首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dengue virus (DV) is a mosquito-borne flavivirus that causes haemorrhagic fever in humans. DV primarily targets immature dendritic cells (DCs) after a bite by an infected mosquito vector. Here, we analysed the interactions between DV and human-monocyte-derived DCs at the level of virus entry. We show that the DC-specific ICAM3-grabbing non-integrin (DC-SIGN) molecule, a cell-surface, mannose-specific, C-type lectin, binds mosquito-cell-derived DVs and allows viral replication. Conclusive evidence for the involvement of DC-SIGN in DV infection was obtained by the inhibition of viral infection by anti-DC-SIGN antibodies and by the soluble tetrameric ectodomain of DC-SIGN. Our data show that DC-SIGN functions as a DV-binding lectin by interacting with the DV envelope glycoprotein. Mosquito-cell-derived DVs may have differential infectivity for DC-SIGN-expressing cells. We suggest that the differential use of DC-SIGN by viral envelope glycoproteins may account for the immunopathogenesis of DVs.  相似文献   

2.
The Friend or Moloney mink cell focus-forming (MCF) virus encodes a recombinant-type envelope glycoprotein, gp70, that is closely related to the membrane glycoprotein, gp55, of Friend spleen focus-forming virus (SFFV). We have shown previously that gp55 has the ability to activate cell growth by binding to the cellular receptor for erythropoietin. Here we show that gp70 encoded by either the Friend or Moloney MCF virus also binds to the erythropoietin receptor and that coexpression of the receptor and gp70 in an interleukin-3 (IL-3)-dependent cell line can activate IL-3-independent growth. Furthermore, when the cDNA for the human IL-2 receptor beta chain, which is related by sequence to the erythropoietin receptor, was introduced into this cell line, it became growth factor independent after infection either with SFFV or with one of the two MCF viruses but not with an ecotropic virus. Based on these observations, we propose a mechanism for the early stage of leukemogenesis induced by the MCF-type murine leukemia viruses.  相似文献   

3.
The peritoneal cavity (PerC) is a singular compartment where many cell populations reside and interact. Despite the widely adopted experimental approach of intraperitoneal (i.p.) inoculation, little is known about the behavior of the different cell populations within the PerC. To evaluate the dynamics of peritoneal macrophage (MØ) subsets, namely small peritoneal MØ (SPM) and large peritoneal MØ (LPM), in response to infectious stimuli, C57BL/6 mice were injected i.p. with zymosan or Trypanosoma cruzi. These conditions resulted in the marked modification of the PerC myelo-monocytic compartment characterized by the disappearance of LPM and the accumulation of SPM and monocytes. In parallel, adherent cells isolated from stimulated PerC displayed reduced staining for β-galactosidase, a biomarker for senescence. Further, the adherent cells showed increased nitric oxide (NO) and higher frequency of IL-12-producing cells in response to subsequent LPS and IFN-γ stimulation. Among myelo-monocytic cells, SPM rather than LPM or monocytes, appear to be the central effectors of the activated PerC; they display higher phagocytic activity and are the main source of IL-12. Thus, our data provide a first demonstration of the consequences of the dynamics between peritoneal MØ subpopulations by showing that substitution of LPM by a robust SPM and monocytes in response to infectious stimuli greatly improves PerC effector activity.  相似文献   

