首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycerol has become an attractive substrate for bio-based production processes. However, Escherichia coli, an established production organism in the biotech industry, is not able to grow on glycerol under strictly anaerobic conditions in defined minimal medium due to redox imbalance. Despite extensive research efforts aiming to overcome these limitations, anaerobic growth of wild-type E. coli on glycerol always required either the addition of electron acceptors for anaerobic respiration (e.g. fumarate) or the supplementation with complex and relatively expensive additives (tryptone or yeast extract). In the present work, driven by model-based calculations, we propose and validate a novel and simple strategy to enable fermentative growth of E. coli on glycerol in defined minimal medium. We show that redox balance could be achieved by uptake of small amounts of acetate with subsequent reduction to ethanol via acetyl-CoA. Using a directed laboratory evolution approach, we were able to confirm this hypothesis and to generate an E. coli strain that shows, under anaerobic conditions with glycerol as the main substrate and acetate as co-substrate, robust growth (μ = 0.06 h−1), a high specific glycerol uptake rate (10.2 mmol/gDW/h) and an ethanol yield close to the theoretical maximum (0.92 mol per mol glycerol). Using further stoichiometric calculations, we also clarify why complex additives such as tryptone used in previous studies enable E. coli to achieve redox balance. Our results provide new biological insights regarding the fermentative metabolism of E. coli and offer new perspectives for sustainable production processes based on glycerol.  相似文献   

2.
The purpose of this study was to evaluate the important technological and fermentative properties of wine yeast strains previously isolated from different wine producing regions of Turkey. The determination of the following important properties was made: growth at high temperatures; fermentative capability in the presence of high sugar concentration; fermentation rate; hydrogen sulfide production; killer activity; resistance to high ethanol and sulfur dioxide; foam production; and enzymatic profiles. Ten local wine yeast strains belonging to Saccharomyces, and one commercial active dry yeast as a reference strain were evaluated. Fermentation characteristics were evaluated in terms of kinetic parameters, including ethanol yield (YP/S), biomass yield (YX/S), theoretical ethanol yield (%), specific ethanol production rate (qp; g/gh), specific glucose uptake rate (qs; g/gh), and the substrate conversion (%). All tested strains were able to grow at 37 °C and to start fermentation at 30° Brix, and were resistant to high concentrations of sulfur dioxide. 60 % of the strains were weak H2S producers, while the others produced high levels. Foam production was high, and no strains had killer activity. Six of the tested strains had the ability to grow and ferment at concentrations of 14 % ethanol. Except for one strain, all fermented most of the media sugars at a high rate, producing 11.0–12.4 % (v/v) ethanol. Although all but one strain had suitable characteristics for wine production, they possessed poor activities of glycosidase, esterase and proteinase enzymes of oenological interest. Nine of the ten local yeast strains were selected for their good oenological properties and their suitability as a wine starter culture.  相似文献   

3.
Summary The growing demand for high quality products and the immense export potential that cacha?a represents, demonstrated especially during the past few years, have clearly indicated the necessity of establishing well-defined standards of quality, as well as effective means of controlling the process of production of this beverage. The objective of this study was the selection of S. cerevisiae yeast strains and the investigation of their influence on the kinetic parameters of fermentation. Ninety strains of S. cerevisiae isolated from distilleries of the state of Minas Gerais were evaluated with respect to the following parameters: flocculation capacity, production of H2S and kinetic parameters of fermentation. The UFMGA 905 strain was used as a reference because it presented desirable characteristics for the production of cacha?a. Five strains presented high specific sedimentation velocities (SSV), indicating a high flocculation capacity, and two did not produce H2S. The strains presented significant statistical differences for fermentation parameters: yield of ethanol; efficiency of substrate conversion to ethanol; ratio of substrate conversion to ethanol (Y p/s), to cells (Y x/s), to organic acids (Y ac/s), and to glycerol (Y g/s); and productivity. In general, the strains presented a good fermentative potential, with ethanol yields varying from 74.7 to 82.1% and an efficiency of 76.1–84.4%. All strains presented high productivities (4.6–6.6 g l−1 h−1), indicating that this parameter can be used in the selection of strains for the production of cacha?a.  相似文献   

