首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Toward a molecular understanding of pleiotropy   总被引:1,自引:0,他引:1  
He X  Zhang J 《Genetics》2006,173(4):1885-1891
Pleiotropy refers to the observation of a single gene influencing multiple phenotypic traits. Although pleiotropy is a common phenomenon with broad implications, its molecular basis is unclear. Using functional genomic data of the yeast Saccharomyces cerevisiae, here we show that, compared with genes of low pleiotropy, highly pleiotropic genes participate in more biological processes through distribution of the protein products in more cellular components and involvement in more protein-protein interactions. However, the two groups of genes do not differ in the number of molecular functions or the number of protein domains per gene. Thus, pleiotropy is generally caused by a single molecular function involved in multiple biological processes. We also provide genomewide evidence that the evolutionary conservation of genes and gene sequences positively correlates with the level of gene pleiotropy.  相似文献   

2.
Sensory cilium biogenesis within Caenorhabditis elegans neurons depends on the kinesin-2-dependent intraflagellar transport (IFT) of ciliary precursors associated with IFT particles to the axoneme tip. Here we analyzed the molecular organization of the IFT machinery by comparing the in vivo transport and phenotypic profiles of multiple proteins involved in IFT and ciliogenesis. Based on their motility in wild-type and bbs (Bardet-Biedl syndrome) mutants, IFT proteins were classified into groups with similar transport profiles that we refer to as "modules." We also analyzed the distribution and transport of fluorescent IFT particles in multiple known ciliary mutants and 49 new ciliary mutants. Most of the latter mutants were snip-SNP mapped and one, namely dyf-14(ks69), was cloned and found to encode a conserved protein essential for ciliogenesis. The products of these ciliogenesis genes could also be assigned to the aforementioned set of modules or to specific aspects of ciliogenesis, based on IFT particle dynamics and ciliary mutant phenotypes. Although binding assays would be required to confirm direct physical interactions, the results are consistent with the hypothesis that the C. elegans IFT machinery has a modular design, consisting of modules IFT-subcomplex A, IFT-subcomplex B, and a BBS protein complex, in addition to motor and cargo modules, with each module contributing to distinct functional aspects of IFT or ciliogenesis.  相似文献   

3.
4.
5.
Shim J  Lee J 《Molecules and cells》2005,19(3):452-457
The adaptor protein (AP) complexes are involved in membrane transport of many proteins. There are 3 AP complexes in C. elegans unlike mammals that have four. To study the biological functions of the AP-3 complexes of C. elegans, we sought homologues of the mouse and human genes that encode subunits of the AP-3 complexes by screening C. elegans genomic and EST sequences. We identified single copies of homologues of the m3, s3, b3 and d genes. The medium chain of AP-3 is encoded by a single gene in C. elegans but two different genes in mammals. Since there are no known mutations in these genes in C. elegans, we performed RNAi to assess their functions in development. RNAi of each of the genes caused embryonic and larval lethal phenotypes. APM-3 is expressed in most cells, particularly strongly in spermatheca and vulva. We conclude that the products of the C. elegans m3, s3, b3 and d genes are essential for embryogenesis and larval development.  相似文献   

6.
Development and physiology translate genetic variation into phenotypic variation and determine the genotype-phenotype map, such as which gene affects which character (pleiotropy). Any genetic change in this mapping reflects a change in development. Here, we discuss evidence for variation in pleiotropy and propose the selection, pleiotropy and compensation model (SPC) for adaptive evolution. It predicts that adaptive change in one character is associated with deleterious pleiotropy in others and subsequent selection to compensate for these pleiotropic effects. The SPC model provides a unifying perspective for a variety of puzzling phenomena, including developmental systems drift and character homogenization. The model suggests that most adaptive signatures detected in genome scans could be the result of compensatory changes, rather than of progressive character adaptations.  相似文献   

7.
Flatt T  Kawecki TJ 《Genetica》2004,122(2):141-160
Life history theory assumes that there are alleles with pleiotropic effects on fitness components. Although quantitative genetic data are often consistent with pleiotropy, there are few explicit examples of pleiotropic loci. The Drosophila melanogaster gene Methoprene-tolerant (Met) may be such a locus. The Met gene product, a putative juvenile hormone receptor, facilitates the action of juvenile hormone (JH) and JH analogs; JH affects many life history traits in arthropods. Here we use quantitative complementation to investigate effects of Met mutant and wildtype alleles on female developmental time, onset of reproduction, and fecundity. Whereas the alleles did not differ in their effects on developmental time, we detected allelic variation for the onset of reproduction and for age-specific fecundity. Alleles influenced phenotypic co-variances among traits (developmental time and onset of reproduction; onset of reproduction and both early and late fecundity; early and late fecundity), suggesting that alleles of Met vary in their pleiotropic effects upon life history. Furthermore, the genetic covariance between developmental time and early fecundity attributed to alleles of Met was negative, indicating consistent pleiotropic effects among alleles on these traits. The allelic effects of Met support genetic models where pleiotropy at genes associated with hormone regulation can contribute to the evolution of life history traits.  相似文献   

