首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ADAMTS13 is a plasma metalloproteinase that cleaves von Willebrand factor to smaller, less thrombogenic forms. Deficiency of ADAMTS13 activity in plasma leads to thrombotic thrombocytopenic purpura. ADAMTS13 contains eight thrombospondin type 1 repeats (TSR), seven of which contain a consensus sequence for the direct addition of fucose to the hydroxyl group of serine or threonine. Mass spectral analysis of tryptic peptides derived from human ADAMTS13 indicate that at least six of the TSRs are modified with an O-fucose disaccharide. Analysis of [(3)H]fucose metabolically incorporated into ADAMTS13 demonstrated that the disaccharide has the structure glucose-beta1,3-fucose. Mutation of the modified serine to alanine in TSR2, TSR5, TSR7, and TSR8 reduced the secretion of ADAMTS13. Mutation of more than one site dramatically reduced secretion regardless of the sites mutated. When the expression of protein O-fucosyltransferase 2 (POFUT2), the enzyme that transfers fucose to serines in TSRs, was reduced using siRNA, the secretion of ADAMTS13 decreased. A similar outcome was observed when ADAMTS13 was expressed in a cell line unable to synthesize the donor for fucose addition, GDP-fucose. Although overexpression of POFUT2 did not affect the secretion of wild-type ADAMTS13, it did increase the secretion of the ADAMTS13 TSR1,2 double mutant but not that of ADAMTS13 TSR1-8 mutant. Together these findings indicate that O-fucosylation is functionally significant for secretion of ADAMTS13.  相似文献   

2.
Bacterial swarming constitutes a good in vitro model for surface adherence and colonization, and is accompanied by expressions of virulence factors related to invasiveness. In this study, it was determined that Vibrio vulnificus swarming was abolished by mutation of the vvpE gene encoding a metalloprotease VvpE and this swarming defect was recovered by complementation of the vvpE gene. Expression of the vvpE gene began simultaneously with the beginning of swarming and increased along with expression of the luxS gene encoding the synthase of the precursor of quorum-sensing signal molecule autoinducer 2, and this increased vvpE expression was decreased by mutation of the luxS gene. Moreover, VvpE destroyed IgA and lactoferrins, which are responsible for mucosal immunity. These results suggest that VvpE may play important roles in the surface adherence and colonization of V. vulnificus by facilitating swarming and in the mucosal invasion of V. vulnificus by destroying IgA and lactoferrin.  相似文献   

3.
ADAMTS13 belongs to the "a disintegrin and metalloprotease with thrombospondin repeats" family, and cleaves von Willebrand factor multimers into smaller forms. For several related proteases, normal folding and enzymatic latency depend on an NH2-terminal propeptide that is removed by proteolytic processing during biosynthesis. However, the ADAMTS13 propeptide is unusually short and poorly conserved, suggesting it may not perform these functions. ADAMTS13 was secreted from transfected HeLa cells with a half-time of 7 h and the rate-limiting step was exported from the endoplasmic reticulum. Deletion of the propeptide did not impair the secretion of active ADAMTS13, indicating that the propeptide is dispensable for folding. Furin was shown to be sufficient for ADAMTS13 propeptide processing in two ways. First, mutation of the furin consensus recognition site prevented propeptide cleavage in HeLa cells and resulted in secretion of pro-ADAMTS13. Second, furin-deficient LoVo cells secreted ADAMTS13 with the propeptide intact, and cotransfection with furin restored propeptide cleavage. In both cell lines, secreted pro-ADAMTS13 had normal proteolytic activity toward von Willebrand factor. In cells coexpressing both ADAMTS13 and von Willebrand factor, pro-ADAMTS13 cleaved pro-von Willebrand factor intracellularly. Therefore, the ADAMTS13 propeptide is not required for folding or secretion, and does not perform the common function of maintaining enzyme latency.  相似文献   