4.
In Brazil, bioethanol is produced by sucrose fermentation from sugarcane by Saccharomyces cerevisiae in a fed-batch process that uses high density of yeast cells (15–25 % of wet weight/v) and high sugar concentration (18–22 % of total sugars). Several research efforts have been employed to improve the efficiency of this process through the isolation of yeasts better adapted to the Brazilian fermentation conditions. Two important wild strains named CAT-1 and PE-2 were isolated during the fermentation process and were responsible for almost 60 % of the total ethanol production in Brazil. However, in the last decade the fermentative substrate composition was much modified, since new sugar cane crops were developed, the use of molasses instead of sugar cane juice increase and with the prohibition of burning of sugarcane prior harvest. As consequence, these previously isolated strains are being replaced by new wild yeasts in most of ethanol plants. In this new scenario the isolation of novel better adapted yeasts with improved fermentative characteristics is still a big challenge. Here, we discuss the main aspects of Brazilian ethanol production and the efforts for the selection, characterization and genetic modifications of new strains with important phenotypic traits such as thermotolerance.  相似文献   

5.
The conversion of lignocellulose into fermentable sugars is considered a promising alternative for increasing ethanol production. Higher fermentation yield has been achieved through the process of simultaneous saccharification and fermentation (SSF). In this study, a comparison was performed between the yeast species Saccharomyces cerevisiae and Kluyveromyces marxianus for their potential use in SSF process. Three strains of S. cerevisiae were evaluated: two are widely used in the Brazilian ethanol industry (CAT-1 and PE-2), and one has been isolated based on its capacity to grow and ferment at 42 °C (LBM-1). In addition, we used thermotolerant strains of K. marxianus. Two strains were obtained from biological collections, ATCC 8554 and CCT 4086, and one strain was isolated based on its fermentative capacity (UFV-3). SSF experiments revealed that S. cerevisiae industrial strains (CAT-1 and PE-2) have the potential to produce cellulosic ethanol once ethanol had presented yields similar to yields from thermotolerant strains. The industrial strains are more tolerant to ethanol and had already been adapted to industrial conditions. Moreover, the study shows that although the K. marxianus strains have fermentative capacities similar to strains of S. cerevisiae, they have low tolerance to ethanol. This characteristic is an important target for enhancing the performance of this yeast in ethanol production.  相似文献   

6.
Chen CY  Liu CH  Lo YC  Chang JS 《Bioresource technology》2011,102(18):8484-8492
Photosynthetic bacteria have considerable biotechnological potential for biological hydrogen production due to higher substrate conversion efficiency and hydrogen yield. Phototrophic fermentation using photosynthetic bacteria has a major advantage of being able to further convert the byproducts originating from dark fermentation (e.g., volatile fatty acids) to hydrogen. Through the combination of dark and photo-fermentation processes, organic feedstock is fully converted into gaseous product (H2) at the highest possible H2 yield, with significant reduction of chemical oxygen demand (COD). The performance of photo-fermentation is highly dependent on the medium composition, culture conditions, and photobioreactor design. Therefore, this article provides a critical review of the effects of key factors affecting the photo-hydrogen production efficiency of photosynthetic bacteria, and also summarizes the strategies being applied in promoting the performance of photo-fermentation.  相似文献   

7.
Chlamydomonas reinhardtii insertion mutants disrupted for genes encoding acetate kinases (EC 2.7.2.1) (ACK1 and ACK2) and a phosphate acetyltransferase (EC 2.3.1.8) (PAT2, but not PAT1) were isolated to characterize fermentative acetate production. ACK1 and PAT2 were localized to chloroplasts, while ACK2 and PAT1 were shown to be in mitochondria. Characterization of the mutants showed that PAT2 and ACK1 activity in chloroplasts plays a dominant role (relative to ACK2 and PAT1 in mitochondria) in producing acetate under dark, anoxic conditions and, surprisingly, also suggested that Chlamydomonas has other pathways that generate acetate in the absence of ACK activity. We identified a number of proteins associated with alternative pathways for acetate production that are encoded on the Chlamydomonas genome. Furthermore, we observed that only modest alterations in the accumulation of fermentative products occurred in the ack1, ack2, and ack1 ack2 mutants, which contrasts with the substantial metabolite alterations described in strains devoid of other key fermentation enzymes.  相似文献   