4.
5.
Human skin Langerhans cells are targets of dengue virus infection   总被引:21,自引:0,他引:21  
Dengue virus (DV), an arthropod-borne flavivirus, causes a febrile illness for which there is no antiviral treatment and no vaccine. Macrophages are important in dengue pathogenesis; however, the initial target cell for DV infection remains unknown. As DV is introduced into human skin by mosquitoes of the genus Aedes, we undertook experiments to determine whether human dendritic cells (DCs) were permissive for the growth of DV. Initial experiments demonstrated that blood-derived DCs were 10-fold more permissive for DV infection than were monocytes or macrophages. We confirmed this with human skin DCs (Langerhans cells and dermal/interstitial DCs). Using cadaveric human skin explants, we exposed skin DCs to DV ex vivo. Of the human leukocyte antigen DR-positive DCs that migrated from the skin, emigrants from both dermis and epidermis, 60-80% expressed DV antigens. These observations were supported by histologic findings from the skin rash of a human subject who received an attenuated tetravalent dengue vaccine. Immunohistochemistry of the skin showed CD1a-positive DCs double-labeled with an antibody against DV envelope glycoprotein. These data demonstrate that human skin DCs are permissive for DV infection, and provide a potential mechanism for the transmission of DV into human skin.  相似文献   

6.
The surface HIV-1 exterior envelope glycoprotein, gp120, binds to CD4 on the target cell surface to induce the co-receptor binding site on gp120 as the initial step in the entry process. The binding site is comprised of a highly conserved region on the gp120 core, as well as elements of the third variable region (V3). Antibodies against the co-receptor binding site are abundantly elicited during natural infection of humans, but the mechanism of elicitation has remained undefined. In this study, we investigate the requirements for elicitation of co-receptor binding site antibodies by inoculating rabbits, monkeys and human-CD4 transgenic (huCD4) rabbits with envelope glycoprotein (Env) trimers possessing high affinity for primate CD4. A cross-species comparison of the antibody responses showed that similar HIV-1 neutralization breadth was elicited by Env trimers in monkeys relative to wild-type (WT) rabbits. In contrast, antibodies against the co-receptor site on gp120 were elicited only in monkeys and huCD4 rabbits, but not in the WT rabbits. This was supported by the detection of high-titer co-receptor antibodies in all sera from a set derived from human volunteers inoculated with recombinant gp120. These findings strongly suggest that complexes between Env and (high-affinity) primate CD4 formed in vivo are responsible for the elicitation of the co-receptor-site-directed antibodies. They also imply that the naïve B cell receptor repertoire does not recognize the gp120 co-receptor site in the absence of CD4 and illustrate that conformational stabilization, imparted by primary receptor interaction, can alter the immunogenicity of a type 1 viral membrane protein.  相似文献   

7.
The cytoplasmic domains of the transmembrane (TM) envelope proteins (TM-CDs) of most retroviruses have a Tyr-based motif, YXXØ, in their membrane-proximal regions. This signal is involved in the trafficking and endocytosis of membrane receptors via clathrin-associated AP-1 and AP-2 adaptor complexes. We have used CD8-TM-CD chimeras to investigate the role of the Tyr-based motif of human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus (SIV), and human T-leukemia virus type 1 (HTLV-1) TM-CDs in the cell surface expression of the envelope glycoprotein. Flow cytometry and confocal microscopy studies showed that this motif is a major determinant of the cell surface expression of the CD8-HTLV chimera. The YXXØ motif also plays a key role in subcellular distribution of the envelope of lentiviruses HIV-1 and SIV. However, these viruses, which encode TM proteins with a long cytoplasmic domain, have additional determinants distal to the YXXØ motif that participate in regulating cell surface expression. We have also used the yeast two-hybrid system and in vitro binding assays to demonstrate that all three retroviral YXXØ motifs interact with the μ1 and μ2 subunits of AP complexes and that the C-terminal regions of HIV-1 and SIV TM proteins interact with the β2 adaptin subunit. The TM-CDs of HTLV-1, HIV-1, and SIV also interact with the whole AP complexes. These results clearly demonstrate that the cell surface expression of retroviral envelope glycoproteins is governed by interactions with adaptor complexes. The YXXØ-based signal is the major determinant of this interaction for the HTLV-1 TM, which contains a short cytoplasmic domain, whereas the lentiviruses HIV-1 and SIV have additional determinants distal to this signal that are also involved.  相似文献   