4.
Matrix metalloproteinases (MMPs) are extracellular proteases highly expressed at wound sites. However, the precise function of MMPs during reepithelialization in vivo has been elusive in mammalian models because of the high level of redundancy among the 24 mammalian MMPs. For this reason we used Drosophila melanogaster, whose genome encodes only two MMPs-one secreted type (Mmp1) and one membrane-anchored type (Mmp2)-to study the function and regulation of the secreted class of MMPs in vivo. In the absence of redundancy, we found that the Drosophila secreted MMP, Mmp1, is required in the epidermis to facilitate reepithelialization by remodeling the basement membrane, promoting cell elongation and actin cytoskeletal reorganization, and activating extracellular signal-regulated kinase signaling. In addition, we report that the jun N-terminal kinase (JNK) pathway upregulates Mmp1 expression after wounding, but that Mmp1 is expressed independent of the JNK pathway in unwounded epidermis. When the JNK pathway is ectopically activated to overexpress Mmp1, the rate of healing is accelerated in an Mmp1-dependent manner. A primary function of Mmp1, under the control of the JNK pathway, is to promote basement membrane repair, which in turn may permit cell migration and the restoration of a continuous tissue.  相似文献   

5.
BACKGROUND: Cranial neural-crest (CNC) cells originate from the lateral edge of the anterior neuroepithelium and migrate to form parts of the peripheral nervous system, muscles, cartilage, and bones of the face. Neural crest-cell migration involves the loss of adhesion from the surrounding neuroepithelium and a corresponding increase in cell adhesion to the extracellular matrix (ECM) present in migratory pathways. While proteolytic activity is likely to contribute to the regulation of neural crest-cell adhesion and migration, the role of a neural crest-specific protease in these processes has yet to be demonstrated. We previously showed that CNC cells express ADAM 13, a cell surface metalloprotease/disintegrin. Proteins of this family are known to act in cell-cell adhesion and as sheddases. ADAMs have also been proposed to degrade the ECM, but this has not yet been shown in a physiological context. RESULTS: Using a tissue transplantation technique, we show that Xenopus CNC cells overexpressing wild-type ADAM 13 migrate along the same hyoid, branchial, and mandibular pathways used by normal CNC cells. In contrast, CNC cell grafts that express protease-defective ADAM 13 fail to migrate along the hyoid and branchial pathways. In addition, ectopic expression of wild-type ADAM 13 results in a gain-of-function phenotype in embryos, namely the abnormal positioning of trunk neural-crest cells. We further show that explanted embryonic tissues expressing wild-type, but not protease-defective, ADAM 13 display decreased cell-matrix adhesion. Purified ADAM 13 can cleave fibronectin, and tissue culture cells that express wild-type, but not protease-defective, ADAM 13 can remodel a fibronectin substrate. CONCLUSIONS: Our findings support the hypothesis that the protease activity of ADAM 13 plays a critical role in neural crest-cell migration along defined pathways. We propose that the ADAM 13-dependent modification of ECM and/or other guidance molecules is a key step in the directed migration of the CNC.  相似文献   

6.
The stringent response utilizes hyperphosphorylated guanine [(p)ppGpp] as a signaling molecule to control bacterial gene expression involved in long-term survival under starvation conditions. In gram-negative bacteria, (p)ppGpp is produced by the activity of the related RelA and SpoT proteins. Mycobacterium tuberculosis contains a single homolog of these proteins (Rel(Mtb)) and responds to nutrient starvation by producing (p)ppGpp. A rel(Mtb) knockout strain was constructed in a virulent strain of M. tuberculosis, H37Rv, by allelic replacement. The rel(Mtb) mutant displayed a significantly slower aerobic growth rate than the wild type in synthetic liquid media, whether rich or minimal. The growth rate of the wild type was equivalent to that of the mutant when citrate or phospholipid was employed as the sole carbon source. These two organisms also showed identical growth rates within a human macrophage-like cell line. These results suggest that the in vivo carbon source does not represent a stressful condition for the bacilli, since it appears to be utilized in a similar Rel(Mtb)-independent manner. In vitro growth in liquid media represents a condition that benefits from Rel(Mtb)-mediated adaptation. Long-term survival of the rel(Mtb) mutant during in vitro starvation or nutrient run out in normal media was significantly impaired compared to that in the wild type. In addition, the mutant was significantly less able to survive extended anaerobic incubation than the wild-type virulent organism. Thus, the Rel(Mtb) protein is required for long-term survival of pathogenic mycobacteria under starvation conditions.  相似文献   

