首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Autophosphorylation of recombinant mitogen-activated protein kinase (MAPK) on Tyr was found to be several-fold stimulated at weakly acidic pH (5.5-6.0), whereas the phosphorylation of a protein substrate, myelin basic protein, was greatly inhibited at pH below 6. 0. In contrast to phosphorylation at pH 8.0, both MAPK autophosphorylation and MAPK phosphorylation with upstream MAPK kinase at low pH failed to stimulate essentially its kinase activity towards the exogenous protein substrate. Immunoprecipitation and ELISA with an activation segment-specific antibody, kinetic analysis, and reversible phosphorylation assay revealed a difference in the folding of MAPK activation segment at pH 5.5 and 8.0. The data suggest that a rearrangement of the activation segment at low pH promotes a stable low-activity conformation of the enzyme which is favorable for intramolecular autophosphorylation. In this conformation, the phosphorylation of the exogenous protein substrate is inhibited due to persistent blocking of the enzyme catalytic center by the activation segment.  相似文献   

2.
To study the role of kinase dimerization in the activation of the insulin receptor (IR) and the insulin-like growth factor receptor-1 (IGF-1R), we have cloned, expressed, and purified monomeric and dimeric forms of the corresponding soluble kinase domains via the baculovirus expression system. Dimerization of the kinases was achieved by fusion of the kinase domains to the homodimeric glutathione S-transferase (GST). Kinetic analyses revealed that kinase dimerization results in substantial increases (10-100-fold) in the phosphotransferase activity in both the auto- and substrate phosphorylation reactions. Furthermore, kinase dimerization rendered the autophosphorylation reaction concentration-independent. However, whereas dimerization was required for the rapid autophosphorylation of the kinases, it was not essential for the enhanced kinase activity in substrate phosphorylation reactions. Comparison of HPLC-phosphopeptide maps of the monomeric and dimeric kinases revealed that dimerization leads to an increased phosphorylation of the regulatory activation loop of the kinases, strongly suggesting that bis- and trisphosphorylation of the activation loop are mediated by transphosphorylation within the kinase dimers. Most strikingly, limited proteolysis revealed that GST-mediated dimerization by itself had a major impact on the conformation of the activation loop by stabilizing a conformation that corresponds to the active, phosphorylated form of the kinase. Thus, in analogy to the insulin/IGF-1-ligated holoreceptors, the dimeric GST-kinases are primed to rapid autophosphorylation by an increase in the local concentration of both phosphoryl donor and phosphoryl acceptor sites and by a dimerization-induced conformational change of the activation loop that leads to an efficient transphosphorylation of the regulatory tyrosine residues.  相似文献   

3.
c-Src kinase activity is regulated by phosphorylation of Y527 and Y416. Y527 phosphorylation stabilizes a closed conformation, which suppresses kinase activity towards substrates, whereas phosphorylation at Y416 promotes an elevated kinase activity by stabilizing the activation loop in a manner permissive for substrate binding. Here we investigated the correlation of Y416 phosphorylation with c-Src activity when c-Src was locked into the open and closed conformations (by mutations Y527F and Q528E, P529E, G530I respectively). Consistent with prior findings, we found Y416 to be more greatly phosphorylated when c-Src was in an open, active conformation. However, we also observed an appreciable amount of Y416 was phosphorylated when c-Src was in a closed, repressed conformation under conditions by which c-Src was unable to phosphorylate substrate STAT3. The phosphorylation of Y416 in the closed conformation arose by autophosphorylation, since abolishing kinase activity by mutating the ATP binding site (K295M) prevented phosphorylation. Basal Y416 phosphorylation correlated positively with cellular levels of c-Src suggesting autophosphorylation depended on self-association. Using sedimentation velocity analysis on cell lysate with fluorescence detection optics, we confirmed that c-Src forms monomers and dimers, with the open conformation also forming a minor population of larger mass complexes. Collectively, our studies suggest a model by which dimerization of c-Src primes c-Src via Y416 phosphorylation to enable rapid potentiation of activity when Src adopts an open conformation. Once in the open conformation, c-Src can amplify the response by recruiting and phosphorylating substrates such as STAT3 and increasing the extent of autophosphorylation.  相似文献   