8.
Dengue virus (DV) is a flavivirus and infects mammalian cells through mosquito vectors. This study investigates the roles of domain III of DV type 2 envelope protein (EIII) in DV binding to the host cell. Recombinant EIII interferes with DV infection to BHK21 and C6/36 cells by blocking dengue virion adsorption to these cells. Inhibition of EIII on BHK21 cells was broad with no serotype specificity; however, inhibition of EIII on C6/36 cells was relatively serotype specific. Soluble heparin completely blocks binding of EIII to BHK21 cells, suggesting that domain III binds mainly to cell surface heparan sulfates. This suggestion is supported by the observation that EIII binds very weakly to gro2C and sog9 mutant mammalian cell lines that lack heparan sulfate. In contrast, heparin does not block binding of EIII to mosquito cells. Furthermore, a synthetic peptide that includes amino acids (aa) 380 to 389 of EIII, IGVEPGQLKL, inhibits binding of EIII to C6/36 but not BHK21 cells. This peptide corresponds to a lateral loop region on domain III of E protein, indicating a possible role of this loop in binding to mosquito cells. In summary, these results suggest that EIII plays an important role in binding of DV type 2 to host cells. In addition, EIII interacts with heparan sulfates when binding to BHK21 cells, and a loop region containing aa 380 to 389 of EIII may participate in DV type 2 binding to C6/36 cells.  相似文献   

9.
Cell surface-expressed CD4 binds to the envelope glycoprotein of HIV-1 and mediates syncytia formation through interacting with membrane expressed HIV-1 gp120. Further possible roles of the CD4 molecule in the process of cell infection by HIV-1 remain poorly understood. In our study we describe two mAb that recognize the V3/V4 domain of the CD4 molecule. Although these mAb do not inhibit gp120-CD4 binding or HIV-1-induced syncytia formation, they inhibit HIV-1 infection of human PBL. These findings suggest that discrete, definable domains of the CD4 molecule may be involved in interactions after HIV-1 envelope binding that lead to virus entry into the cell.  相似文献   

10.
Chen YC  Wang SY  King CC 《Journal of virology》1999,73(4):2650-2657
Monocytes/macrophages (MO/Mphi) are the major target cells for both dengue virus (DV) and bacterial lipopolysaccharide (LPS), and the aim of this study was to define their interactions. We had found that LPS markedly suppressed DV infection of primary human MO/Mphi when it was added to cultures prior to or together with, but not after, viral adsorption. The inhibitory effect of LPS was direct and specific and was not mediated by LPS-induced secretion of cytokines and chemokines such as tumor necrosis factor alpha, interleukin-1beta (IL-1beta), IL-6, IL-8, IL-12, alpha interferon, MIP-1alpha, and RANTES. In fact, productive DV infection was not blocked but was just postponed by LPS, with a time lag equal to one viral replication cycle. Time course studies demonstrated that LPS was only effective in suppressing DV infection of MO/Mphi that had not been previously exposed to the virus. At various time points after viral adsorption, the level of unbound viruses that remained free in the culture supernatants of LPS-pretreated cultures was much higher than that of untreated controls. These observations suggest that the LPS-induced suppression of DV replication was at the level of virus attachment and/or entry. Blockade of the major LPS receptor, CD14, with monoclonal antibodies MY4 or MoS39 failed to inhibit DV infection but could totally abrogate the inhibitory effect of LPS. Moreover, human serum could significantly enhance the LPS-induced DV suppression in a CD14-dependent manner, indicating that the "binding" of LPS to CD14 was critical for the induction of virus inhibition. Taken together, our results suggest that LPS blocked DV entry into human MO/Mphi via its receptor CD14 and that a CD14-associated cell surface structure may be essential for the initiation of a DV infection.  相似文献   