7.
The spermatogenic and oogenic lineages originate from bipotential primordial germ cells in response to signalling in the foetal testis or ovary, respectively. The signals required for male germ cell commitment and their entry into mitotic arrest remain largely unknown. Recent data show that the ligand GDNF is up regulated in the foetal testis indicating that it may be involved in male germ cell development. In this study genetic analysis of GDNF-RET signalling shows that RET is required for germ cell survival. Affected germ cells in Ret-/- mice lose expression of key germ cell markers, abnormally express cell cycle markers and undergo apoptosis. Surprisingly, a similar phenotype was not detected in Gdnf-/- mice indicating that either redundancy with a Gdnf related gene might compensate for its loss, or that RET operates in a GDNF independent manner in mouse foetal germ cells. Either way, this study identifies the proto-oncogene RET as a novel component of the foetal male germ cell development pathway.  相似文献   

8.
ADAMs (a disintegrin and metalloprotease domains) are metalloprotease and disintegrin domain-containing transmembrane glycoproteins with proteolytic, cell adhesion, cell fusion, and cell signaling properties. ADAM8 was originally cloned from monocytic cells, and its distinct expression pattern indicates possible roles in both immunology and neuropathology. Here we describe our analysis of its biochemical properties. In transfected COS-7 cells, ADAM8 is localized to the plasma membrane and processed into two forms derived either by prodomain removal or as remnant protein comprising the extracellular region with the disintegrin domain at the N terminus. Proteolytic removal of the ADAM8 propeptide was completely blocked in mutant ADAM8 with a Glu(330) to Gln exchange (EQ-A8) in the Zn(2+) binding motif (HE(330)LGHNLGMSHD), arguing for autocatalytic prodomain removal. In co-transfection experiments, the ectodomain but not the entire MP domain of ADAM8 was able to remove the prodomain from EQ-ADAM8. With cells expressing ADAM8, cell adhesion to a substrate-bound recombinant ADAM8 disintegrin/Cys-rich domain was observed in the absence of serum, blocked by an antibody directed against the ADAM8 disintegrin domain. Soluble ADAM8 protease, consisting of either the metalloprotease domain or the complete ectodomain, cleaved myelin basic protein and a fluorogenic peptide substrate, and was inhibited by batimastat (BB-94, IC(50) approximately 50 nm) but not by recombinant tissue inhibitor of matrix metalloproteinases 1, 2, 3, and 4. Our findings demonstrate that ADAM8 processing by autocatalysis leads to a potential sheddase and to a form of ADAM8 with a function in cell adhesion.  相似文献   

9.
The function of pslD, which is part of the psl operon from Pseudomonas aeruginosa, was investigated in this study. The psl operon is involved in exopolysaccharide biosynthesis and biofilm formation. An isogenic marker-free pslD deletion mutant of P. aeruginosa PAO1 which was deficient in the formation of differentiated biofilms was generated. Expression of only the pslD gene coding region restored the wild-type phenotype. A C-terminal, hexahistidine tag fusion enabled the identification of PslD. LacZ and PhoA translational fusions with PslD indicated that PslD is a secreted protein required for biofilm formation, presumably via its role in exopolysaccharide export.  相似文献   

10.
Hong SK  Tsang M  Dawid IB 《PloS one》2008,3(4):e2029

Background

Among Myc family genes, c-Myc is known to have a role in neural crest specification in Xenopus and in craniofacial development in the mouse. There is no information on the function of other Myc genes in neural crest development, or about any developmental role of zebrafish Myc genes.