8.
Isobutene (2-methylpropene) is one of those chemicals for which bio-based production might replace the petrochemical production in the future. Currently, more than 10 million metric tons of isobutene are produced on a yearly basis. Even though bio-based production might also be achieved through chemocatalytic or thermochemical methods, this review focuses on fermentative routes from sugars. Although biological isobutene formation is known since the 1970s, extensive metabolic engineering is required to achieve economically viable yields and productivities. Two recent metabolic engineering developments may enable anaerobic production close to the theoretical stoichiometry of 1isobutene + 2CO2 + 2H2O per mol of glucose. One relies on the conversion of 3-hydroxyisovalerate to isobutene as a side activity of mevalonate diphosphate decarboxylase and the other on isobutanol dehydration as a side activity of engineered oleate hydratase. The latter resembles the fermentative production of isobutanol followed by isobutanol recovery and chemocatalytic dehydration. The advantage of a completely biological route is that not isobutanol, but instead gaseous isobutene is recovered from the fermenter together with CO2. The low aqueous solubility of isobutene might also minimize product toxicity to the microorganisms. Although developments are at their infancy, the potential of a large scale fermentative isobutene production process is assessed. The production costs estimate is 0.9 € kg−1, which is reasonably competitive. About 70% of the production costs will be due to the costs of lignocellulose hydrolysate, which seems to be a preferred feedstock.  相似文献   

9.
Poly (glutamic acid)--an emerging biopolymer of commercial interest   总被引:5,自引:0,他引:5  
Poly (γ-glutamic acid) (PGA) is water-soluble, anionic, biodegradable, and edible biopolymer produced by Bacillus subtilis. It has multifarious potential applications in foods, pharmaceuticals, healthcare, water treatment and other fields. The production of PGA has already been established on the industrial scale. Various studies regarding the fermentative production, downstream processing and characterization of PGA have been reported in the literature. This review provides updated information on fermentative production of PGA by various bacterial strains and effect of fermentation conditions and media component on production of PGA in submerged as well as solid state fermentation. Information on the application of genetic engineering for enhancement of yield of PGA, kinetic studies for production of PGA in submerged fermentation and recovery and purification of PGA is included. An attempt has also been made to review the current and potential applications of PGA. This review may contribute to further development of this commercially and academically interesting biopolymer.  相似文献   

10.
Major efforts in bioenergy research have focused on producing fuels that can directly replace petroleum-derived gasoline and diesel fuel through metabolic engineering of microbial fatty acid biosynthetic pathways. Typically, growth and pathway induction are conducted under aerobic conditions, but for operational efficiency in an industrial context, anaerobic culture conditions would be preferred to obviate the need to maintain specific dissolved oxygen concentrations and to maximize the proportion of reducing equivalents directed to biofuel biosynthesis rather than ATP production. A major concern with fermentative growth conditions is elevated NADH levels, which can adversely affect cell physiology. The purpose of this study was to identify homologs of Escherichia coli FabG, an essential reductase involved in fatty acid biosynthesis, that display a higher preference for NADH than for NADPH as a cofactor. Four potential NADH-dependent FabG variants were identified through bioinformatic analyses supported by crystallographic structure determination (1.3- to 2.0-Å resolution). In vitro assays of cofactor (NADH/NADPH) preference in the four variants showed up to ∼35-fold preference for NADH, which was observed with the Cupriavidus taiwanensis FabG variant. In addition, FabG homologs were overexpressed in fatty acid- and methyl ketone-overproducing E. coli host strains under anaerobic conditions, and the C. taiwanensis variant led to a 60% higher free fatty acid titer and 75% higher methyl ketone titer relative to the titers of the control strains. With further engineering, this work could serve as a starting point for establishing a microbial host strain for production of fatty acid-derived biofuels (e.g., methyl ketones) under anaerobic conditions.  相似文献   

11.
Fermentative biohydrogen production systems integration   总被引:2,自引:0,他引:2  
Acidogenic fermentation can be used to produce hydrogen from a range of biomass sources. The effluent from this process can be utilised in a number of biological processes enabling further recovery of energy from the biomass. In this review a number of candidate technologies are assessed including conventional methanogenic anaerobic digestion, dark fermentative hydrogen production, photo-fermentation, and bioelectrochemical systems. The principles, benefits and challenges associated with integrating these technologies are discussed, with particular emphasis on integration with fermentative hydrogen production, and the current state of integrative development is presented. The various system configurations for potential integrations presented here may simultaneously permit an increase in the conversion efficiency of biomass to energy, improved adaptability to varying operating conditions, and improved stability. Such integration, while increasing system complexity, may mean that these bioprocesses could be deployed in a wider range of scenarios and be used with a greater range of substrates.  相似文献   

