首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
p73 in apoptosis   总被引:3,自引:0,他引:3  
The TP53 tumour-suppressor gene belongs to a family that includes the two recently identified homologues TP63 and TP73. Overexpression of p73 can activate typical p53-responsive genes and induce apoptosis like p53. In addition, activation of p73 has been implicated in apoptotic cell death induced by aberrant cell proliferation and some forms of DNA-damage. These data together with the localization of TP73 on chromosome 1p36, a region frequently deleted in a variety of human cancers, led to the hypothesis that p73 has tumour suppressor activity just like p53. However, despite its proapoptotic activity in vitro, the lack of tumour-formation in p73 knock-out mice and primary human tumour data demonstrating overexpression of wild-type p73 currently argue against p73 being a classical tumour suppressor. Interestingly, in contrast to TP53, TP73 gives rise to a complex pattern of pro- and antiapoptotic p73 isoforms generated by differential splicing and alternative promoter usage. Therefore further insight into the function and regulation of these structurally and functionally diverse p73 proteins is needed to elucidate the role of TP73 for apoptosis and human tumorigenesis.  相似文献   

2.
Mesenchymal stem cells (MSCs) have potential applications in regenerative medicine and tissue engineering as well as being potential carriers for tumour therapy. However, the safety of using MSCs in tumours is unknown. Herein, we analyse malignant transformation of MSCs in the tumour microenvironment. Rat bone marrow MSCs were cultured with malignant rat glioma C6 cells without direct cell–cell contact. After 7 days, the cells were assessed for transformation using flow cytometry, real‐time quantitative PCR, immunofluorescence and chromosomal analysis. In addition, wild‐type (WT) p53, mutant p53 and mdm2 was determined using Western blotting. Almost all MSCs became phenotypically malignant cells, with significantly decreased WT p53 expression and increased expression of mutant p53 and mdm2, along with an aneuploid karyotype. To evaluate tumorigenesis in vivo, the MSCs indirect co‐cultured with C6 cells for 7 days were transplanted subcutaneously into immuno‐deficient mice. The cells developed into a large tumour at the injection site within 8 weeks, with systemic symptoms including cachexia and scoliosis. Pathological and cytological analysis revealed poorly differentiated pleomorphic cells with a dense vascular network and aggressive invasion into the adjacent muscle. These data demonstrate that MSCs became malignant cancer cells when exposed to the tumour microenvironment and suggest that factors released from the cancer cells have a critical role in the malignant transformation of MSCs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The TP53 tumour-suppressor gene is expressed as several protein isoforms generated by different mechanisms, including use of alternative promoters, splicing sites and translational initiation sites, that are conserved through evolution and within the TP53 homologues, TP63 and TP73. Although first described in the eighties, the importance of p53 isoforms in regulating the suppressive functions of p53 has only become evident in the last 10 years, by analogy with observations that p63 and p73 isoforms appeared indispensable to fully understand the biological functions of TP63 and TP73. This review summarizes recent advances in the field of 'p53 isoforms', including new data on p63 and p73 isoforms. Details of the alternative mechanisms that produce p53 isoforms and cis- and trans-regulators identified are provided. The main focus is on their biological functions (apoptosis, cell cycle, aging and so on) in cellular and animal models, including mouse, zebrafish and Drosophila. Finally, the deregulation of p53 isoform expression in human cancers is reviewed. Based on these latest results, several developments are expected in the future: the identification of drugs modulating p53 isoform expression; the generation of animal models and the evaluation of the use of p53 isoform as biomarkers in human cancers.  相似文献   

4.
5.
From p63 to p53 across p73   总被引:14,自引:0,他引:14  
Most genes are members of a family. It is generally believed that a gene family derives from an ancestral gene by duplication and divergence. The tumor suppressor p53 was a striking exception to this established rule. However, two new p53 homologs, p63 and p73, have recently been described [1, 2, 3, 4, 5 and 6]. At the sequence level, p63 and p73 are more similar to each other than each is to p53, suggesting the possibility that the ancestral gene is a gene resembling p63/p73, while p53 is phylogenetically younger [1 and 2].

