共查询到20条相似文献,搜索用时 15 毫秒
1.
Wu X Lemon B Li X Gupte J Weiszmann J Stevens J Hawkins N Shen W Lindberg R Chen JL Tian H Li Y 《The Journal of biological chemistry》2008,283(48):33304-33309
FGF19 subfamily proteins (FGF19, FGF21, and FGF23) are unique members of fibroblast growth factors (FGFs) that regulate energy, bile acid, glucose, lipid, phosphate, and vitamin D homeostasis in an endocrine fashion. Their activities require the presence of alpha or betaKlotho, two related single-pass transmembrane proteins, as co-receptors in relevant target tissues. We previously showed that FGF19 can bind to both alpha and betaKlotho, whereas FGF21 and FGF23 can bind only to either betaKlotho or alphaKlotho, respectively in vitro. To determine the mechanism regulating the binding and specificity among FGF19 subfamily members to Klotho family proteins, chimeric proteins between FGF19 subfamily members or chimeric proteins between Klotho family members were constructed to probe the interaction between those two families. Our results showed that a chimera of FGF19 with the FGF21 C-terminal tail interacts only with betaKlotho and a chimera with the FGF23 C-terminal tail interacts only with alphaKlotho. FGF signaling assays also reflected the change of specificity we observed for the chimeras. These results identified the C-terminal tail of FGF19 as a region necessary for its recognition of Klotho family proteins. In addition, chimeras between alpha and betaKlotho were also generated to probe the regions in Klotho proteins that are important for signaling by this FGF subfamily. Both FGF23 and FGF21 require intact alpha or betaKlotho for signaling, respectively, whereas FGF19 can signal through a Klotho chimera consisting of the N terminus of alphaKlotho and the C terminus of betaKlotho. Our results provide the first glimpse of the regions that regulate the binding specificity between this unique family of FGFs and their co-receptors. 相似文献
2.
3.
4.
Condron BG 《Neuron》1999,24(3):531-540
In the grasshopper CNS, serotonergic growth cones cross the midline early in development and initiate expression of serotonin uptake activity, or SERT. To test if the midline contains an activity that induces SERT, cuts were made that separated serotonergic cell bodies from the midline. SERT activity is completely lost when the midline is separated but is then rescued by bath-applied FGF2 (fibroblast growth factor 2), which can activate the heartless FGF receptor. heartless is expressed specifically in serotonergic neurons. A candidate FGF-like molecule was identified that is expressed in a subset of midline glia. SERT-expressing severed growth cones continue to migrate to their correct targets, which indicates that by the time SERT is activated, the serotonergic growth cones are committed to target-directed growth. 相似文献
5.
Karolina Lindberg Hannes Olauson Risul Amin Arvind Ponnusamy Regina Goetz Rebecca F. Taylor Moosa Mohammadi Ann Canfield Karolina Kublickiene Tobias E. Larsson 《PloS one》2013,8(4)
Recent studies support a role for FGF23 and its co-receptor Klotho in cardiovascular pathology, yet the underlying mechanisms remain largely elusive. Herein, we analyzed the expression of Klotho in mouse arteries and generated a novel mouse model harboring a vascular smooth muscle cell specific deletion of Klotho (Sm22-KL−/−). Arterial Klotho expression was detected at very low levels with quantitative real-time PCR; Klotho protein levels were undetectable by immunohistochemistry and Western blot. There was no difference in arterial Klotho between Sm22-KL−/− and wild-type mice, as well as no changes in serum markers of mineral metabolism. Intravenous delivery of FGF23 elicited a rise in renal (0.005; p<0.01) but not arterial Egr-1 expression, a marker of Klotho-dependent FGF23 signaling. Further, the impact of FGF23 on vascular calcification and endothelial response was evaluated in bovine vascular smooth muscle cells (bVSMC) and in a murine ex vivo model of endothelial function, respectively. FGF23 treatment (0.125–2 ng/mL) did not modify calcification in bVSMCs or dilatory, contractile and structural properties in mice arterial specimen ex vivo. Collectively, these results demonstrate that FGF23-Klotho signaling is absent in mouse arteries and that the vascular response was unaffected by FGF23 treatment. Thus, our data do not support Klotho-mediated FGF23 effects in the vasculature although confirmative studies in humans are warranted. 相似文献
6.