12.
Combined dark and photo-fermentation was carried out to study the feasibility of biological hydrogen production. In dark fermentation, hydrogen was produced by Enterobacter cloacae strain DM11 using glucose as substrate. This was followed by a photo-fermentation process. Here, the spent medium from the dark process (containing unconverted metabolites, mainly acetic acid etc.) underwent photo-fermentation by Rhodobacter sphaeroides strain O.U.001 in a column photo-bioreactor. This combination could achieve higher yields of hydrogen by complete utilization of the chemical energy stored in the substrate. Dark fermentation was studied in terms of several process parameters, such as initial substrate concentration, initial pH of the medium and temperature, to establish favorable conditions for maximum hydrogen production. Also, the effects of the threshold concentration of acetic acid, light intensity and the presence of additional nitrogen sources in the spent effluent on the amount of hydrogen produced during photo-fermentation were investigated. The light conversion efficiency of hydrogen was found to be inversely proportional to the incident light intensity. In a batch system, the yield of hydrogen in the dark fermentation was about 1.86 mol H2 mol−1 glucose; and the yield in the photo-fermentation was about 1.5–1.72 mol H2 mol−1 acetic acid. The overall yield of hydrogen in the combined process, considering glucose as the preliminary substrate, was found to be higher than that in a single process.  相似文献   

13.
While screening a large collection of wild and laboratory yeast strains for their ability to attract Drosophila melanogaster adults, we noticed a large difference in fly preference for two nearly isogenic strains of Saccharomyces cerevisiae, BY4741 and BY4742. Using standard genetic analyses, we tracked the preference difference to the lack of mitochondria in the BY4742 strain used in the initial experiment. We used gas chromatography coupled with mass spectroscopy to examine the volatile compounds produced by BY4741 and the mitochondria-deficient BY4742, and found that they differed significantly. We observed that several ethyl esters are present at much higher levels in strains with mitochondria, even in fermentative conditions. We found that nitrogen levels in the substrate affect the production of these compounds, and that they are produced at the highest level by strains with mitochondria when fermenting natural fruit substrates. Collectively these observations demonstrate that core metabolic processes mediate the interaction between yeasts and insect vectors, and highlight the importance mitochondrial functions in yeast ecology.  相似文献   

14.
Enterobacter aerogenes is one of the most widely-studied model strains for fermentative hydrogen production. To improve the hydrogen yield of E. aerogenes, the bioengineering on a biomolecular level and metabolic network level is of importance. In this review, the fermentative technology of E. aerogenes for hydrogen production will be first briefly summarized. And then the bioengineering of E. aerogenes for the improvement of hydrogen yield will be thoroughly reviewed, including the anaerobic metabolic networks for hydrogen evolution in E. aerogenes, metabolic engineering for improving hydrogen production in E. aerogenes and mixed culture of E. aerogenes with other hydrogen-producing bacteria to enhance the overall yield in anaerobic cultivation. Finally, a perspective on E. aerogenes as a hydrogen producer including systems bioengineering approach for improving the hydrogen yield and application of the engineered E. aerogenes in mixed culture will be presented.  相似文献   

15.
Sixty six isolates were screened for ability of bioethanol production; dynamics of product accumulation and substrate utilization were investigated for two selected strains Trametes hirsuta MT-24.24 and Trametes versicolor IT-1. The strains’ efficiency was evaluated as bioethanol production by 1 g biomass. Strain T. versicolor IT-1 producing over 33 g/L of the ethanol for 9 d was selected. Direct conversion of Na-carboxymethyl cellulose, microcrystalline cellulose and straw was shown with ethanol yields of 2.1, 1.6 and 1.7 g/L, respectively, for 9 d fermentation time.  相似文献   

16.

Objective

To selectively enrich an electrogenic mixed consortium capable of utilizing dark fermentative effluents as substrates in microbial fuel cells and to further enhance the power outputs by optimization of influential anodic operational parameters.