The complexity of the family has also been enriched by the alternatively spliced forms of p63 and p73, which give rise to a complex network of proteins involved in the control of cell proliferation, apoptosis and development [1, 2, 4, 7, 8 and 9].

In this review we will mainly focus on similarities and differences as well as relationships among p63, p73 and p53.  相似文献   


6.
7.
p73 responds to DNA damage and exerts its pro-apoptotic function. However, p73 might contribute to the development of drug-resistance in certain tumor cells. In this study, we found that p73 and MDM2 correlate with cisplatin-resistant phenotype of human epidermoid carcinoma-derived cells. p73 and MDM2 were kept at low levels in the cisplatin-sensitive KB-3-1 cells, whereas p53 was induced to be phosphorylated at Ser-15 in response to cisplatin. In contrast, p73 and MDM2 were expressed at higher levels, and cisplatin-mediated p53 phosphorylation was undetectable in the cisplatin-resistant KCP-4 cells. Enforced expression of p73 in KB-3-1 cells caused an accumulation of unphosphorylated form of p53 and MDM2, and conferred the cisplatin resistance. Collectively, our results suggest that a loss of the cisplatin sensitivity is at least in part due to a lack of cisplatin-induced p53 phosphorylation, and p73 might cooperate with MDM2 to be involved in this process.  相似文献   

8.
p53 mutations, occurring in two-thirds of all human cancers, confer a gain of function phenotype, including the ability to form metastasis, the determining feature in the prognosis of most human cancer. This effect seems mediated at least partially by its ability to physically interact with p63, thus affecting a cell invasion pathway, and accordingly, p63 is deregulated in human cancers. In addition, p63, as an 'epithelial organizer', directly impinges on epidermal mesenchimal transition, stemness, senescence, cell death and cell cycle arrest, all determinant in cancer, and thus p63 affects chemosensitivity and chemoresistance. This demonstrates an important role for p63 in cancer development and its progression, and the aim of this review is to set this new evidence that links p63 to metastasis within the context of the long conserved other functions of p63.  相似文献   

9.
p73, a p53-related gene, is essential for a development of animals, while p53 is important for tumor formation. And little is known about the target genes specifically regulated by p73. Identifying the specific targets of p73 is important to understand the physiological roles of p73. To identify the genes specifically regulated by p73, we conducted serial analysis of gene expression to quantitatively evaluate messenger RNA populations. We found that the gene for phosphatidic acid phosphatase 2a (PAP2a), an enzyme that hydrolyzes lipids to generate diacylglycerol, was specifically upregulated by ectopic production of p73beta. The promoter region of this gene contains an element that is functionally responsive to p73beta. And the quantity of PAP2a protein was upregulated by ectopic production of p73beta. These results suggest that the expression of PAP2a is directly regulated by p73.  相似文献   

10.
11.
12.
The amino acid Glutamine is converted into Glutamate by a deamidation reaction catalyzed by the enzyme Glutaminase (GLS). Two isoforms of this enzyme have been described, and the GLS2 isoform is regulated by the tumor suppressor gene p53. Here, we show that the p53 family member TAp73 also drives the expression of GLS2. Specifically, we demonstrate that TAp73 regulates GLS2 during retinoic acid-induced terminal neuronal differentiation of neuroblastoma cells, and overexpression or inhibition of GLS2 modulates neuronal differentiation and intracellular levels of ATP. Moreover, inhibition of GLS activity, by removing Glutamine from the growth medium, impairs in vitro differentiation of cortical neurons. Finally, expression of GLS2 increases during mouse cerebellar development. Although, p73 is dispensable for the in vivo expression of GLS2, TAp73 loss affects GABA and Glutamate levels in cortical neurons. Together, these findings suggest a role for GLS2 acting, at least in part, downstream of p73 in neuronal differentiation and highlight a possible role of p73 in regulating neurotransmitter synthesis.  相似文献   

