首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Matrix metalloproteases (MMPs) degrade or modify extracellular matrix or membrane-bound proteins in the brain. MMP-2 and MMP-9 are activated by treatments that result in a sustained neuronal depolarization and are thought to contribute to neuronal death and structural remodeling. At the synapse, MMP actions on extracellular proteins contribute to changes in synaptic efficacy during learning paradigms. They are also activated during epileptic seizures, and MMP-9 has been associated with the establishment of aberrant synaptic connections after neuronal death induced by kainate treatment. It remains unclear whether MMPs are activated by epileptic activities that do not induce cell death. Here we examine this point in two animal models of epilepsy that do not involve extensive cell damage. We detected an elevation of MMP-9 enzymatic activity in cortical regions of secondary generalization after focal seizures induced by 4-aminopyridine (4-AP) application in rats. Pro-MMP-9 levels were also higher in Wistar Glaxo Rijswijk (WAG/Rij) rats, a genetic model of generalized absence epilepsy, than they were in Sprague–Dawley rats, and this elevation was correlated with diurnally occurring spike-wave-discharges in WAG/Rij rats. The increased enzymatic activity of MMP-9 in these two different epilepsy models is associated with synchronized neuronal activity that does not induce widespread cell death. In these epilepsy models MMP-9 induction may therefore be associated with functions such as homeostatic synaptic plasticity rather than neuronal death.  相似文献   

2.
Changes in the morphology of dendritic spines are prominent during learning and in different neurological and neuropsychiatric diseases, including those in which glycogen synthase kinase-3β (GSK-3β) has been implicated. Despite much evidence of the involvement of GSK-3β in functional synaptic plasticity, it is unclear how GSK-3β controls structural synaptic plasticity (i.e., the number and shape of dendritic spines). In the present study, we used two mouse models overexpressing and lacking GSK-3β in neurons to investigate how GSK-3β affects the structural plasticity of dendritic spines. Following visualization of dendritic spines with DiI dye, we found that increasing GSK-3β activity increased the number of thin spines, whereas lacking GSK-3β increased the number of stubby spines in the dentate gyrus. Under conditions of neuronal excitation, increasing GSK-3β activity caused higher activity of extracellularly acting matrix metalloproteinase-9 (MMP-9), and MMP inhibition normalized thin spines in GSK-3β overexpressing mice. Administration of the nonspecific GSK-3β inhibitor lithium in animals with active MMP-9 and animals lacking MMP-9 revealed that GSK-3β and MMP-9 act in concert to control dendritic spine morphology. Altogether, our data demonstrate that the dysregulation of GSK-3β activity has dramatic consequences on dendritic spine morphology, implicating MMP-9 as a mediator of GSK-3β-induced synaptic alterations.  相似文献   

3.

Purpose

Limbic epileptogenesis triggers molecular and cellular events that foster the establishment of aberrant neuronal networks that, in turn, contribute to temporal lobe epilepsy (TLE). Here we have examined hippocampal neuronal network activities in the pilocarpine post-status epilepticus model of limbic epileptogenesis and asked whether or not the docosahexaenoic acid (DHA)-derived lipid mediator, neuroprotectin D1 (NPD1), modulates epileptogenesis.

Methods

Status epilepticus (SE) was induced by intraperitoneal administration of pilocarpine in adult male C57BL/6 mice. To evaluate simultaneous hippocampal neuronal networks, local field potentials were recorded from multi-microelectrode arrays (silicon probe) chronically implanted in the dorsal hippocampus. NPD1 (570 μg/kg) or vehicle was administered intraperitoneally daily for five consecutive days 24 hours after termination of SE. Seizures and epileptiform activity were analyzed in freely-moving control and treated mice during epileptogenesis and epileptic periods. Then hippocampal dendritic spines were evaluated using Golgi-staining.

Results

We found brief spontaneous microepileptiform activity with high amplitudes in the CA1 pyramidal and stratum radiatum in epileptogenesis. These aberrant activities were attenuated following systemic NPD1 administration, with concomitant hippocampal dendritic spine protection. Moreover, NPD1 treatment led to a reduction in spontaneous recurrent seizures.