Results

A maximum power density of 1.4 W/m3 was obtained by an enriched mixed electrogenic consortium in microbial fuel cells using acetate as substrate. This was further increased to 5.43 W/m3 by optimization of influential anodic parameters. By utilizing dark fermentative effluents as substrates, the maximum power densities ranged from 5.2 to 6.2 W/m3 with an average COD removal efficiency of 75% and a columbic efficiency of 10.6%.

Conclusion

A simple strategy is provided for selective enrichment of electrogenic bacteria that can be used in microbial fuel cells for generating power from various dark fermentative effluents.
  相似文献   

17.
18.
The yeast Dekkera bruxellensis is considered to be very well adapted to industrial environments, in Brazil, USA, Canada and European Countries, when different substrates are used in alcoholic fermentations. Our previous study described its fermentative profile with a sugarcane juice substrate. In this study, we have extended its physiological evaluation to fermentation situations by using sugarcane molasses as a substrate to replicate industrial working conditions. The results have confirmed the previous reports of the low capacity of D. bruxellensis cells to assimilate sucrose, which seems to be the main factor that can cause a bottleneck in its use as fermentative yeast. Furthermore, the cells of D. bruxellensis showed a tendency to deviate most of sugar available for biomass and organic acids (lactic and acetic) compared with Saccharomyces cerevisiae, when calculated on the basis of their respective yields. As well as this, the acetate production from molasses medium by both yeasts was in marked contrast with the previous data on sugarcane juice. Glycerol and ethanol production by D. bruxellensis cells achieved levels of 33 and 53 % of the S. cerevisiae, respectively. However, the ethanol yield was similar for both yeasts. It is worth noting that this yeast did not accumulate trehalose when the intracellular glycogen content was 30 % lower than in S. cerevisiae. The lack of trehalose did not affect yeast viability under fermentation conditions. Thus, the adaptive success of D. bruxellensis under industrial fermentation conditions seems to be unrelated to the production of these reserve carbohydrates.  相似文献   

19.
Franziska Gutthann 《BBA》2007,1767(2):161-169
In cyanobacterial membranes photosynthetic light reaction and respiration are intertwined. It was shown that the single hydrogenase of Synechocystis sp. PCC 6803 is connected to the light reaction. We conducted measurements of hydrogenase activity, fermentative hydrogen evolution and photohydrogen production of deletion mutants of respiratory electron transport complexes. All single, double and triple mutants of the three terminal respiratory oxidases and the ndhB-mutant without a functional complex I were studied. After activating the hydrogenase by applying anaerobic conditions in the dark hydrogen production was measured at the onset of light. Under these conditions respiratory capacity and amount of photohydrogen produced were found to be inversely correlated. Especially the absence of the quinol oxidase induced an increased hydrogenase activity and an increased production of hydrogen in the light compared to wild type cells. Our results support that the hydrogenase as well as the quinol oxidase function as electron valves under low oxygen concentrations. When the activities of photosystem II and I (PSII and PSI) are not in equilibrium or in case that the light reaction is working at a higher pace than the dark reaction, the hydrogenase is necessary to prevent an acceptor side limitation of PSI, and the quinol oxidase to prevent an overreduction of the plastoquinone pool (acceptor side of PSII). Besides oxygen, nitrate assimilation was found to be an important electron sink. Inhibition of nitrate reductase resulted in an increased fermentative hydrogen production as well as higher amounts of photohydrogen.  相似文献   

20.
Fuel ethanol fermentation process is a complex environment with an intensive succession of yeast strains. The population stability depends on the use of a well-adapted strain that can fit to a particular industrial plant. This stability helps to keep high level of ethanol yield and it is absolutely required when intending to use recombinant strains. Yeast strains have been previously isolated from different distilleries in Northeast Brazil and clustered in genetic strains by PCR-fingerprinting. In this report we present the isolation and selection of a novel Saccharomyces cerevisiae strain by its high dominance in the yeast population. The new strain, JP1 strain, presented practically the same fermentative capacity and stress tolerance like the most used commercial strains, with advantages of being highly adapted to different industrial units in Northeast Brazil that used sugar cane juice as substrate. Moreover, it presented higher transformation efficiency that pointed out its potential for genetic manipulations. The importance of this strain selection programme for ethanol production is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号