4.
Dey M  Cao C  Dar AC  Tamura T  Ozato K  Sicheri F  Dever TE 《Cell》2005,122(6):901-913
The antiviral protein kinase PKR inhibits protein synthesis by phosphorylating the translation initiation factor eIF2alpha on Ser51. Binding of double-stranded RNA to the regulatory domains of PKR promotes dimerization, autophosphorylation, and the functional activation of the kinase. Herein, we identify mutations that activate PKR in the absence of its regulatory domains and map the mutations to a recently identified dimerization surface on the kinase catalytic domain. Mutations of other residues on this surface block PKR autophosphorylation and eIF2alpha phosphorylation, while mutating Thr446, an autophosphorylation site within the catalytic-domain activation segment, impairs eIF2alpha phosphorylation and viral pseudosubstrate binding. Mutational analysis of catalytic-domain residues preferentially conserved in the eIF2alpha kinase family identifies helix alphaG as critical for the specific recognition of eIF2alpha. We propose an ordered mechanism of PKR activation in which catalytic-domain dimerization triggers Thr446 autophosphorylation and specific eIF2alpha substrate recognition.  相似文献   

5.
Src protein-tyrosine kinase structure and regulation   总被引:2,自引:0,他引:2  
Src and Src-family protein kinases are proto-oncogenes that play key roles in cell morphology, motility, proliferation, and survival. v-Src (a viral protein) is encoded by the chicken oncogene of Rous sarcoma virus, and Src (the cellular homologue) is encoded by a physiological gene, the first of the proto-oncogenes. From the N- to C-terminus, Src contains an N-terminal 14-carbon myristoyl group, a unique segment, an SH3 domain, an SH2 domain, a protein-tyrosine kinase domain, and a C-terminal regulatory tail. The chief phosphorylation sites of Src include tyrosine 416 that results in activation from autophosphorylation and tyrosine 527 that results in inhibition from phosphorylation by C-terminal Src kinase. In the restrained state, the SH2 domain forms a salt bridge with phosphotyrosine 527, and the SH3 domain binds to the kinase domain via a polyproline type II left-handed helix. The SH2 and SH3 domains occur on the backside of the kinase domain away from the active site where they stabilize a dormant enzyme conformation. Protein-tyrosine phosphatases such as PTPalpha displace phosphotyrosine 527 from the Src SH2 domain and mediate its dephosphorylation leading to Src kinase activation. C-terminal Src kinase consists of an SH3, SH2, and kinase domain; it lacks an N-terminal myristoyl group and a C-terminal regulatory tail. Its X-ray structure has been determined, and the SH2 lobe occupies a position that is entirely different from that of Src. Unlike Src, the C-terminal Src kinase SH2 and SH3 domains stabilize an active enzyme conformation. Amino acid residues in the alphaD helix near the catalytic loop in the large lobe of C-terminal Src kinase serve as a docking site for the physiological substrate (Src) but not for an artificial substrate (polyGlu(4)Tyr).  相似文献   