8.
E. A. Bucher  I. Greenwald 《Genetics》1991,128(2):281-292
We have devised a simple genetic mosaic screen, which circumvents the difficulties posed by phenotypic analysis of early lethal mutants, to analyze essential zygotic genes in Caenorhabditis elegans. The screen attempts to distinguish genes involved in cell type and/or lineage specific processes such as determination, differentiation or morphogenesis from genes involved in general processes such as intermediary metabolism by using the pattern of gene function to classify genes: genes required in one or a subset of early blastomeres may have specific functions, whereas genes required in all early blastomeres may have general functions. We found that 12 of 17 genes examined function in specific early blastomeres, suggesting that many zygotic genes contribute to specific early processes. We discuss the advantages and limitations of this screen, which is applicable to other regions of the C. elegans genome.  相似文献   

9.
Flowering time, the major regulatory transition of plant sequential development, is modulated by multiple endogenous and environmental factors. By phenotypic profiling of 80 early flowering mutants of Arabidopsis, we examine how mutational reduction of floral repression is associated with changes in phenotypic plasticity and stability. Flowering time measurements in mutants reveal deviations from the linear relationship between the number of leaves and number of days to bolting described for natural accessions and late flowering mutants. The deviations correspond to relative early bolting and relative late bolting phenotypes. Only a minority of mutants presents no detectable phenotypic variation. Mutants are characterized by a broad release of morphological pleiotropy under short days, with leaf characters being most variable. They also exhibit changes in phenotypic plasticity across environments for florigenic-related responses, including the reaction to light and dark, photoperiodic behavior, and Suc sensitivity. Morphological pleiotropy and plasticity modifications are differentially distributed among mutants, resulting in a large diversity of multiple phenotypic changes. The pleiotropic effects observed may indicate that floral repression defects are linked to global developmental perturbations. This first, to our knowledge, extensive characterization of phenotypic variation in early flowering mutants correlates with the reports that most factors recruited in floral repression at the molecular genetic level correspond to ubiquitous regulators. We discuss the importance of functional ubiquity for floral repression with respect to robustness and flexibility of network biological systems.  相似文献   

10.
Phenotypic traits do not always respond to selection independently from each other and often show correlated responses to selection. The structure of a genotype‐phenotype map (GP map) determines trait covariation, which involves variation in the degree and strength of the pleiotropic effects of the underlying genes. It is still unclear, and debated, how much of that structure can be deduced from variational properties of quantitative traits that are inferred from their genetic (co) variance matrix ( G ‐matrix). Here we aim to clarify how the extent of pleiotropy and the correlation among the pleiotropic effects of mutations differentially affect the structure of a G ‐matrix and our ability to detect genetic constraints from its eigen decomposition. We show that the eigenvectors of a G ‐matrix can be predictive of evolutionary constraints when they map to underlying pleiotropic modules with correlated mutational effects. Without mutational correlation, evolutionary constraints caused by the fitness costs associated with increased pleiotropy are harder to infer from evolutionary metrics based on a G ‐matrix's geometric properties because uncorrelated pleiotropic effects do not affect traits' genetic correlations. Correlational selection induces much weaker modular partitioning of traits' genetic correlations in absence then in presence of underlying modular pleiotropy.  相似文献   

11.
12.
13.
Molecular genetic investigation of the early Caenorhabditis elegans embryo has contributed substantially to the discovery and general understanding of the genes, pathways, and mechanisms that regulate and execute developmental and cell biological processes. Initially, worm geneticists relied exclusively on a classical genetics approach, isolating mutants with interesting phenotypes after mutagenesis and then determining the identity of the affected genes. Subsequently, the discovery of RNA interference (RNAi) led to a much greater reliance on a reverse genetics approach: reducing the function of known genes with RNAi and then observing the phenotypic consequences. Now the advent of next-generation DNA sequencing technologies and the ensuing ease and affordability of whole-genome sequencing are reviving the use of classical genetics to investigate early C. elegans embryogenesis.  相似文献   