Donate-Correa J Muros-de-Fuentes M Mora-Fernández C Navarro-González JF 《Cytokine & growth factor reviews》2012,23(1-2):37-46
In this work we summarizes the steps that allowed the identification of the fibroblast growth factor (FGF) 23/Klotho axis as the principal regulator of phosphate homeostasis, exerting actions on intestine, bone, parathyroid glands, and kidney. We review the not fully understood mechanisms of action of this axis on the regulation of mineral homeostasis and, in addition, we discuss its potential role in the pathophysiology of chronic kidney disease and the associated complications. We also reflect the actual tendency to consider the components of this system as better predictors of the pathological conditions frequently associated to mineral disorders, and review some recent studies linking these components to cardiovascular disease even in population without mineral disorders. Finally, we consider the numerous processes in which Klotho is involved, including anti-ageing and mineral control processes, independently of its functions as obligated-coreceptor for FGF23. 相似文献
7.
8.
Adams AC Coskun T Rovira AR Schneider MA Raches DW Micanovic R Bina HA Dunbar JD Kharitonenkov A 《PloS one》2012,7(5):e38438
Fibroblast growth factors 19 (FGF19) and 21 (FGF21) have emerged as key regulators of energy metabolism. Several studies have been conducted to understand the mechanism of FGF19 and FGF21 action, however, the data presented has often been inconsistent and at times contradictory. Here in a single study we compare the mechanisms mediating FGF19/FGF21 actions, and how similarities/differences in actions at the cellular level between these two factors translate to common/divergent physiological outputs. Firstly, we show that in cell culture FGF19/FGF21 are very similar, however, key differences are still observed differentiating the two. In vitro we found that both FGF's activate FGFRs in the context of βKlotho (KLB) expression. Furthermore, both factors alter ERK phosphorylation and glucose uptake with comparable potency. Combination treatment of cells with both factors did not have additive effects and treatment with a competitive inhibitor, the FGF21 delta N17 mutant, also blocked FGF19's effects, suggestive of a shared receptor activation mechanism. The key differences between FGF21/FGF19 were noted at the receptor interaction level, specifically the unique ability of FGF19 to bind/signal directly via FGFR4. To determine if differential effects on energy homeostasis and hepatic mitogenicity exist we treated DIO and ob/ob mice with FGF19/FGF21. We find comparable efficacy of the two proteins to correct body weight and serum glucose in both DIO and ob/ob mice. Nevertheless, FGF21 and FGF19 had distinctly different effects on proliferation in the liver. Interestingly, in vivo blockade of FGF21 signaling in mice using ΔN17 caused profound changes in glycemia indicative of the critical role KLB and FGF21 play in the regulation of glucose homeostasis. Overall, our data demonstrate that while subtle differences exist in vitro the metabolic effects in vivo of FGF19/FGF21 are indistinguishable, supporting a shared mechanism of action for these two hormones in the regulation of energy balance. 相似文献
9.