Principal Findings

We isolated the zebrafish mych (myc homologue) gene. Knockdown of mych leads to severe defects in craniofacial development and in certain other tissues including the eye. These phenotypes appear to be caused by cell death in the neural crest and in the eye field in the anterior brain.

Significance

Mych is a novel factor required for neural crest cell survival in zebrafish.  相似文献   

11.
12.
Oct4 is required for primordial germ cell survival   总被引:14,自引:0,他引:14  
Previous studies have shown that Oct4 has an essential role in maintaining pluripotency of cells of the inner cell mass (ICM) and embryonic stem cells. However, Oct4 null homozygous embryos die around the time of implantation, thus precluding further analysis of gene function during development. We have used the conditional Cre/loxP gene targeting strategy to assess Oct4 function in primordial germ cells (PGCs). Loss of Oct4 function leads to apoptosis of PGCs rather than to differentiation into a trophectodermal lineage, as has been described for Oct4-deficient ICM cells. These new results suggest a previously unknown function of Oct4 in maintaining viability of mammalian germline.  相似文献   

13.
An extracellular matrix connects bacteria that live in organized assemblages called biofilms. While the role of the matrix in the regulation of cell behavior has not been extensively examined in bacteria, we suggest that, like mammalian cells, the matrix facilitates cell-cell interactions involved with regulation of cohesion, motility, and sensory transduction. The extracellular matrix of the soil bacterium Myxococcus xanthus is essential for biofilm formation and fruiting body development. The matrix material is extruded as long, thin fibrils that mediate adhesion to surfaces, cohesion to other cells, and excitation by the chemoattractant dilauroyl phosphatidylethanolamine. We report the identification of a putative matrix-associated zinc metalloprotease called FibA (fibril protein A). Western blotting with FibA-specific monoclonal antibody 2105 suggests extensive proteolytic processing of FibA during assembly into fibrils, consistent with the autoprocessing observed with other members of the M4 metalloprotease family. Disruption of fibA had no obvious effect on the structure of the fibrils and did not inhibit cell cohesion, excitation by dioleoyl phosphatidylethanolamine, or activity of the A- or S-motility motors. However, the cells lost the ability to respond to dilauroyl phosphatidylethanolamine and to form well-spaced fruiting bodies, though substantial aggregation was observed. Chemotactic excitation of the fibA mutant was restored by incubation with purified wild-type fibrils. The results suggest that this metalloprotease is involved in sensory transduction.  相似文献   

14.
The netrins and slits are two families of widely conserved cues that guide axons and cells along the dorsal-ventral (D-V) axis of animals. These cues typically emanate from the dorsal or ventral midlines and provide spatial information to migrating cells by?forming gradients along the D-V axis. Some cell types, however, extend processes to both the dorsal and ventral midlines, suggesting the existence of additional guidance cues that are secreted from both midlines. Here, we report that a previously uncharacterized protein called MADD-4 is secreted by the dorsal and ventral nerve cords of the nematode C.?elegans to attract sensory axons and muscle?membrane extensions called muscle arms. MADD-4's activity is dependent on UNC-40/DCC, a netrin receptor, which functions cell-autonomously to direct membrane extension. The biological role of MADD-4 orthologs, including ADAMTSL1 and 3 in mammals, is unknown. MADD-4 may therefore represent the founding member of a family of guidance proteins.  相似文献   