6.
Brassinosteroids (BRs) regulate multiple aspects of plant growth and development and require an active BRASSINOSTEROID-INSENSITIVE1 (BRI1) and BRI1-ASSOCIATED RECEPTOR KINASE1 (BAK1) for hormone perception and signal transduction. Many animal receptor kinases exhibit ligand-dependent oligomerization followed by autophosphorylation and activation of the intracellular kinase domain. To determine if early events in BR signaling share this mechanism, we used coimmunoprecipitation of epitope-tagged proteins to show that in vivo association of BRI1 and BAK1 was affected by endogenous and exogenous BR levels and that phosphorylation of both BRI1 and BAK1 on Thr residues was BR dependent. Immunoprecipitation of epitope-tagged BRI1 from Arabidopsis thaliana followed by liquid chromatography-tandem mass spectrometry (LC/MS/MS) identified S-838, S-858, T-872, and T-880 in the juxtamembrane region, T-982 in the kinase domain, and S-1168 in C-terminal region as in vivo phosphorylation sites of BRI1. MS analysis also strongly suggested that an additional two residues in the juxtamembrane region and three sites in the activation loop of kinase subdomain VII/VIII were phosphorylated in vivo. We also identified four specific BAK1 autophosphorylation sites in vitro using LC/MS/MS. Site-directed mutagenesis of identified and predicted BRI1 phosphorylation sites revealed that the highly conserved activation loop residue T-1049 and either S-1044 or T-1045 were essential for kinase function in vitro and normal BRI1 signaling in planta. Mutations in the juxtamembrane or C-terminal regions had only small observable effects on autophosphorylation and in planta signaling but dramatically affected phosphorylation of a peptide substrate in vitro. These findings are consistent with many aspects of the animal receptor kinase model in which ligand-dependent autophosphorylation of the activation loop generates a functional kinase, whereas phosphorylation of noncatalytic intracellular domains is required for recognition and/or phosphorylation of downstream substrates.  相似文献   

7.
p21-activated kinases (PAKs) play an important role in diverse cellular processes. Full activation of PAKs requires autophosphorylation of a critical threonine/serine located in the activation loop of the kinase domain. Here we report crystal structures of the phosphorylated and unphosphorylated PAK1 kinase domain. The phosphorylated PAK1 kinase domain has a conformation typical of all active protein kinases. Interestingly, the structure of the unphosphorylated PAK1 kinase domain reveals an unusual dimeric arrangement expected in an authentic enzyme-substrate complex, in which the activation loop of the putative "substrate" is projected into the active site of the "enzyme." The enzyme is bound to AMP-PNP and has an active conformation, whereas the substrate is empty and adopts an inactive conformation. Thus, the structure of the asymmetric homodimer mimics a trans-autophosphorylation complex, and suggests that unphosphorylated PAK1 could dynamically adopt both the active and inactive conformations in solution.  相似文献   

8.
The protein kinase AKT is a key regulator for cell growth, cell survival and metabolic insulin action. However, the mechanism of activation of AKT in vivo, which presumably involves membrane recruitment of the kinase, oligomerization, and multiple phosphorylation events, is not fully understood. In the present study, we have expressed and purified dimeric GST-fusion proteins of human protein kinase AKT2 (DeltaPH-AKT2) in milligram quantities via the baculovirus expression system. Treatment of virus-infected insect cells with the phosphatase inhibitor okadaic acid (OA) led to phosphorylation of the two regulatory phosphorylation sites, Thr309 and Ser474, and to activation of the kinase. Likewise, phosphorylation of Thr309 in vitro by recombinant PDK1 or mutation of Thr309 and Ser474 to acidic residues rendered the kinase constitutively active. However, even though the specific activity of our AKT2 was increased 15-fold compared to previous reports, GST-mediated dimerization alone did not lead to an activation of the kinase. Whereas both mutagenesis and phosphorylation led to an increase in the turnover number of the enzyme, only the latter resulted in a marked reduction (20-fold) of the apparent Km value for the exogenous substrate Crosstide, indicating that this widely used mutagenesis only partially mimics phosphorylation. Kinetic analysis of GST-AKT2 demonstrates that phosphorylation of Thr309 in the activation loop of the kinase is largely responsible for the observed reduction in Km and for a subsequent 150-fold increase in the catalytic efficiency (k(cat)/Km) of the enzyme. Highly active AKT2 constructs were used in autophosphorylation reactions in vitro, where inactive AKT2 kinases served as substrates. As a matter of fact, we found evidence for a minor autophosphorylation activity of AKT2 but no significant autophosphorylation of any of the two regulatory sites, Thr309 or Ser474.  相似文献   