Isabelle Six Hirokazu Okazaki Priscilla Gross Joanna Cagnard Cédric Boudot Julien Maizel Tilman B. Drueke Ziad A. Massy 《PloS one》2014,9(4)
Chronic kidney disease (CKD) is regarded as a state of Klotho deficiency and FGF23 excess. In patients with CKD a strong association has been found between increased serum FGF23 and mortality risk, possibly via enhanced atherosclerosis, vascular stiffness, and vascular calcification. The aim of this study was to examine the hypothesis that soluble Klotho and FGF23 exert direct, rapid effects on the vessel wall. We used three in vitro models: mouse aorta rings, human umbilical vein endothelial cells, and human vascular smooth muscle cells (HVSMC). Increasing medium concentrations of soluble Klotho and FGF23 both stimulated aorta contractions and increased ROS production in HVSMC. Klotho partially reverted FGF23 induced vasoconstriction, induced relaxation on phosphate preconstricted aorta and enhanced endothelial NO production in HUVEC. Thus Klotho increased both ROS production in HVSMC and NO production in endothelium. FGF23 induced contraction in phosphate preconstricted vessels and increased ROS production. Phosphate, Klotho and FGF23 together induced no change in vascular tone despite increased ROS production. Moreover, the three compounds combined inhibited relaxation despite increased NO production, probably owing to the concomitant increase in ROS production. In conclusion, although phosphate, soluble Klotho and FGF23 separately stimulate aorta contraction, Klotho mitigates the effects of phosphate and FGF23 on contractility via increased NO production, thereby protecting the vessel to some extent against potentially noxious effects of high phosphate or FGF23 concentrations. This novel observation is in line with the theory that Klotho deficiency is deleterious whereas Klotho sufficiency is protective against the negative effects of phosphate and FGF23 which are additive. 相似文献
10.
11.
Albina Nowak Bj?rn Friedrich Ferruh Artunc Andreas L. Serra Tobias Breidthardt Raphael Twerenbold Myriam Peter Christian Mueller 《PloS one》2014,9(7)
Deranged calcium-phosphate metabolism contributes to the burden of morbidity and mortality in dialysis patients. This study aimed to assess the association of the phosphaturic hormone fibroblast growth factor 23 (FGF23) and soluble Klotho with all-cause mortality. We measured soluble Klotho and FGF23 levels at enrolment and two weeks later in 239 prevalent hemodialysis patients. The primary hypothesis was that low Klotho and high FGF23 are associated with increased mortality. The association between Klotho and atrial fibrillation (AF) at baseline was explored as secondary outcome. AF was defined as presence of paroxysmal, persistent or permanent AF. During a median follow-up of 924 days, 59 (25%) patients died from any cause. Lower Klotho levels were not associated with mortality in a multivariable adjusted analysis when examined either on a continuous scale (HR 1.25 per SD increase, 95% CI 0.84–1.86) or in tertiles, with tertile 1 as the reference category (HR for tertile two 0.65, 95% CI 0.26–1.64; HR for tertile three 2.18, 95% CI 0.91–2.23). Higher Klotho levels were associated with the absence of AF in a muItivariable logistic regression analysis (OR 0.66 per SD increase, 95% CI 0.41–1.00). Higher FGF23 levels were associated with mortality risk in a multivariable adjusted analysis when examined either on a continuous scale (HR 1.45 per SD increase, 95% CI 1.05–1.99) or in tertiles, with the tertile 1 as the reference category (HR for tertile two 1.63, 95% CI 0.64–4.14; HR for tertile three 3.91, 95% CI 1.28–12.20). FGF23 but not Klotho levels are associated with mortality in hemodialysis patients. Klotho may be protective against AF. 相似文献
12.