15.
Shi W  Stampas A  Zapata C  Baker NE 《Genetics》2003,165(4):1869-1879
Each ommatidium of the Drosophila eye is constructed by precisely 19 specified precursor cells, generated in part during a second mitotic wave of cell divisions that overlaps early stages of ommatidial cell specification. Homozygotes for the pineapple eye mutation lack sufficient precursor cells due to apoptosis during the period of fate specification. In addition development is delayed by apoptosis during earlier imaginal disc growth. Null alleles are recessive lethal and allelic to l(2)31Ek; heteroallelic combinations can show developmental delay, abnormal eye development, and reduced fertility. Mosaic clones autonomously show extensive cell death. The pineapple eye gene was identified and predicted to encode a novel 582-amino-acid protein. The protein contains a novel, cysteine-rich domain of 270 amino acids also found in predicted proteins of unknown function from other animals.  相似文献   

16.
Nuclear PRP20 protein is required for mRNA export.   总被引:29,自引:9,他引:29       下载免费PDF全文
The yeast PRP20 protein is highly homologous in structure and function to the RCC1 protein of higher eukaryotes. The RCC1 protein is involved in the regulation of the onset of mitosis, whereas the PRP20 protein was shown to be required for accurate and efficient mRNA metabolism. The first observable phenotype in mutant prp20 cells when shifted from permissive to non-permissive temperature is a loss of nuclear PRP20 protein. Concomitantly, an accumulation of poly(A)+ RNA in the nucleus is observed. The temperature-sensitive RCC1 allele in the mutant hamster cell line tsBN2 leads to a similar accumulation of mRNA in the nucleus.  相似文献   

17.
VEGF is required for growth and survival in neonatal mice   总被引:72,自引:0,他引:72  
We employed two independent approaches to inactivate the angiogenic protein VEGF in newborn mice: inducible, Cre-loxP- mediated gene targeting, or administration of mFlt(1-3)-IgG, a soluble VEGF receptor chimeric protein. Partial inhibition of VEGF achieved by inducible gene targeting resulted in increased mortality, stunted body growth and impaired organ development, most notably of the liver. Administration of mFlt(1-3)-IgG, which achieves a higher degree of VEGF inhibition, resulted in nearly complete growth arrest and lethality. Ultrastructural analysis documented alterations in endothelial and other cell types. Histological and biochemical changes consistent with liver and renal failure were observed. Endothelial cells isolated from the liver of mFlt(1-3)-IgG-treated neonates demonstrated an increased apoptotic index, indicating that VEGF is required not only for proliferation but also for survival of endothelial cells. However, such treatment resulted in less significant alterations as the animal matured, and the dependence on VEGF was eventually lost some time after the fourth postnatal week. Administration of mFlt(1-3)-IgG to juvenile mice failed to induce apoptosis in liver endothelial cells. Thus, VEGF is essential for growth and survival in early postnatal life. However, in the fully developed animal, VEGF is likely to be involved primarily in active angiogenesis processes such as corpus luteum development.  相似文献   

18.
19.
The neural crest (NC) lineage gives rise to a wide array of cell types ranging from neurons and glia of the peripheral nervous system to skeletal elements of the head. The mechanisms regulating NC differentiation into such a large number of cell types remain largely unknown. MicroRNAs (miRNAs) play key roles in regulating developmental events suggesting they may also play a role during NC differentiation. To determine what roles miRNAs play in differentiation of NC-derived tissues, we deleted the miRNA processing gene Dicer in NC cells using the Wnt1-Cre deleter line. We show that deletion of Dicer soon after NC cells have formed does not affect their migration and colonization of their targets in the embryo. However, the post-migratory NC is dependent on Dicer for survival. In the head, loss of Dicer leads to a loss of NC-derived craniofacial bones while in the trunk, cells of the enteric, sensory and sympathetic nervous systems are lost during development. We found that loss of Dicer does not prevent the initial differentiation of NC but as development progresses, NC derivatives are lost due to apoptotic cell death. When Dicer is deleted, both Caspase-dependent and -independent apoptotic pathways are activated in the sensory ganglia but only the Caspase-dependent apoptotic program was activated in the sympathetic nervous system showing that the specific endogenous apoptotic programs are turned on by loss of Dicer. Our results show that Dicer and miRNAs, are required for survival of NC-derived tissues by preventing apoptosis during differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号