9.
Baek MC  Krosky PM  Coen DM 《Journal of virology》2002,76(23):11943-11952
Human cytomegalovirus encodes an unusual protein kinase, UL97, which is a member of the HvU(L) family of protein kinases encoded by diverse herpesviruses. UL97 is able to autophosphorylate and to phosphorylate certain exogenous substrates, including nucleoside analogs such as ganciclovir. It has previously been concluded that phosphorylation of UL97 is essential for its phosphorylation of ganciclovir. We examined the relationship between autophosphorylation of UL97 and its activity on exogenous substrates. Glutathione S-transferase-UL97 fusion protein purified from insect cells was found to be already partially phosphorylated, but neither extensive autophosphorylation nor phosphatase treatment meaningfully altered the time course of its phosphorylation of the exogenous substrate, histone H2B. Sequencing and mass spectrometric analyses of (32)P-labeled tryptic peptides of the UL97 fusion protein identified nine sites of autophosphorylation, all within the first 200 residues of the protein, outside of conserved protein kinase subdomains. A peptide corresponding to the N-terminal UL97 segment that was most extensively autophosphorylated was readily phosphorylated by UL97, confirming that fusion protein sequences are not required for phosphorylation at this site. Deletion mutants lacking at least the first 239 residues exhibited drastically reduced autophosphorylation (<5%) but retained near-wild-type H2B phosphorylation activity. Baculoviruses expressing these mutants efficiently directed the phosphorylation of ganciclovir in insect cells. Taken together, these results identify the autophosphorylation sites of a herpesvirus protein kinase and show that autophosphorylation of UL97 is not required for phosphorylation of exogenous substrates.  相似文献   

10.
11.
The receptors for insulin and epidermal growth factor undergo tyrosine autophosphorylation in response to ligand stimulation, while pp60v-src is an unregulated tyrosine kinase. In this report we show that each of the kinases phosphorylates an exogenous peptide that corresponds to the insulin proreceptor sequence 1142-1153. When the kinases were pre-phosphorylated, saturable Michaelis-Menten kinetics were observed. However, when the kinases had not been pre-phosphorylated biphasic kinetics were observed; at progressively higher substrate concentrations (greater than Km) less substrate phosphorylation was seen. Furthermore, when the kinases had not been pre-phosphorylated kinase autophosphorylation was inhibited at high substrate concentrations. On this basis we postulated that the substrate inhibition of substrate phosphorylation resulted directly from substrate inhibition of kinase autophosphorylation. To test this we designed additional peptides to function specifically as inhibitors of the kinases. Each of the 3 tyrosine residues within the substrate sequence were replaced either by 4-methoxyphenylalanine or phenylalanine, residues structurally similar to tyrosine but unable to accept phosphoryl transfer. Both analogs inhibited insulin and epidermal growth factor receptor autophosphorylation, whereas only the Phe-substituted analog inhibited pp60v-src phosphorylation. These data suggest that autophosphorylation of tyrosine residues near the kinase active site is a generalized mechanism for tyrosine kinase activation and that activation can be selectively blocked by substrates and nonphosphorylatable analogs.  相似文献   

12.
The dimeric Ser/Thr kinase Nek2 regulates centrosome cohesion and separation through phosphorylation of structural components of the centrosome, and aberrant regulation of Nek2 activity can lead to aneuploid defects characteristic of cancer cells. Mutational analysis of autophosphorylation sites within the kinase domain identified by mass spectrometry shows a complex pattern of positive and negative regulatory effects on kinase activity that are correlated with effects on centrosomal splitting efficiency in vivo. The 2.2-A resolution x-ray structure of the Nek2 kinase domain in complex with a pyrrole-indolinone inhibitor reveals an inhibitory helical motif within the activation loop. This helix presents a steric barrier to formation of the active enzyme and generates a surface that may be exploitable in the design of specific inhibitors that selectively target the inactive state. Comparison of this "auto-inhibitory" conformation with similar arrangements in cyclin-dependent kinase 2 and epidermal growth factor receptor kinase suggests a role for dimerization-dependent allosteric regulation that combines with autophosphorylation and protein phosphatase 1c phosphatase activity to generate the precise spatial and temporal control required for Nek2 function in centrosomal maturation.  相似文献   