11.
12.
Chen YC  Wang SY 《Journal of virology》2002,76(19):9877-9887
Dengue virus (DV) primarily infects blood monocytes (MO) and tissue macrophages (M phi). We have shown in the present study that DV can productively infect primary human MO/M phi regardless of the stage of cell differentiation. After DV infection, the in vitro-differentiated MO/M phi secreted multiple innate cytokines and chemokines, including tumor necrosis factor alpha, alpha interferon (IFN-alpha), interleukin-1 beta (IL-1 beta), IL-8, IL-12, MIP-1 alpha, and RANTES but not IL-6, IL-15, or nitric oxide. Secretion of these mediators was highlighted by distinct magnitude, onset, kinetics, duration, and induction potential. A chemokine-to-cytokine hierarchy was noted in the magnitude and induction potential of secretion, and a chemokine-to-cytokine-to-chemokine/Th1 cytokine cascade could be seen in the production kinetics. Furthermore, we found that terminally differentiated MO/M phi cultured for more than 45 days could support productive DV infection and produce innate cytokines and chemokines, indicating that these mature cells were functionally competent in the context of a viral infection. In addition, DV replication in primary differentiated human MO/M phi was enhanced and prolonged in the presence of lipopolysaccharide (LPS), and LPS-mediated synergistic production of IFN-alpha could be seen in DV-infected MO/M phi. The secretion of innate cytokines and chemokines by differentiated MO/M phi suggests that regional accumulation of these mediators may occur in various tissues to which DV has disseminated and may thus result in local inflammation. The LPS-mediated enhancement of virus replication and synergistic IFN-alpha production suggests that concurrent bacterial infection may modulate cytokine-mediated disease progression during DV infection.  相似文献   

13.
An immunodominant envelope glycoprotein is encoded by the human herpesvirus 8 (HHV-8) (also termed Kaposi's sarcoma-associated herpesvirus) K8.1 gene. The functional role of glycoprotein K8.1 is unknown, and recognizable sequence homology to K8.1 is not detectable in the genomes of most other closely related gammaherpesviruses, such as herpesvirus saimiri or Epstein-Barr virus. In search for a possible function for K8.1, we expressed the ectodomain of K8.1 fused to the Fc part of human immunoglobulin G1 (K8.1DeltaTMFc). K8.1DeltaTMFc specifically bound to the surface of cells expressing glycosaminoglycans but not to mutant cell lines negative for the expression of heparan sulfate proteoglycans. Binding of K8.1DeltaTMFc to mammalian cells could be blocked by heparin. Interestingly, the infection of primary human endothelial cells by HHV-8 could also be blocked by similar concentrations of heparin. The specificity and affinity of these interactions were then determined by surface plasmon resonance measurements using immobilized heparin and soluble K8.1. This revealed that K8.1 binds to heparin with an affinity comparable to that of glycoproteins B and C of herpes simplex virus, which are known to be involved in target cell recognition by binding to cell surface proteoglycans, especially heparan sulfate. We conclude that cell surface glycosaminoglycans play a crucial role in HHV-8 target cell recognition and that HHV-8 envelope protein K8.1 is at least one of the proteins involved.  相似文献   

14.
Macrophages (Mϕ) are the major source of inflammatory cytokines and are target cells for dengue virus (DV) replication. However, Mϕ are heterogeneous and their phenotypic and functional diversities are influenced by cytokines that regulate their differentiation, tissue distribution, and defense against invading pathogens. In vitro, human primary macrophages are derived from peripheral blood CD14+ monocytes in the presence of macrophage colony-stimulating factor (M-CSF) or granulocyte macrophage colony-stimulating factor (GM-CSF). These are essential for developing tissue/resting macrophages (M-Mϕ) and inflammatory macrophages (GM-Mϕ), respectively. While IFN production is similar between M-Mϕ and GM-Mϕ, M-Mϕ cannot produce IL-1β after DV infection. In contrast, GM-Mϕ is more susceptible to DV infection and DV triggers CLEC5A in GM-Mϕ to activate NLRP3 inflammasomes, which in turn release IL-18 and IL-1β that are critical for Th17 activation and contribute to disease severity. Thus, GM-Mϕ is more representative than M-Mϕ for investigating inflammasome activation in dengue infection, and is invaluable for revealing the molecular mechanism of pathogen-induced inflammatory reaction. Distinct phenotypes of macrophage subsets under the influence of M-CSF and GM-CSF raise the question of optimal conditions for culturing primary macrophages to study host-pathogen interaction.  相似文献   

