首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complex cellular events that occur during development of the male gametophyte of higher plants suggest a role for the cytoskeleton. This investigation has revealed that unique microtubule arrays mediate events that occur during microspore development; both actin and microtubule arrays have important roles during the asymmetrical microspore mitosis and unique actin arrays mediate events that occur during early pollen development. Migration of the nucleus to the generative pole during cellular polarization of the microspore is mediated by a microtubule cage that encloses the nucleus. Nuclear position at the generative pole is maintained by an actin net that tethers it to the pole prior to the asymmetrical mitosis. During entry into mitosis, the microtubule cage becomes modified and transforms into the asymmetrical mitotic spindle. Actin is localized within the region of the mitotic spindle and in the phragmoplast. Following mitosis, actin networks enclose first the generative cell and then the vegetative nucleus. These actin networks function during migration of the generative cell and vegetative nucleus toward the centre of the pollen grain. Mature pollen contains a dense cortical actin meshwork and a disc-shaped microtubule array enclosing the generative cell. The functional importance of the unique actin and microtubule arrays is verified by their targeted disruption with specific cytoskeletal inhibitors, which disrupt normal development and cellular morphology. In summary, these data provide evidence that the co-ordinated reorganization of unique actin and microtubule arrays is an essential determinant of microspore and pollen development.  相似文献   

2.
Mitosis in eukaryotic cells employs spindle microtubules to drive accurate chromosome segregation at cell division. Cells lacking spindle microtubules arrest in mitosis due to a spindle checkpoint that delays mitotic progression until all chromosomes have achieved stable bipolar attachment to spindle microtubules. In fission yeast, mitosis occurs within an intact nuclear membrane with the mitotic spindle elongating between the spindle pole bodies. We show here that in fission yeast interference with mitotic spindle formation delays mitosis only briefly and cells proceed to an unusual nuclear division process we term nuclear fission, during which cells perform some chromosome segregation and efficiently enter S-phase of the next cell cycle. Nuclear fission is blocked if spindle pole body maturation or sister chromatid separation cannot take place or if actin polymerization is inhibited. We suggest that this process exhibits vestiges of a primitive nuclear division process independent of spindle microtubules, possibly reflecting an evolutionary intermediate state between bacterial and Archeal chromosome segregation where the nucleoid divides without a spindle and a microtubule spindle-based eukaryotic mitosis.  相似文献   

3.
LIM kinases (LIMK1 and LIMK2) regulate actin cytoskeletal reorganization through phosphorylating and inactivating cofilin, an actin-depolymerizing factor of actin filaments. Here, we describe a detailed analysis of the cell-cycle-dependent activity of LIMK2, and a subcellular localization of LIMK1 and LIMK2. The activity of LIMK2, distinct from LIMK1, toward cofilin phosphorylation did not change in the normal cell division cycle. In contrast, LIMK2 was hyperphosphorylated and its activity was markedly increased when HeLa cells were synchronized at mitosis with nocodazole treatment. Immunofluorescence analysis showed that LIMK1 was localized at cell-cell adhesion sites in interphase and prophase, redistributed to the spindle poles during prometaphase to anaphase, and accumulated at the cleavage furrow in telophase. In contrast, LIMK2 was diffusely localized in the cytoplasm during interphase, redistributed to the mitotic spindle, and finally to the spindle midzone during anaphase to telophase. These findings suggest that LIMK2 is activated in response to microtubule disruption, and that LIMK1 and LIMK2 may play different roles in regulating for the mitotic spindle organization, chromosome segregation, and cytokinesis during the cell division cycle.  相似文献   

4.
We have identified an F-actin cytoskeletal network that remains throughout interphase, mitosis, and cytokinesis of higher plant endosperm cells. Fluorescent labeling was obtained using actin monoclonal antibodies and/or rhodamine-phalloidin. Video-enhanced microscopy and ultrastructural observations of immunogold-labeled preparations illustrated microfilament-microtubule co-distribution and interactions. Actin was also identified in cell crude extract with Western blotting. During interphase, microfilament and microtubule arrays formed two distinct networks that intermingled. At the onset of mitosis, when microtubules rearranged into the mitotic spindle, microfilaments were redistributed to the cell cortex, while few microfilaments remained in the spindle. During mitosis, the cortical actin network remained as an elastic cage around the mitotic apparatus and was stretched parallel to the spindle axis during poleward movement of chromosomes. This suggested the presence of dynamic cross-links that rearrange when they are submitted to slow and regular mitotic forces. At the poles, the regular network is maintained. After midanaphase, new, short microfilaments invaded the equator when interzonal vesicles were transported along the phragmoplast microtubules. Colchicine did not affect actin distribution, and cytochalasin B or D did not inhibit chromosome transport. Our data on endosperm cells suggested that plant cytoplasmic actin has an important role in the cell cortex integrity and in the structural dynamics of the poorly understood cytoplasm-mitotic spindle interface. F-actin may contribute to the regulatory mechanisms of microtubule-dependent or guided transport of vesicles during mitosis and cytokinesis in higher plant cells.  相似文献   