13.
MELK (maternal embryonic leucine zipper kinase), which is a member of the AMPK (AMP-activated protein kinase)-related kinase family, plays important roles in diverse cellular processes and has become a promising drug target for certain cancers. However, the regulatory mechanism of MELK remains elusive. Here, we report the crystal structure of a fragment of human MELK that contains the kinase domain and ubiquitin-associated (UBA) domain. The UBA domain tightly binds to the back of the kinase domain, which may contribute to the proper conformation and activity of the kinase domain. Interestingly, the activation segment in the kinase domain displays a unique conformation that contains an intramolecular disulfide bond. The structural and biochemical analyses unravel the molecular mechanisms for the autophosphorylation/activation of MELK and the dependence of its catalytic activity on reducing agents. Thus, our results may provide the basis for designing specific MELK inhibitors for cancer treatment.  相似文献   

14.
The kinetics of insulin-stimulated autophosphorylation of specific tyrosines in the beta subunit of the mouse insulin receptor and activation of receptor kinase-catalyzed phosphorylation of a model substrate were compared. The deduced amino acid sequence of the mouse proreceptor was determined to locate tyrosine-containing tryptic peptides. Receptor was first incubated with unlabeled ATP to occupy nonrelevant autophosphorylation sites, after which [32P]autophosphorylation at relevant sites and attendant activation of substrate phosphorylation were initiated with [gamma-32P]ATP and insulin. Activation of substrate phosphorylation underwent an initial lag of 10-20 s during which there was substantial 32P-autophosphorylation of tryptic phosphopeptides p2 and p3, but not p1. Following the lag, incorporation of 32P into p1 and the activation of substrate phosphorylation increased abruptly and exhibited identical kinetics. The addition of substrate to the receptor prior to ATP inhibits insulin-stimulated autophosphorylation, and consequently substrate phosphorylation. Insulin-stimulated autophosphorylation of the receptor in the presence of substrate inhibited primarily the incorporation of 32P into p1 and drastically inhibited substrate phosphorylation. From Edman radiosequencing of 32P-labeled p1, p2, and p3 and the amino acid sequence of the mouse receptor, the location of each phosphopeptide within the beta subunit was determined. Further characterization of these phosphopeptides revealed that p1 and p2 represent the triply and doubly phosphorylated forms, respectively, of the region within the tyrosine kinase domain containing tyrosines 1148, 1152, and 1153. The doubly phosphorylated forms contain phosphotyrosines either at positions 1148 and 1152/1153 or positions 1152 and 1153. These results indicate that insulin stimulates sequential autophosphorylation of tyrosines 1148, 1152 and 1153, and that the transition from the doubly to the triply phosphorylated forms is primarily responsible for the activation of substrate phosphorylation.  相似文献   