15.
Dengue virus (DV) is a mosquito-borne flavivirus that causes hemorrhagic fever in humans. In the natural infection, DV is introduced into human skin by an infected mosquito vector where it is believed to target immature dendritic cells (DCs) and Langerhans cells (LCs). We found that DV productively infects DCs but not LCs. We show here that the interactions between DV E protein, the sole mannosylated glycoprotein present on DV particles, and the C-type lectin dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) are essential for DV infection of DCs. Binding of mannosylated N-glycans on DV E protein to DC-SIGN triggers a rapid and efficient internalization of the viral glycoprotein. However, we observed that endocytosis-defective DC-SIGN molecules allow efficient DV replication, indicating that DC-SIGN endocytosis is dispensable for the internalization step in DV entry. Together, these results argue in favor of a mechanism by which DC-SIGN enhances DV entry and infection in cis. We propose that DC-SIGN concentrates mosquito-derived DV particles at the cell surface to allow efficient interaction with an as yet unidentified entry factor that is ultimately responsible for DV internalization and pH-dependent fusion into DCs.  相似文献   

16.
17.
Gliosis is a biological process that occurs during injury repair in the central nervous system and is characterized by the overexpression of the intermediate filaments (IFs) glial fibrillary acidic protein (GFAP) and vimentin. A common thread in many retinal diseases is reactive Müller cell gliosis, an untreatable condition that leads to tissue scarring and even blindness. Here, we demonstrate that the vimentin-targeting small molecule withaferin A (WFA) is a novel chemical probe of GFAP. Using molecular modeling studies that build on the x-ray crystal structure of tetrameric vimentin rod 2B domain we reveal that the WFA binding site is conserved in the corresponding domain of tetrameric GFAP. Consequently, we demonstrate that WFA covalently binds soluble recombinant tetrameric human GFAP at cysteine 294. In cultured primary astrocytes, WFA binds to and down-regulates soluble vimentin and GFAP expression to cause cell cycle G0/G1 arrest. Exploiting a chemical injury model that overexpresses vimentin and GFAP in retinal Müller glia, we demonstrate that systemic delivery of WFA down-regulates soluble vimentin and GFAP expression in mouse retinas. This pharmacological knockdown of soluble IFs results in the impairment of GFAP filament assembly and inhibition of cell proliferative response in Müller glia. We further show that a more severe GFAP filament assembly deficit manifests in vimentin-deficient mice, which is partly rescued by WFA. These findings illustrate WFA as a chemical probe of type III IFs and illuminate this class of withanolide as a potential treatment for diverse gliosis-dependent central nervous system traumatic injury conditions and diseases, and for orphan IF-dependent pathologies.  相似文献   

18.
gp120 is the envelope glycoprotein found on the surface of human immunodeficiency virus type 1 (HIV-1), and it binds to human cell surface CD4 receptors to initiate the HIV-1 infection process. It is now well-established that synthetic peptides from the V3 region on gp120 elicit antibodies that block HIV-1 infection and HIV-1-mediated cell fusion. Here we show that synthetic peptides derived from similar V3 regions of several isolates of HIV-1 bind [3H]heparin, and we also demonstrate that [3H]heparin binds to recombinant gp120 IIIB. The binding could be blocked by unlabeled heparin, dextran sulfate, and by a highly anionic benzylated synthetic peptide derived from human CD4 (amino acids 81-92). The nonbenzylated peptides from the same region were considerably less active. Unlabeled heparin, dextran sulfate, and the CD4-derived peptides were able to compete with the binding of soluble gp120 to immobilized antibodies against fragments of the V3 from isolate IIIB, but they had no effect on the binding of gp120 to anti-peptide antibodies targeted against another unrelated region of gp120. Biotin conjugated to the benzylated CD4-peptide bound to gp120 and was blocked from this binding by anti-V3 antibodies. These results indicate that the three materials that have been demonstrated by others to block HIV-1 infection in vitro, sulfated polysaccharides, certain CD4-derived synthetic peptides, and anti-V3 antibodies, may be acting through a common mechanism that includes binding to the V3 region of gp120 on HIV-1.  相似文献   