Conclusions

Our results indicate that NPD1 displays neuroprotective bioactivity on the hippocampal neuronal network ensemble that mediates aberrant circuit activity during epileptogenesis. Insight into the molecular signaling mediated by neuroprotective bioactivity of NPD1 on neuronal network dysfunction may contribute to the development of anti-epileptogenic therapeutic strategies.  相似文献   

4.
Sha LZ  Xing XL  Zhang D  Yao Y  Dou WC  Jin LR  Wu LW  Xu Q 《PloS one》2012,7(6):e39152
Growing evidence from rodent models of temporal lobe epilepsy (TLE) indicates that dysregulation of the mammalian target of rapamycin (mTOR) pathway is involved in seizures and epileptogenesis. However, the role of the mTOR pathway in the epileptogenic process remains poorly understood. Here, we used an animal model of TLE and sclerotic hippocampus from patients with refractory TLE to determine whether cell-type specific activation of mTOR signaling occurs during each stage of epileptogenesis. In the TLE mouse model, we found that hyperactivation of the mTOR pathway is present in distinct hippocampal subfields at three different stages after kainate-induced seizures, and occurs in neurons of the granular and pyramidal cell layers, in reactive astrocytes, and in dispersed granule cells, respectively. In agreement with the findings in TLE mice, upregulated mTOR was observed in the sclerotic hippocampus of TLE patients. All sclerotic hippocampus (n = 13) exhibited widespread reactive astrocytes with overactivated mTOR, some of which invaded the dispersed granular layer. Moreover, two sclerotic hippocampus exhibited mTOR activation in some of the granule cells, which was accompanied by cell body hypertrophy. Taken together, our results indicate that mTOR activation is most prominent in reactive astrocytes in both an animal model of TLE and the sclerotic hippocampus from patients with drug resistant TLE.  相似文献   

5.
Epileptogenesis is a potential process. Mossy fibre sprouting (MFS) and synaptic plasticity promote epileptogenesis. Overexpression of repulsive guidance molecule a (RGMa) prevents epileptogenesis by inhibiting MFS. However, other aspects underlying the RGMa regulatory process of epileptogenesis have not been elucidated. We studied whether RGMa could be modulated by microRNAs and regulated RhoA in epileptogenesis. Using microRNA databases, we selected four miRNAs as potential candidates. We further experimentally confirmed miR‐20a‐5p as a RGMa upstream regulator. Then, in vitro, by manipulating miR‐20a‐5p and RGMa, we investigated the regulatory relationship between miR‐20a‐5p, RGMa and RhoA, and the effects of this pathway on neuronal morphology. Finally, in the epilepsy animal model, we determined whether the miR‐20a‐5p‐RGMa‐RhoA pathway influenced MFS and synaptic plasticity and then modified epileptogenesis. Our results showed that miR‐20a‐5p regulated RGMa and that RGMa regulated RhoA in vitro. Furthermore, in primary hippocampal neurons, the miR‐20a‐5p‐RGMa‐RhoA pathway regulated axonal growth and neuronal branching; in the PTZ‐induced epilepsy model, silencing miR‐20a‐5p prevented epileptogenesis through RGMa‐RhoA‐mediated synaptic plasticity but did not change MFS. Overall, we concluded that silencing miR‐20a‐5p inhibits axonal growth and neuronal branching and prevents epileptogenesis through RGMa‐RhoA‐mediated synaptic plasticity in the PTZ‐induced epilepsy model, thereby providing a possible strategy to prevent epileptogenesis.  相似文献   

6.
Li  Jie  Xing  Hongxia  Jiang  Guohui  Su  Zhou  Wu  Yuqing  Zhang  Yi  Guo  Shuangxi 《Neurochemical research》2016,41(4):836-843

The mechanisms of epilepsy remain incompletely understood. Rac1 (ras-related C3 botulinum toxin substrate 1) belongs to the Rho family of small GTPases. Rac1 play important roles in cytoskeleton rearrangement and neuronal synaptic plasticity, which had also been implicated in epilepsy. However, little is known regarding the expression of Rac1 in the epileptic brain or whether Rac1-targeted interventions affect the progression of epilepsy. The aim of this study was to investigate the expression profile of Rac1 in brain tissues from patients suffering from temporal lobe epilepsy (TLE) and experimental epileptic rats and determine the possible role of Rac1 in epilepsy. We demonstrated that the expression of Rac1 is significantly increased in TLE patients and in lithium-pilocarpine epilepsy model animals compared to the corresponding controls. Rac1 inhibitor NSC23766 reduced the severity of status epilepticus during the acute stage in a lithium-pilocarpine animal model. Consistent with these results, the latent period of a PTZ kindling animal model also increased. Our results demonstrated that the increased expression of Rac1 may contribute to pathophysiology of epilepsy.