Hannes Olauson Karolina Lindberg Risul Amin Tadatoshi Sato Ting Jia Regina Goetz Moosa Mohammadi G?ran Andersson Beate Lanske Tobias E. Larsson 《PLoS genetics》2013,9(12)
Klotho acts as a co-receptor for and dictates tissue specificity of circulating FGF23. FGF23 inhibits PTH secretion, and reduced Klotho abundance is considered a pathogenic factor in renal secondary hyperparathyroidism. To dissect the role of parathyroid gland resident Klotho in health and disease, we generated mice with a parathyroid-specific Klotho deletion (PTH-KL−/−). PTH-KL−/− mice had a normal gross phenotype and survival; normal serum PTH and calcium; unaltered expression of the PTH gene in parathyroid tissue; and preserved PTH response and sensitivity to acute changes in serum calcium. Their PTH response to intravenous FGF23 delivery or renal failure did not differ compared to their wild-type littermates despite disrupted FGF23-induced activation of the MAPK/ERK pathway. Importantly, calcineurin-NFAT signaling, defined by increased MCIP1 level and nuclear localization of NFATC2, was constitutively activated in PTH-KL−/− mice. Treatment with the calcineurin-inhibitor cyclosporine A abolished FGF23-mediated PTH suppression in PTH-KL−/− mice whereas wild-type mice remained responsive. Similar results were observed in thyro-parathyroid explants ex vivo. Collectively, we present genetic and functional evidence for a novel, Klotho-independent, calcineurin-mediated FGF23 signaling pathway in parathyroid glands that mediates suppression of PTH. The presence of Klotho-independent FGF23 effects in a Klotho-expressing target organ represents a paradigm shift in the conceptualization of FGF23 endocrine action. 相似文献
13.
Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21 总被引:3,自引:0,他引:3
Kurosu H Choi M Ogawa Y Dickson AS Goetz R Eliseenkova AV Mohammadi M Rosenblatt KP Kliewer SA Kuro-o M 《The Journal of biological chemistry》2007,282(37):26687-26695
14.
摘要 目的:观察腹膜透析患者颈动脉粥样硬化(As)情况及血清klotho、成纤维细胞生长因子(FGF)的表达,分析血清klotho、FGF表达与腹膜透析患者颈动脉As的关系。方法:选取我院2016年12月-2017年10月接受腹膜透析治疗的154例患者作为研究对象,统计颈动脉As发生情况,检测血清klotho、FGF水平。结果:154例腹膜透析患者患者中,颈动脉As发生率为51.16 %;发生颈动脉As患者的血清klotho水平低于未发生患者,血清FGF水平高于未发生患者,差异有统计学意义(P<0.05);采用双变量Pearson直线相关性分析发现,腹膜透析患者血清klotho水平与FGF水平呈负相关(r<0,P<0.001);经多项Logistic回归分析结果显示,血清klotho低表达、血清FGF过表达均是腹膜透析患者发生颈动脉As的影响因素(OR>1,P<0.05); ROC曲线结果显示,血清klotho、FGF预测腹膜透析患者发生颈动脉As风险的AUC均>0.80。结论:腹膜透析患者颈动脉As的发生可能与血清klotho低表达、血清FGF过表达有关,建议临床通过检测患者血清klotho、FGF水平,预测颈动脉As发生风险。 相似文献
15.
Specific regions within the embryonic midbrain and cerebellum require different levels of FGF signaling during development 总被引:1,自引:0,他引:1
Basson MA Echevarria D Ahn CP Sudarov A Joyner AL Mason IJ Martinez S Martin GR 《Development (Cambridge, England)》2008,135(5):889-898
Prospective midbrain and cerebellum formation are coordinated by FGF ligands produced by the isthmic organizer. Previous studies have suggested that midbrain and cerebellum development require different levels of FGF signaling. However, little is known about the extent to which specific regions within these two parts of the brain differ in their requirement for FGF signaling during embryogenesis. Here, we have explored the effects of inhibiting FGF signaling within the embryonic mouse midbrain (mesencephalon) and cerebellum (rhombomere 1) by misexpressing sprouty2 (Spry2) from an early stage. We show that such Spry2 misexpression moderately reduces FGF signaling, and that this reduction causes cell death in the anterior mesencephalon, the region furthest from the source of FGF ligands. Interestingly, the remaining mesencephalon cells develop into anterior midbrain, indicating that a low level of FGF signaling is sufficient to promote only anterior midbrain development. Spry2 misexpression also affects development of the vermis, the part of the cerebellum that spans the midline. We found that, whereas misexpression of Spry2 alone caused loss of the anterior vermis, reducing FGF signaling further, by decreasing Fgf8 gene dose, resulted in loss of the entire vermis. Our data suggest that cell death is not responsible for vermis loss, but rather that it fails to develop because reducing FGF signaling perturbs the balance between vermis and roof plate development in rhombomere 1. We suggest a molecular explanation for this phenomenon by providing evidence that FGF signaling functions to inhibit the BMP signaling that promotes roof plate development. 相似文献
16.