19.
The 39-kDa receptor-associated protein (RAP) binds to the alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein (alpha 2MR/LRP) and inhibits binding of ligands to this receptor. The in vivo function of RAP may be to regulate ligand binding and/or assist in the correct biosynthetic processing or trafficking of the alpha 2MR/LRP. Here we show that RAP binds another putative receptor, the kidney glycoprotein 330 (gp330). Gp330 is a high molecular weight glycoprotein that is structurally similar to both the alpha 2MR/LRP and low density lipoprotein receptor. The ability of RAP to bind to gp330 was demonstrated by ligand blotting and solid phase binding assays, which showed that RAP binds to gp330 with high affinity (Kd = 8 nM). Exploiting the interaction of gp330 and RAP, we purified gp330 by affinity chromatography with a column of RAP coupled to Sepharose. Gp330 preparations obtained by this procedure were notably more homogeneous than those obtained by conventional methods. Immunocytochemical staining of human kidney sections localized RAP to the brush-border epithelium of proximal tubules. The fact that gp330 is also primarily expressed by proximal tubule epithelial cells strengthens the likelihood that the interaction between gp330 and RAP occurs in vivo. The functional significance of RAP binding to gp330 may be to antagonize ligand binding as has been demonstrated for the alpha 2MR/LRP or to assist in the biosynthetic processing and/or trafficking of this receptor.  相似文献   

20.
Zhang Y  Ma CJ  Wang JM  Ji XJ  Wu XY  Jia ZS  Moorman JP  Yao ZQ 《PloS one》2011,6(5):e19664
T cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) is a newly identified negative immunomodulator that is up-regulated on dysfunctional T cells during viral infections. The expression and function of Tim-3 on human innate immune responses during HCV infection, however, remains poorly characterized. In this study, we report that Tim-3 is constitutively expressed on human resting CD14+ monocyte/macrophages (M/MØ) and functions as a cap to block IL-12, a key pro-inflammatory cytokine linking innate and adaptive immune responses. Tim-3 expression is significantly reduced and IL-12 expression increased upon stimulation with Toll-like receptor 4 (TLR4) ligand - lipopolysaccharide (LPS) and TLR7/8 ligand - R848. Notably, Tim-3 is over-expressed on un-stimulated as well as TLR-stimulated M/MØ, which is inversely associated with the diminished IL-12 expression in chronically HCV-infected individuals when compared to healthy subjects. Up-regulation of Tim-3 and inhibition of IL-12 are also observed in M/MØ incubated with HCV-expressing hepatocytes, as well as in primary M/MØ or monocytic THP-1 cells incubated with HCV core protein, an effect that mimics the function of complement C1q and is reversible by blocking the HCV core/gC1qR interaction. Importantly, blockade of Tim-3 signaling significantly rescues HCV-mediated inhibition of IL-12, which is primarily expressed by Tim-3 negative M/MØ. Tim-3 blockade reduces HCV core-mediated expression of the negative immunoregulators PD-1 and SOCS-1 and increases STAT-1 phosphorylation. Conversely, blocking PD-1 or silencing SOCS-1 gene expression also decreases Tim-3 expression and enhances IL-12 secretion and STAT-1 phosphorylation. These findings suggest that Tim-3 plays a crucial role in negative regulation of innate immune responses, through crosstalk with PD-1 and SOCS-1 and limiting STAT-1 phosphorylation, and may be a novel target for immunotherapy to HCV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号