  相似文献   

7.
8.
Altered function of gamma-aminobutyric acid type A receptors (GABA(A)Rs) in dentate granule cells of the hippocampus has been associated with temporal lobe epilepsy (TLE) in humans and in animal models of TLE. Such altered receptor function (including increased inhibition by zinc and lack of modulation by benzodiazepines) is related, in part, to changes in the mRNA levels of certain GABA(A)R subunits, including alpha4, and may play a role in epileptogenesis. The majority of GABA(A)Rs that contain alpha4 subunits are extra-synaptic due to lack of the gamma2 subunit and presence of delta. However, it has been hypothesized that seizure activity may result in expression of synaptic receptors with altered properties driven by an increased pool of alpha4 subunits. Results of our previous work suggests that signaling via protein kinase C (PKC) and early growth response factor 3 (Egr3) is the plasticity trigger for aberrant alpha4 subunit gene (GABRA4) expression after status epilepticus. We now report that brain derived neurotrophic factor (BDNF) is the endogenous signal that induces Egr3 expression via a PKC/MAPK-dependent pathway. Taken together with the fact that blockade of tyrosine kinase (Trk) neurotrophin receptors reduces basal GABRA4 promoter activity by 50%, our findings support a role for BDNF as the mediator of Egr3-induced GABRA4 regulation in developing neurons and epilepsy and, moreover, suggest that BDNF may alter inhibitory processing in the brain by regulating the balance between phasic and tonic inhibition.  相似文献   

9.
Resveratrol (Res) is a phytoalexin produced naturally by several plants, which has multi functional effects such as neuroprotection, anti-inflammatory, and anti-cancer. The present study was to evaluate a possible anti-epileptic effect of Res against kainate-induced temporal lobe epilepsy (TLE) in rat. We performed behavior monitoring, intracranial electroencepholography (IEEG) recording, histological analysis, and Western blotting to evaluate the anti-epilepsy effect of Res in kainate-induced epileptic rats. Res decreased the frequency of spontaneous seizures and inhibited the epileptiform discharges. Moreover, Res could protect neurons against kainate-induced neuronal cell death in CA1 and CA3a regions and depressed mossy fiber sprouting, which are general histological characteristics both in TLE patients and animal models. Western blot revealed that the expression level of kainate receptors (KARs) in hippocampus was reduced in Res-administrated rats compared to that in epileptic ones. These results suggest that Res is a potent anti-epilepsy agent, which protects against epileptogenesis and progression of the kainate-induced TLE animal. The authors Z. Wu and Q. Xu contributed equally to this work.  相似文献   

10.
Luo J  Zeng K  Zhang C  Fang M  Zhang X  Zhu Q  Wang L  Wang W  Wang X  Chen G 《Neurochemical research》2012,37(7):1381-1391
The Collapsin Response Mediator Protein-1 (CRMP-1) is a brain specific protein identified as a signaling molecule of Semaphorin-3A and act as axon repellent guidance factor in nervous system. Recent studies indicated that axon guidance molecules may play a role in synaptic reorganization in the adult brain and thereby promote epileptogenesis. This study aimed to investigate expression pattern of CRMP-1 in epileptogenesis. Using double immunofluorescence labeling, immunohistochemistry and western blot analysis, we looked into the CRMP-1 expression in temporal neocortex from patients with temporal lobe epilepsy (TLE) and histological normal temporal neocortex from the controls. We also studied the expression pattern of CRMP-1 in hippocampus and adjacent cortex of a TLE rat model on 6, 24, 72 h, 1, 2 weeks, 1 month, and 2 months post-seizure, and from control rats. CRMP-1 was mainly expressed in the neuronal cytoplasm in the temporal lobe of intractable TLE patients, which was co-expressed with -2. CRMP-1 expression was downregulated in temporal neocortical of TLE patients. In addition, in pilocarpine-induced animal model of epilepsy, CRMP-1 dynamically decreased in a range of 2 months. Thus, our results indicate that CRMP-1 may be involved in the development of TLE.  相似文献   