15.
K Luo  H F Lodish 《The EMBO journal》1997,16(8):1970-1981
The type II transforming growth factor-beta (TGF-beta) receptor Ser/Thr kinase (TbetaRII) is responsible for the initiation of multiple TGF-beta signaling pathways, and loss of its function is associated with many types of human cancer. Here we show that TbetaRII kinase is regulated intricately by autophosphorylation on at least three serine residues. Ser213, in the membrane-proximal segment outside the kinase domain, undergoes intra-molecular autophosphorylation which is essential for the activation of TbetaRII kinase activity, activation of TbetaRI and TGF-beta-induced growth inhibition. In contrast, phosphorylation of Ser409 and Ser416, located in a segment corresponding to the substrate recognition T-loop region in a three-dimensional structural model of protein kinases, is enhanced by receptor dimerization and can occur via an intermolecular mechanism. Phosphorylation of Ser409 is essential for TbetaRII kinase signaling, while phosphorylation of Ser416 inhibits receptor function. Mutation of Ser416 to alanine results in a hyperactive receptor that is better able than wild-type to induce TbetaRI activation and subsequent cell cycle arrest. Since on a single receptor either Ser409 or Ser416, but not both simultaneously, can become autophosphorylated, our results show that TbetaRII phosphorylation is regulated intricately and affects TGF-beta receptor signal transduction both positively and negatively.  相似文献   

16.
Activation of the serine/threonine kinase, protein kinase D (PKD/PKC mu) via a phorbol ester/PKC-dependent pathway involves phosphorylation events. The present study identifies five in vivo phosphorylation sites by mass spectrometry, and the role of four of them was investigated by site-directed mutagenesis. Four sites are autophosphorylation sites, the first of which (Ser(916)) is located in the C terminus; its phosphorylation modifies the conformation of the kinase and influences duration of kinase activation but is not required for phorbol ester-mediated activation of PKD. The second autophosphorylation site (Ser(203)) lies in that region of the regulatory domain, which in PKC mu interacts with 14-3-3tau. The last two autophosphorylation sites (Ser(744) and Ser(748)) are located in the activation loop but are only phosphorylated in the isolated PKD-catalytic domain and not in the full-length PKD; they may affect enzyme catalysis but are not involved in the activation of wild-type PKD by phorbol ester. We also present evidence for proteolytic activation of PKD. The fifth site (Ser(255)) is transphosphorylated downstream of a PKC-dependent pathway after in vivo stimulation with phorbol ester. In vivo phorbol ester stimulation of an S255E mutant no longer requires PKC-mediated events. In conclusion, our results show that PKD is a multisite phosphorylated enzyme and suggest that its phosphorylation may be an intricate process that regulates its biological functions in very distinct ways.  相似文献   

17.
The function of protein kinase C family members depends on two tightly coupled phosphorylation mechanisms: phosphorylation of the activation loop by the phosphoinositide-dependent kinase, PDK-1, followed by autophosphorylation at two positions in the COOH terminus, the turn motif, and the hydrophobic motif. Here we address the molecular mechanisms underlying the regulation of protein kinase C betaII by PDK-1. Co-immunoprecipitation studies reveal that PDK-1 associates preferentially with its substrate, unphosphorylated protein kinase C, by a direct mechanism. The exposed COOH terminus of protein kinase C provides the primary interaction site for PDK-1, with co-expression of constructs of the carboxyl terminus effectively disrupting the interaction in vivo. Disruption of this interaction promotes the autophosphorylation of protein kinase C, suggesting that the binding of PDK-1 to the carboxyl terminus protects it from autophosphorylation. Studies with constructs of the COOH terminus reveal that the intrinsic affinity of PDK-1 for phosphorylated COOH terminus is over an order of magnitude greater than that for unphosphorylated COOH terminus, contrasting with the finding that PDK-1 does not bind phosphorylated protein kinase C effectively. However, effective binding of the phosphorylated species can be induced by the activated conformation of protein kinase C. This suggests that the carboxyl terminus becomes masked following autophosphorylation, a process that can be reversed by the conformational changes accompanying activation. Our data suggest a model in which PDK-1 provides two points of regulation of protein kinase C: 1) phosphorylation of the activation loop, which is regulated by the intrinsic activity of PDK-1, and 2) phosphorylation of the carboxyl terminus, which is regulated by the release of PDK-1 to allow autophosphorylation.  相似文献   