5.
BACKGROUND: During asymmetric cell division in the Drosophila nervous system, Numb segregates into one of two daughter cells where it is required for the establishment of the correct cell fate. Numb is uniformly cortical in interphase, but in late prophase, the protein concentrates in the cortical area overlying one of two centrosomes in an actin/myosin-dependent manner. What triggers the asymmetric localization of Numb at the onset of mitosis is unclear. RESULTS: We show here that the mitotic kinase Aurora-A is required for the asymmetric localization of Numb. In Drosophila sensory organ precursor (SOP) cells mutant for the aurora-A allele aurA(37), Numb is uniformly localized around the cell cortex during mitosis and segregates into both daughter cells, leading to cell fate transformations in the SOP lineage. aurA(37) mutant cells also fail to recruit Centrosomin (Cnn) and gamma-Tubulin to centrosomes during mitosis, leading to spindle morphology defects. However, Numb still localizes asymmetrically in cnn mutants or after disruption of microtubules, indicating that there are two independent functions for Aurora-A in centrosome maturation and asymmetric protein localization during mitosis. Using photobleaching of a GFP-Aurora fusion protein, we show that two rapidly exchanging pools of Aurora-A are present in the cytoplasm and at the centrosome and might carry out these two functions. CONCLUSIONS: Our results suggest that activation of the Aurora-A kinase at the onset of mitosis is required for the actin-dependent asymmetric localization of Numb. Aurora-A is also involved in centrosome maturation and spindle assembly, indicating that it regulates both actin- and microtubule-dependent processes in mitotic cells.  相似文献   

6.
Accurate mitotic spindle positioning is essential for the regulation of cell fate choices, cell size and cell position within tissues. The most prominent model of spindle positioning involves a cortical pulling mechanism, where the minus end-directed microtubule motor protein dynein is attached to the cell cortex and exerts pulling forces on the plus ends of astral microtubules that reach the cortex. In nonpolarized cultured cells integrin-dependent, retraction fiber-mediated cell adhesion is involved in spindle orientation. Proteins serving as intermediaries between cortical actin or retraction fibers and astral microtubules remain largely unknown. In a recent genome-wide RNAi screen we identified a previously uncharacterized protein, MISP (C19ORF21) as being involved in centrosome clustering, a process leading to the clustering of supernumerary centrosomes in cancer cells into a bipolar mitotic spindle array by microtubule tension. Here, we show that MISP is associated with the actin cytoskeleton and focal adhesions and is expressed only in adherent cell types. During mitosis MISP is phosphorylated by Cdk1 and localizes to retraction fibers. MISP interacts with the +TIP EB1 and p150glued, a subunit of the dynein/dynactin complex. Depletion of MISP causes mitotic arrest with reduced tension across sister kinetochores, chromosome misalignment and spindle multipolarity in cancer cells with supernumerary centrosomes. Analysis of spindle orientation revealed that MISP depletion causes randomization of mitotic spindle positioning relative to cell axes and cell center. Together, we propose that MISP links microtubules to the actin cytoskeleton and focal adhesions in order to properly position the mitotic spindle.  相似文献   

7.
The isotropic metaphase actin cortex progressively polarizes as the anaphase spindle elongates during mitotic exit. This involves the loss of actomyosin cortex from opposing cell poles and the accumulation of an actomyosin belt at the cell centre. Although these spatially distinct cortical remodelling events are coordinated in time, here we show that they are independent of each other. Thus, actomyosin is lost from opposing poles in anaphase cells that lack an actomyosin ring owing to centralspindlin depletion. In examining potential regulators of this process, we identify a role for Aurora B kinase in actin clearance at cell poles. Upon combining Aurora B inhibition with centralspindlin depletion, cells exiting mitosis fail to change shape and remain completely spherical. Additionally, we demonstrate a requirement for Aurora B in the clearance of cortical actin close to anaphase chromatin in cells exiting mitosis with a bipolar spindle and in monopolar cells forced to divide while flat. Altogether, these data suggest a novel role for Aurora B activity in facilitating DNA‐mediated polar relaxation at anaphase, polarization of the actomyosin cortex, and cell division.  相似文献   