14.
IntroductionPleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. Gene variants directly affect the normal processes of a series of physiological and biochemical reactions, and therefore cause a variety of diseases traits to be changed accordingly. Moreover, a shared genetic susceptibility mechanism may exist between different diseases. Therefore, shared genes, with pleiotropic effects, are important to understand the sharing pathogenesis and hence the mechanisms underlying comorbidity.MethodsIn this study, we proposed combining genome-wide association studies (GWAS) and public knowledge databases to search for potential pleiotropic genes associated with rheumatoid arthritis (RA) and eight other related diseases. Here, a GWAS-based network analysis is used to recognize risk genes significantly associated with RA. These RA risk genes are re-extracted as potential pleiotropic genes if they have been proved to be susceptible genes for at least one of eight other diseases in the OMIM or PubMed databases.ResultsIn total, we extracted 116 potential functional pleiotropic genes for RA and eight other diseases, including five hub pleiotropic genes, BTNL2, HLA-DRA, NOTCH4, TNXB, and C6orf10, where BTNL2, NOTCH4, and C6orf10 are novel pleiotropic genes identified by our analysis.ConclusionsThis study demonstrates that pleiotropy is a common property of genes associated with disease traits. Our results ascertained the shared genetic risk profiles that predisposed individuals to RA and other diseases, which could have implications for identification of molecular targets for drug development, and classification of diseases.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0715-1) contains supplementary material, which is available to authorized users.  相似文献   

15.
High-content screening for gene profiling has generally been limited to single cells. Here, we explore an alternative approach-profiling gene function by analyzing effects of gene knockdowns on the architecture of a complex tissue in a multicellular organism. We profile 554 essential C. elegans genes by imaging gonad architecture and scoring 94 phenotypic features. To generate a reference for evaluating methods for network construction, genes were manually partitioned into 102 phenotypic classes, predicting functions for uncharacterized genes across diverse cellular processes. Using this classification as a benchmark, we developed a robust computational method for constructing gene networks from high-content profiles based on a network context-dependent measure that ranks the significance of links between genes. Our analysis reveals that multi-parametric profiling in a complex tissue yields functional maps with a resolution similar to genetic interaction-based profiling in unicellular eukaryotes-pinpointing subunits of macromolecular complexes and components functioning in common cellular processes.  相似文献   

16.
Hill WG  Zhang XS 《Genetics》2012,190(3):1131-1137
Analyses of effects of mutants on many traits have enabled estimates to be obtained of the magnitude of pleiotropy, and in reviews of such data others have concluded that the degree of pleiotropy is highly restricted, with implications on the evolvability of complex organisms. We show that these conclusions are highly dependent on statistical assumptions, for example significance levels. We analyze models with pleiotropic effects on all traits at all loci but by variable amounts, considering distributions of numbers of traits declared significant, overall pleiotropic effects, and extent of apparent modularity of effects. We demonstrate that these highly pleiotropic models can give results similar to those obtained in analyses of experimental data and that conclusions on limits to evolvability through pleiotropy are not robust.  相似文献   

17.
18.
We investigated genetic polymorphism in the Caenorhabditis elegans srh and str chemoreceptor gene families, each of which consists of approximately 300 genes encoding seven-pass G-protein-coupled receptors. Almost one-third of the genes in each family are annotated as pseudogenes because of apparent functional defects in N2, the sequenced wild-type strain of C. elegans. More than half of these "pseudogenes" have only one apparent defect, usually a stop codon or deletion. We sequenced the defective region for 31 such genes in 22 wild isolates of C. elegans. For 10 of the 31 genes, we found an apparently functional allele in one or more wild isolates, suggesting that these are not pseudogenes but instead functional genes with a defective allele in N2. We suggest the term "flatliner" to describe genes whose functional vs. pseudogene status is unclear. Investigations of flatliner gene positions, d(N)/d(S) ratios, and phylogenetic trees indicate that they are not readily distinguished from functional genes in N2. We also report striking heterogeneity in the frequency of other polymorphisms among these genes. Finally, the large majority of polymorphism was found in just two strains from geographically isolated islands, Hawaii and Madeira. This suggests that our sampling of wild diversity in C. elegans is narrow and that identification of additional strains from similarly isolated regions will greatly expand the diversity available for study.  相似文献   

19.
U3 small nucleolar RNA (snoRNA) is one of the members of the box C/D class of snoRNA and is essential for ribosomal RNA (rRNA) processing to generate 18S rRNA in the nucleolus. Although U3 snoRNA is abundant, and is well conserved from yeast to mammals, the genes encoding U3 snoRNA in C. elegans have long remained unidentified. A recent RNomics study in C. elegans predicted five distinct U3 snoRNA genes. However, characterization of these candidates for U3 snoRNA has yet to be performed. In this study, we isolated and characterized four candidate RNAs for U3 snoRNA from the immunoprecipitated RNAs of C. elegans using an antibody against the 2,2,7-trimethylguanosine (TMG) cap. The sequences were identical to the predicted U3 sequences in the RNomics study. Here, we show the several lines of evidence that the isolated RNAs are the true U3 snoRNAs of C. elegans. Moreover, we report the novel expression pattern of U3 snoRNA and fibrillarin, which is an essential component of U3 small nucleolar ribonucleoprotein complex, during early embryo development of C. elegans. To our knowledge, this is the first observation of the inconsistent localization U3 snoRNA and fibrillarin during early embryogenesis, providing novel insight into the mechanisms of nucleologenesis and ribosome production during early embryogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号