17.
18.
19.
Background
Recent studies suggest that betaKlotho (KLB) and endocrine FGF19 and FGF21 redirect FGFR signaling to regulation of metabolic homeostasis and suppression of obesity and diabetes. However, the identity of the predominant metabolic tissue in which a major FGFR-KLB resides that critically mediates the differential actions and metabolism effects of FGF19 and FGF21 remain unclear.Methodology/Principal Findings
We determined the receptor and tissue specificity of FGF21 in comparison to FGF19 by using direct, sensitive and quantitative binding kinetics, and downstream signal transduction and expression of early response gene upon administration of FGF19 and FGF21 in mice. We found that FGF21 binds FGFR1 with much higher affinity than FGFR4 in presence of KLB; while FGF19 binds both FGFR1 and FGFR4 in presence of KLB with comparable affinity. The interaction of FGF21 with FGFR4-KLB is very weak even at high concentration and could be negligible at physiological concentration. Both FGF19 and FGF21 but not FGF1 exhibit binding affinity to KLB. The binding of FGF1 is dependent on where FGFRs are present. Both FGF19 and FGF21 are unable to displace the FGF1 binding, and conversely FGF1 cannot displace FGF19 and FGF21 binding. These results indicate that KLB is an indispensable mediator for the binding of FGF19 and FGF21 to FGFRs that is not required for FGF1. Although FGF19 can predominantly activate the responses of the liver and to a less extent the adipose tissue, FGF21 can do so significantly only in the adipose tissue and adipocytes. Among several metabolic and endocrine tissues, the response of adipose tissue to FGF21 is predominant, and can be blunted by the ablation of KLB or FGFR1.Conclusions
Our results indicate that unlike FGF19, FGF21 is unable to bind FGFR4-KLB complex with affinity comparable to FGFR1-KLB, and therefore, at physiological concentration less likely to directly and significantly target the liver where FGFR4-KLB predominantly resides. However, both FGF21 and FGF19 have the potential to activate responses of primarily the adipose tissue where FGFR1-KLB resides. 相似文献20.
Polanska UM Edwards E Fernig DG Kinnunen TK 《The Journal of biological chemistry》2011,286(7):5657-5666
FGFs have traditionally been associated with cell proliferation, morphogenesis, and development; yet, a subfamily of FGFs (FGF19, -21, and -23) functions as hormones to regulate glucose, lipid, phosphate, and vitamin D metabolism with impact on energy balance and aging. In mammals, Klotho and beta-Klotho are type 1 transmembrane proteins that function as obligatory co-factors for endocrine FGFs to bind to their cognate FGF receptors (FGFRs). Mutations in Klotho/beta-Klotho or fgf19, -21, or -23 are associated with a number of human diseases, including autosomal dominant hypophosphatemic rickets, premature aging disorders, and diabetes. The Caenorhabditis elegans genome contains two paralogues of Klotho/beta-Klotho, klo-1, and klo-2. klo-1 is expressed in the C. elegans excretory canal, which is structurally and functionally paralogous to the vertebrate kidney. KLO-1 associates with EGL-15/FGFR, suggesting a role for KLO-1 in the fluid homeostasis phenotype described previously for egl-15/fgfr mutants. Altered levels of EGL-15/FGFR signaling lead to defects in excretory canal development and function in C. elegans. These results suggest an evolutionarily conserved function for the FGFR-Klotho complex in the development of excretory organs such as the mammalian kidney and the worm excretory canal. These results also suggest an evolutionarily conserved function for the FGFR-Klotho axis in metabolic regulation. 相似文献