8.
Proper spindle orientation is required for asymmetric cell division and the establishment of complex tissue architecture. In the developing epidermis, spindle orientation requires a conserved cortical protein complex of LGN/NuMA/dynein-dynactin. However, how microtubule dynamics are regulated to interact with this machinery and properly position the mitotic spindle is not fully understood. Furthermore, our understanding of the processes that link spindle orientation during asymmetric cell division to cell fate specification in distinct tissue contexts remains incomplete. We report a role for the microtubule catastrophe factor KIF18B in regulating microtubule dynamics to promote spindle orientation in keratinocytes. During mitosis, KIF18B accumulates at the cell cortex, colocalizing with the conserved spindle orientation machinery. In vivo we find that KIF18B is required for oriented cell divisions within the hair placode, the first stage of hair follicle morphogenesis, but is not essential in the interfollicular epidermis. Disrupting spindle orientation in the placode, using mutations in either KIF18B or NuMA, results in aberrant cell fate marker expression of hair follicle progenitor cells. These data functionally link spindle orientation to cell fate decisions during hair follicle morphogenesis. Taken together, our data demonstrate a role for regulated microtubule dynamics in spindle orientation in epidermal cells. This work also highlights the importance of spindle orientation during asymmetric cell division to dictate cell fate specification.  相似文献   

9.
Mitotic spindle orientation relies on a complex dialog between the spindle microtubules and the cell cortex, in which F-actin has been recently implicated. Here, we report that the membrane–actin linkers ezrin/radixin/moesin (ERMs) are strongly and directly activated by the Ste20-like kinase at mitotic entry in mammalian cells. Using microfabricated adhesive substrates to control the axis of cell division, we found that the activation of ERMs plays a key role in guiding the orientation of the mitotic spindle. Accordingly, impairing ERM activation in apical progenitors of the mouse embryonic neocortex severely disturbed spindle orientation in vivo. At the molecular level, ERM activation promotes the polarized association at the mitotic cortex of leucine-glycine-asparagine repeat protein (LGN) and nuclear mitotic apparatus (NuMA) protein, two essential factors for spindle orientation. We propose that activated ERMs, together with Gαi, are critical for the correct localization of LGN–NuMA force generator complexes and hence for proper spindle orientation.  相似文献   

10.
《The Journal of cell biology》1993,121(6):1343-1355
We have examined the cortex of Caenorhabditis elegans eggs during pseudocleavage (PC), a period of the first cell cycle which is important for the generation of asymmetry at first cleavage (Strome, S. 1989. Int. Rev. Cytol. 114: 81-123). We have found that directed, actin dependent, cytoplasmic, and cortical flow occurs during this period coincident with a rearrangement of the cortical actin cytoskeleton (Strome, S. 1986. J. Cell Biol. 103: 2241-2252). The flow velocity (4-7 microns/min) is similar to previously determined particle movements driven by cortical actin flows in motile cells. We show that directed flows occur in one of the daughters of the first division that itself divides asymmetrically, but not in its sister that divides symmetrically. The cortical and cytoplasmic events of PC can be mimicked in other cells during cytokinesis by displacing the mitotic apparatus with the microtubule polymerization inhibitor nocodazole. In all cases, the polarity of the resulting cortical and cytoplasmic flows correlates with the position of the attenuated mitotic spindle formed. These cortical flows are also accompanied by a change in the distribution of the cortical actin network. The polarity of this redistribution is similarly correlated with the location of the attenuated spindle. These observations suggest a mechanism for generating polarized flows of cytoplasmic and cortical material during embryonic cleavages. We present a model for the events of PC and suggest how the poles of the mitotic spindle mediate the formation of the contractile ring during cytokinesis in C. elegans.  相似文献   