11.
Patients with temporal lobe epilepsy (TLE) often display cognitive deficits. However, current epilepsy therapeutic interventions mainly aim at how to reduce the frequency and degree of epileptic seizures. Recovery of cognitive impairment is not attended enough, resulting in the lack of effective approaches in this respect. In the pilocarpine-induced temporal lobe epilepsy rat model, memory impairment has been classically reported. Here we evaluated spatial cognition changes at different epileptogenesis stages in rats of this model and explored the effects of long-term Mozart music exposure on the recovery of cognitive ability. Our results showed that pilocarpine rats suffered persisting cognitive impairment during epileptogenesis. Interestingly, we found that Mozart music exposure can significantly enhance cognitive ability in epileptic rats, and music intervention may be more effective for improving cognitive function during the early stages after Status epilepticus. These findings strongly suggest that Mozart music may help to promote the recovery of cognitive damage due to seizure activities, which provides a novel intervention strategy to diminish cognitive deficits in TLE patients.  相似文献   

12.
Epilepsy is a chronic encephalopathy and one of the most common neurological disorders. Death-associated protein kinase 1 (DAPK1) expression has been shown to be upregulated in the brains of human epilepsy patients compared with those of normal subjects. However, little is known about the impact of DAPK1 on epileptic seizure conditions. In this study, we aim to clarify whether and how DAPK1 is regulated in epilepsy and whether targeting DAPK1 expression or activity has a protective effect against epilepsy using seizure animal models. Here, we found that cortical and hippocampal DAPK1 activity but not DAPK1 expression was increased immediately after convulsive pentylenetetrazol (PTZ) exposure in mice. However, DAPK1 overexpression was found after chronic low-dose PTZ insults during the kindling paradigm. The suppression of DAPK1 expression by genetic knockout significantly reduced PTZ-induced seizure phenotypes and the development of kindled seizures. Moreover, pharmacological inhibition of DAPK1 activity exerted rapid antiepileptic effects in both acute and chronic epilepsy mouse models. Mechanistically, PTZ stimulated the phosphorylation of NR2B through DAPK1 activation. Combined together, these results suggest that DAPK1 regulation is a novel mechanism for the control of both acute and chronic epilepsy and provide new therapeutic strategies for the treatment of human epilepsy.  相似文献   

13.
14.
15.
Epilepsy, a prevalent neurological disease characterized by spontaneous recurrent seizures (SRS), is often refractory to treatment with anti-seizure drugs (ASDs), so that more effective ASDs are urgently needed. For this purpose, it would be important to develop, validate, and implement new animal models of pharmacoresistant epilepsy into drug discovery. Several chronic animal models with difficult-to-treat SRS do exist; however, most of these models are not suited for drug screening, because drug testing on SRS necessitates laborious video-EEG seizure monitoring. More recently, it was proposed that, instead of monitoring SRS, chemical or electrical induction of acute seizures in epileptic rodents may be used as a surrogate for testing the efficacy of novel ASDs against refractory SRS. Indeed, several ASDs were shown to lose their efficacy on acute seizures, when such seizures were induced by pentylenetetrazole (PTZ) in epileptic rather than nonepileptic rats, whereas this was not observed when using the maximal electroshock seizure test. Subsequent studies confirmed the loss of anti-seizure efficacy of valproate against PTZ-induced seizures in epileptic mice, but several other ASDs were more potent against PTZ in epileptic than nonepileptic mice. This was also observed when using the 6-Hz model of partial seizures in epileptic mice, in which the potency of levetiracetam, in particular, was markedly increased compared to nonepileptic animals. Overall, these observations suggest that performing acute seizure tests in epileptic rodents provides valuable information on the pharmacological profile of ASDs, in particular those with mechanisms inherent to disease-induced brain alterations. However, it appears that further work is needed to define optimal approaches for acute seizure induction and generation of epileptic/drug refractory animals that would permit reliable screening of new ASDs with improved potential to provide seizure control in patients with pharmacoresistant epilepsy.  相似文献   

16.
17.
SH3 and multiple ankyrin (ANK) repeat domain 3 (SHANK3) is a synaptic scaffolding protein enriched in the postsynaptic density of excitatory synapses. SHANK3 plays an important role in the formation and maturation of excitatory synapses. In the brain, SHANK3 directly or indirectly interacts with various synaptic molecules including N-methyl-D-aspartate receptor, the metabotropic glutamate receptor (mGluR), and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor. Previous studies have shown that Autism spectrum disorder is a result of mutations of the main SHANK3 isoforms, which may be due to deficit in excitatory synaptic transmission and plasticity. Recently, accumulating evidence has demonstrated that overexpression of SHANK3 could induce seizures in vivo. However, little is known about the role of SHANK3 in refractory temporal lobe epilepsy (TLE). Therefore, we investigated the expression pattern of SHANK3 in patients with intractable temporal lobe epilepsy and in pilocarpine-induced models of epilepsy. Immunofluorescence, immunohistochemistry, and western blot analysis were used to locate and determine the expression of SHANK3 in the temporal neocortex of patients with epilepsy, and in the hippocampus and temporal lobe cortex of rats in a pilocarpine-induced epilepsy model. Double-labeled immunofluorescence showed that SHANK3 was mainly expressed in neurons. Western blot analysis confirmed that SHANK3 expression was increased in the neocortex of TLE patients and rats. These results indicate that SHANK3 participates in the pathology of epilepsy.  相似文献   

