs for known signal transducing molecules such as a tyrosine kinase. In this study, we use a DNA deletion approach to explore the mechanism of signal transduction utilized by the human IL-4R cDNA expressed in a murine pro-B cell line, Ba/F3 cells. Using this system, we have identified the critical region of the cytoplasmic domain of human IL-4R for human IL-4-induced transduction of a growth signal in these cells. Our data indicate that the critical region for signal transduction is located between amino acid residues 433-473 numbering from the carboxyl terminus. This region is highly conserved between mouse and human IL-4R but lacks homology with other cytokine receptors. Our studies additionally demonstrate that the cytoplasmic domain is not essential for forming high affinity IL-4-binding sites nor for ligand internalization.  相似文献   

20.
The initial event in the neuronal differentiation of PC12 cells is the binding of the neurotrophin nerve growth factor (NGF) to the Trk receptor. This interaction stimulates the intrinsic tyrosine kinase activity of TRk, initiating a signalling cascade involving the phosphorylation of intracellular proteins on tyrosine, serine, and threonine residues. These signals are then in turn propagated to other messengers, ultimately leading to differentiation, neurotrophin-dependent survival and the loss of proliferative capacity. To transmit NGF signals, NGF-activated Trk rapidly associated with the cytoplasmic proteins, SHC, PI-3 kinase, and PLC-γ1. These proteins are involved in stimulating the formation of various second messenger molecules and activating the Ras signal transduction pathway. Studies with Trk mutants indicate that the acivation of the Ras pathway is necessary for complete differentiation of PC12-derived cells and for the maintenance of the differentiated phenotype. Trk also induces the tyrosine phosphorylation of SNT, a specific target of neurotrophic factor activity in neuronal cells. This review will discuss the potential roles of Trk and the proteins of the Trk signalling pathways in NGF function, and summarize our attempts to understand the mechanisms used by Trk to generate dthe many phenotypic responses of PC12 cells to NGF. 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号