11.
Synchronized cultures of Dictyostelium discoideum were used to study organizational changes of the cytoskeleton during mitotic cell division. The agar-overlay technique (Yumura et al.: J. Cell Biol. 99:894-899, 1984) was employed for immunofluorescence localization and video microscopic observation of living mitotic cells. The mitotic phase was defined by changes in chromosome configuration by using a double stain with the fluorescent dye DAPI. This study showed that the actin- and myosin-containing cytoskeleton was reversibly redistributed between the cortical ectoplasm and the endoplasm during prophase and telophase. Both actin and myosin filaments were dissociated from the cell cortex in prophase. Most of the actin and myosin was filamentous and remained in the endoplasm until telophase. Saltatory movements of organelles stopped suddenly, coincident with the breakdown of the cytoplasmic microtubule network. This change in the microtubule system was temporally coupled with the disappearance of actomyosin from the cortex. At the same time, the local vibrating movement of particles almost stopped, suggesting that the viscoelastic nature of the endoplasm was altered. In the late anaphase, actin and myosin relocalized to the cortical ectoplasm. Early in this phase, myosin filaments were localized specifically at the anticipated cleavage furrow region of the cleavage furrow, whereas actin filaments were redistributed more uniformly in the cell cortex, with an extremely large accumulation in the polar pseudopods. Subsequently the actin formed an orderly parallel array of cables along with myosin filaments in the contractile ring. The spatial segregation of actin and myosin in late anaphase was clearly demonstrated by multipolar cell division of artificially induced giant cells. Actin was relocalized in both the polar and the proximal constricting regions whereas myosin was only localized in the center of each pair of daughter microtubule networks where the cleavage furrow was formed. This study demonstrates that actin and myosin are reorganized by a temporally coordinated but spatially different mechanism during cytokinesis of Dictyostelium.  相似文献   

12.
Astral microtubules (MTs) are known to be important for cleavage furrow induction and spindle positioning, and loss of astral MTs has been reported to increase cortical contractility. To investigate the effect of excess astral MT activity, we depleted the MT depolymerizer mitotic centromere-associated kinesin (MCAK) from HeLa cells to produce ultra-long, astral MTs during mitosis. MCAK depletion promoted dramatic spindle rocking in early anaphase, wherein the entire mitotic spindle oscillated along the spindle axis from one proto-daughter cell to the other, driven by oscillations of cortical nonmuscle myosin II. The effect was phenocopied by taxol treatment. Live imaging revealed that cortical actin partially vacates the polar cortex in favor of the equatorial cortex during anaphase. We propose that this renders the polar actin cortex vulnerable to rupture during normal contractile activity and that long astral MTs enlarge the blebs. Excessively large blebs displace mitotic spindle position by cytoplasmic flow, triggering the oscillations as the blebs resolve.  相似文献   

13.
Rho GTPases regulate multiple signal transduction pathways that influence many aspects of cell behaviour, including migration, morphology, polarity and cell cycle. Through their ability to control the assembly and organization of the actin and microtubule cytoskeletons, Rho and Cdc42 make several key contributions during the mitotic phase of the cell cycle, including spindle assembly, spindle positioning, cleavage furrow contraction and abscission. We now report that PRK2/PKN2, a Ser/Thr kinase and Rho/Rac effector protein, is an essential regulator of both entry into mitosis and exit from cytokinesis in HeLa S3 cells. PRK2 is required for abscission of the midbody at the end of the cell division cycle and for phosphorylation and activation of Cdc25B, the phosphatase required for activation of mitotic cyclin/Cdk1 complexes at the G2/M transition. This reveals an additional step in the mammalian cell cycle controlled by Rho GTPases.  相似文献   

14.
Mali P  Wirtz D  Searson PC 《Biophysical journal》2010,99(11):3526-3534
Upon cortical retraction in mitosis, mammalian cells have a dramatically decreased physical association with their environment. Hence, mechanisms that prevent mitotic detachment and ensure appropriate positioning of the resulting daughter cells are critical for effective tissue morphogenesis and repair, and are the subject of this study. We find that, unlike low-motility cells, highly motile cells spread isotropically upon division and do not typically reoccupy their mother-cell footprint, and often even disseminate their mitotic cells. To elucidate these different motility-based phenotypes, we investigated their partial recapitulation and rescue using defined molecular perturbations. We show that activated RhoA is localized at the mitotic cell cortex, and Rho-associated kinase inhibition increases the degree of reoccupation of the mother-cell outline in highly motile cells. Conversely, we show that induction of motility in low-motility cells by RasV12 overexpression results in increased isotropic daughter-cell spreading. We thus propose that a balance between cortical retraction forces, which depend in part on RhoA activation, and substrate adhesion forces, which diminish with increasing motility rates, governs the integrity of mitotic actin retraction fibers and influences subsequent daughter-cell spreading. This balance of forces during mitosis has implications for cancer metastasis.  相似文献   