18.
Methamphetamine (MA) is a highly addictive psychostimulant that, used in excess, may be neurotoxic. Although the mechanisms that underlie its addictive potential are not completely understood, in animal models matrix metalloproteinase (MMP) inhibitors can reduce behavioral correlates of addiction. In addition, evidence from genome-wide association studies suggests that polymorphisms in synaptic cell-adhesion molecules (CAMs), known MMP substrates, are linked to addictive potential in humans. In the present study, we examined the ability of MA to stimulate cleavage of intercellular adhesion molecule-5 (ICAM-5), a synaptic CAM expressed on dendritic spines in the telencephalon. Previous studies have shown that shedding of ICAM-5 is associated with maturation of dendritic spines, and that MMP-dependent shedding occurs with long term potentiation. Herein, we show that MA stimulates ectodomain cleavage of ICAM-5 in vitro, and that this is abrogated by a broad spectrum MMP inhibitor. We also show that an acute dose of MA, administered in vivo, is associated with cleavage of ICAM-5 in murine hippocampus and striatum. This occurs within 6?h and is accompanied by an increase in MMP-9 protein. In related experiments, we examined the potential consequences of ICAM-5 shedding. We demonstrate that the ICAM-5 ectodomain can interact with β(1) integrins, and that it can stimulate β(1) integrin-dependent phosphorylation of cofilin, an event that has previously been linked to MMP-dependent spine maturation. Together these data support an emerging appreciation of MMPs as effectors of synaptic plasticity and suggest a mechanism by which MA may influence the same.  相似文献   

19.
Glutamate, the major excitatory amino acid neurotransmitter, is involved in epileptogenesis and initiation and spread of seizures. We studied glutamate uptake into blood platelets from patients with distinct epileptic syndromes: included were 20 patients with temporal lobe epilepsy and hippocampal sclerosis (TLE+HS), 20 with juvenile myoclonus epilepsy (JME) and 20 healthy volunteers matched for age and sex. The affinity of glutamate for the transporters was highest in patients with TLE+HS, but the maximal velocity of transport was highest in controls. There were no differences in the plasma levels of glutamate. Carbamazepine (CBZ), valproate (VPA) and lamotrigine (LTG) did not affect the uptake in vitro. The alterations observed in the uptake of glutamate in TLE+HS patients may reflect an up-regulated uptake of glutamate in the brain.  相似文献   

20.
Aberrantly synchronized neuronal discharges in the brain lead to epilepsy, a devastating neurological disease whose pathogenesis and mechanism are unclear. SAPAP3, a cytoskeletal protein expressed at high levels in the postsynaptic density (PSD) of excitatory synapses, has been well studied in the striatum, but the role of SAPAP3 in epilepsy remains elusive. In this study, we sought to investigate the molecular, cellular, electrophysiological and behavioral consequences of SAPAP3 perturbations in the mouse hippocampus. We identified a significant increase in the SAPAP3 levels in patients with temporal lobe epilepsy (TLE) and in mouse models of epilepsy. In addition, behavioral studies showed that the downregulation of SAPAP3 by shRNA decreased the seizure severity and that the overexpression of SAPAP3 by recombinant SAPAP3 yielded the opposite effect. Moreover, SAPAP3 affected action potentials (APs), miniature excitatory postsynaptic currents (mEPSCs) and N-methyl-D-aspartate receptor (NMDAR)-mediated currents in the CA1 region, which indicated that SAPAP3 plays an important role in excitatory synaptic transmission. Additionally, the levels of the GluN2A protein, which is involved in synaptic function, were perturbed in the hippocampal PSD, and this perturbation was accompanied by ultrastructural morphological changes. These results revealed a previously unknown function of SAPAP3 in epileptogenesis and showed that SAPAP3 may represent a novel target for the treatment of epilepsy.Subject terms: Diagnostic markers, Epilepsy  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号