18.
The leucine-rich repeat kinase 2 (LRRK2) protein has both guanosine triphosphatase (GTPase) and kinase activities, and mutation in either enzymatic domain can cause late-onset Parkinson disease. Nucleotide binding in the GTPase domain may be required for kinase activity, and residues in the GTPase domain are potential sites for autophosphorylation, suggesting a complex mechanism of intrinsic regulation. To further define the effects of LRRK2 autophosphorylation, we applied a technique optimal for detection of protein phosphorylation, electron transfer dissociation, and identified autophosphorylation events exclusively nearby the nucleotide binding pocket in the GTPase domain. Parkinson-disease-linked mutations alter kinase activity but did not alter autophosphorylation site specificity or sites of phosphorylation in a robust in vitro substrate myelin basic protein. Amino acid substitutions in the GTPase domain have large effects on kinase activity, as insertion of the GTPase-associated R1441C pathogenic mutation together with the G2019S kinase domain mutation resulted in a multiplicative increase (∼ 7-fold) in activity. Removal of a conserved autophosphorylation site (T1503) by mutation to an alanine residue resulted in greatly decreased GTP-binding and kinase activities. While autophosphorylation likely serves to potentiate kinase activity, we find that oligomerization and loss of the active dimer species occur in an ATP- and autophosphorylation-independent manner. LRRK2 autophosphorylation sites are overall robustly protected from dephosphorylation in vitro, suggesting tight control over activity in vivo. We developed highly specific antibodies targeting pT1503 but failed to detect endogenous autophosphorylation in protein derived from transgenic mice and cell lines. LRRK2 activity in vivo is unlikely to be constitutive but rather refined to specific responses.  相似文献   

19.
Wybenga-Groot LE  Baskin B  Ong SH  Tong J  Pawson T  Sicheri F 《Cell》2001,106(6):745-757
The Eph receptor tyrosine kinase family is regulated by autophosphorylation within the juxtamembrane region and the kinase activation segment. We have solved the X-ray crystal structure to 1.9 A resolution of an autoinhibited, unphosphorylated form of EphB2 comprised of the juxtamembrane region and the kinase domain. The structure, supported by mutagenesis data, reveals that the juxtamembrane segment adopts a helical conformation that distorts the small lobe of the kinase domain, and blocks the activation segment from attaining an activated conformation. Phosphorylation of conserved juxtamembrane tyrosines would relieve this autoinhibition by disturbing the association of the juxtamembrane segment with the kinase domain, while liberating phosphotyrosine sites for binding SH2 domains of target proteins. We propose that the autoinhibitory mechanism employed by EphB2 is a more general device through which receptor tyrosine kinases are controlled.  相似文献   

20.
Casein kinase I epsilon (CKIepsilon) is a widely expressed protein kinase implicated in the regulation of diverse cellular processes including DNA replication and repair, nuclear trafficking, and circadian rhythm. CKIepsilon and the closely related CKIdelta are regulated in part through autophosphorylation of their carboxyl-terminal extensions, resulting in down-regulation of enzyme activity. Treatment of CKIepsilon with any of several serine/threonine phosphatases causes a marked increase in kinase activity that is self-limited. To identify the sites of inhibitory autophosphorylation, a series of carboxyl-terminal deletion mutants was constructed by site-directed mutagenesis. Truncations that eliminated specific phosphopeptides present in the wild-type kinase were used to guide construction of specific serine/threonine to alanine mutants. Amino acids Ser-323, Thr-325, Thr-334, Thr-337, Ser-368, Ser-405, Thr-407, and Ser-408 in the carboxyl-terminal tail of CKIepsilon were identified as probable in vivo autophosphorylation sites. A recombinant CKIepsilon protein with serine and threonine to alanine mutations eliminating these autophosphorylation sites was 8-fold more active than wild-type CKIepsilon using IkappaBalpha as a substrate. The identified autophosphorylation sites do not conform to CKI substrate motifs identified in peptide substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号