15.
The interaction of astral microtubules with cortical actin networks is essential for the correct orientation of the mitotic spindle; however, little is known about how the cortical actin organization is regulated during mitosis. LIM kinase-1 (LIMK1) regulates actin dynamics by phosphorylating and inactivating cofilin, an actin-depolymerizing protein. LIMK1 activity increases during mitosis. Here we show that mitotic LIMK1 activation is critical for accurate spindle orientation in mammalian cells. Knockdown of LIMK1 suppressed a mitosis-specific increase in cofilin phosphorylation and caused unusual cofilin localization in the cell cortex in metaphase, instability of cortical actin organization and astral microtubules, irregular rotation and misorientation of the spindle, and a delay in anaphase onset. Similar results were obtained by treating the cells with a LIMK1 in hibitor peptide or latrunculin A or by overexpressing a non-phosphorylatable cofilin(S3A) mutant. Furthermore, localization of LGN (a protein containing the repetitive Leu-Gly-Asn tripeptide motifs), an important regulator of spindle orientation, in the crescent-shaped cortical regions was perturbed in LIMK1 knockdown cells. Our results suggest that LIMK1-mediated cofilin phosphorylation is required for accurate spindle orientation by stabilizing cortical actin networks during mitosis.  相似文献   

16.
Members of the vertebrate ezrin-radixin-moesin (ERM) protein family crosslink the actin cytoskeleton and the cell membrane and are, therefore, considered cytoplasmic regulators of cell adhesion, cell movement and membrane trafficking. Here we demonstrate that besides its cytoplasmic functions Drosophila moesin, the only ERM protein in Drosophila melanogaster, exhibits a dynamic cell cycle-dependent nuclear localization. In a small fraction of cells and at a low level, moesin can be detected in interphase nuclei in regions complementary to the chromatin; its level rapidly increases during prophase and it co-localizes with the actin network surrounding the mitotic spindles throughout mitosis. We also found that the predicted single nuclear localization signal in moesin is not necessary for the nuclear accumulation of the protein. FRAP experiments confirmed this finding and further revealed that the mitotic localization of moesin is highly dynamic. Immuno-histochemical staining for moesin demonstrated the existence of spindle association in wild-type embryos. The biological relevance of this phenomenon is indicated by the mitotic phenotypes detected in S2 cells treated with moesin RNAi, and awaits future exploration.  相似文献   

17.
Summary The reorganization of the actin and microtubule (MT) cytoskeleton was immunocytochemically visualized by confocal laser scanning microscopy throughout the photomorphogenetic differentiation of tip-growing characean protonemata into multicellular green thalli. After irradiating dark-grown protonemata with blue or white light, decreasing rates of gravitropic tip-growth were accompanied by a series of events leading to the first cell division: the nucleus migrated towards the tip; MTs and plastids invaded the apical cytoplasm; the polar zonation of cytoplasmic organelles and the prominent actin patch at the cell tip disappeared and the tip-focused actin microfilaments (MFs) were reorganized into a homogeneous network. During prometaphase and metaphase, extranuclear spindle microtubules formed between the two spindle poles. Cytoplasmic MTs associated with the apical spindle pole decreased in number but did not disappear completely during mitosis. The basal cortical MTs represent a discrete MT population that is independent from the basal spindle poles and did not redistribute during mitosis and cytokinesis. Preprophase MT bands were never detected but cytokinesis was characterized by higher-plant-like phragmoplast MT arrays. Cytoplasmic actin MFs persisted as a dense network in the apical cytoplasm throughout the first cell division. They were not found in close contact with spindle MTs, but actin MFs were clearly coaligned along the MTs of the early phragmoplast. The later belt-like phragmoplast was completely depleted of MFs close to the time of cell plate fusion except for a few actin MF bundles that extended to the margin of the growing cell plate. The cell plate itself and young anticlinal cell walls showed strong actin immunofluorescence. After several anticlinal cell divisions, basal cells of the multicellular protonema produced nodal cell complexes by multiple periclinal divisions. The apical-dome cell of the new shoot which originated from a nodal cell becomes the meristem initial that regularly divides to produce a segment cell. The segment cell subsequently divides to produce a single file of alternating internodal cells and multicellular nodes which together form the complexly organized characean thallus. The actin and MT distribution of nodal cells resembles that of higherplant meristem cells, whereas the internodal cells exhibit a highly specialized cortical system of MTs and streaming-generating actin bundles, typical of highly vacuolated plant cells. The transformation from the asymmetric mitotic spindle of the polarized tip-growing protonema cell to the symmetric, higher-plant-like spindle of nodal thallus cells recapitulates the evolutionary steps from the more primitive organisms to higher plants.Abbreviations FITC fluorescein isothiocyanate - MF microfilament - MT microtubule - MSB microtubule-stabilizing buffer - PBS phosphate-buffered saline  相似文献   

18.
The extracellular matrix guides the orientation of the cell division axis   总被引:5,自引:0,他引:5  
The cell division axis determines the future positions of daughter cells and is therefore critical for cell fate. The positioning of the division axis has been mostly studied in systems such as embryos or yeasts, in which cell shape is well defined. In these cases, cell shape anisotropy and cell polarity affect spindle orientation. It remains unclear whether cell geometry or cortical cues are determinants for spindle orientation in mammalian cultured cells. The cell environment is composed of an extracellular matrix (ECM), which is connected to the intracellular actin cytoskeleton via transmembrane proteins. We used micro-contact printing to control the spatial distribution of the ECM on the substrate and demonstrated that it has a role in determining the orientation of the division axis of HeLa cells. On the basis of our analysis of the average distributions of actin-binding proteins in interphase and mitosis, we propose that the ECM controls the location of actin dynamics at the membrane, and thus the segregation of cortical components in interphase. This segregation is further maintained on the cortex of mitotic cells and used for spindle orientation.  相似文献   

19.
In the yeast Saccharomyces cerevisiae, positioning of the mitotic spindle requires both the cytoplasmic microtubules and actin. Kar9p is a novel cortical protein that is required for the correct position of the mitotic spindle and the orientation of the cytoplasmic microtubules. Green fluorescent protein (GFP)- Kar9p localizes to a single spot at the tip of the growing bud and the mating projection. However, the cortical localization of Kar9p does not require microtubules (Miller, R.K., and M.D. Rose. 1998. J. Cell Biol. 140: 377), suggesting that Kar9p interacts with other proteins at the cortex. To investigate Kar9p's cortical interactions, we treated cells with the actin-depolymerizing drug, latrunculin-A. In both shmoos and mitotic cells, Kar9p's cortical localization was completely dependent on polymerized actin. Kar9p localization was also altered by mutations in four genes, spa2Delta, pea2Delta, bud6Delta, and bni1Delta, required for normal polarization and actin cytoskeleton functions and, of these, bni1Delta affected Kar9p localization most severely. Like kar9Delta, bni1Delta mutants exhibited nuclear positioning defects during mitosis and in shmoos. Furthermore, like kar9Delta, the bni1Delta mutant exhibited misoriented cytoplasmic microtubules in shmoos. Genetic analysis placed BNI1 in the KAR9 pathway for nuclear migration. However, analysis of kar9Delta bni1Delta double mutants suggested that Kar9p retained some function in bni1Delta mitotic cells. Unlike the polarization mutants, kar9Delta shmoos had a normal morphology and diploids budded in the correct bipolar pattern. Furthermore, Bni1p localized normally in kar9Delta. We conclude that Kar9p's function is specific for cytoplasmic microtubule orientation and that Kar9p's role in nuclear positioning is to coordinate the interactions between the actin and microtubule networks.  相似文献   

20.
The proper orientation of the mitotic spindle is essential for mitosis; however, how these events unfold at the molecular level is not well understood. AMP-activated protein kinase (AMPK) regulates energy homeostasis in eukaryotes, and AMPK-null Drosophila mutants have spindle defects. We show that threonine(172) phosphorylated AMPK localizes to the mitotic spindle poles and increases when cells enter mitosis. AMPK depletion causes a mitotic delay with misoriented spindles relative to the normal division plane and a reduced number and length of astral microtubules. AMPK-depleted cells contain mitotic actin bundles, which prevent astral microtubule-actin cortex attachments. Since myosin regulatory light chain (MRLC) is an AMPK downstream target and mediates actin function, we investigated whether AMPK signals through MRLC to control spindle orientation. Mitotic levels of serine(19) phosphorylated MRLC (pMRLC(ser19)) and spindle pole-associated pMRLC(ser19) are abolished when AMPK function is compromised, indicating that AMPK is essential for pMRLC(ser19) spindle pole activity. Phosphorylation of AMPK and MRLC in the mitotic spindle is dependent upon calcium/calmodulin-dependent protein kinase kinase (CamKK) activity in LKB1-deficient cells, suggesting that CamKK regulates this pathway when LKB1 function is compromised. Taken together, these data indicate that AMPK mediates spindle pole-associated pMRLC(ser19) to control spindle orientation via regulation of actin cortex-astral microtubule attachments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号