13.
14.
Transactivation domain (TAD)-truncated p73, DeltaNp73, associates with p53, resulting in suppression of p53's functions. Using p53 null cell lines, we examined whether or not DeltaNp73 can regulate gene expression in a p53-independent manner. When DeltaNp73alpha was co-transfected with a luciferase reporter plasmid with various enhancer elements, NFkappaB-responsive luciferase gene expression was selectively up-regulated by DeltaNp73alpha, but not by other p73-isoforms with TAD and DeltaNp73beta. Deletion of the TAD endowed p73alpha with the ability to enhance the responsive gene's expression, but deletion of the N-terminal proline-rich domain (PRD) rendered the TAD-deleted p73alpha inactive. Considering the inability of DeltaNp73beta, which is the C-terminus-truncated form of DeltaNp73alpha, to function, these results indicate that both the PRD and C-terminus are necessary for DeltaNp73alpha to can activate NFkappaB-responsive luciferase expression. Over-expression of p53 suppressed the TAD-truncated p73alpha-mediated luciferase expression, suggesting that p53 interferes with the TAD-truncated p73alpha-mediated activation of NFkappaB. Inhibitors for NFkappaB activation reduced the TAD-truncated p73alpha-dependent NFkappaB-responsive gene expression, indicating that TAD-truncated p73alpha activates NFkappaB as does TNFalpha. In addition to the results obtained in the reporter gene assay, TAD-truncated p73alpha stimulated the translocation of NFkappaB to the nucleus and the expression of an endogenous NFkappaB-responsive gene, Bcl-XL. Taken together, these results demonstrate that TAD-truncated p73alpha can activate NFkappaB.  相似文献   

15.
DNp73 is a transactivation domain (TAD)-truncated form of p73. The ability of DNp73alpha to regulate gene expression was examined using reporter assays with luciferase gene constructs. Among various promoter-regulated reporter genes tested, heat shock factor (HSF)-responsive gene expression was selectively activated by DNp73alpha, but not by other p73-isoforms with TAD and DNp73beta. Deletion of TAD endowed p73alpha with the ability to activate HSF-responsive gene expression, but deletion of N-terminal proline-rich domain (PRD) rendered both DNp73alpha and the TAD-deleted p73alpha inactive. Considering the inability of DNp73beta, which is the C-terminus-truncated form of DNp73alpha, to function, these results indicate that both the PRD and C-terminus are necessary for DNp73alpha to be able to activate the HSF-dependent gene expression. In addition to the reporter gene expression, both DNp73alpha and TAD-deleted p73alpha activated the expression of an endogenous gene, hsp70, corresponding with an increase in the active form of HSF1. Taken together, these results demonstrate that TAD-truncated p73alpha can activate HSF-dependent gene expression via induction of active HSF1.  相似文献   

16.
We previously reported that DAN, a founding member of the DAN family of secreted proteins, acts as an inhibitor of cell cycle progression and is closely involved in retinoic acid-induced neuroblastoma differentiation. In this study, we found that DAN as well as p73, the recently identified p53 family member, was up-regulated during osteoblast differentiation. Additionally, the expression of DAN was increased in response to cisplatin-induced cell death of neuroblastoma SH-SY5Y cells. Consistent with the previous reports, p73 was accumulated after the treatment with cisplatin. Intriguingly, we found a putative p53/p73-binding site in the 5'-upstream region of the human DAN gene. A luciferase reporter assay and an in vitro DNA-binding experiment revealed that this canonical p53/p73-binding site was a functional responsive element and was specific for p73. Our results suggest that there exists a functional association between DAN and p73 during osteoblast differentiation as well as cisplatin-induced cell death.  相似文献   

17.
18.
19.
p73 induces apoptosis by different mechanisms   总被引:11,自引:0,他引:11  
p73, like its homologue, the tumor suppressor p53, is able to induce apoptosis in several cell types. This property is important for the involvement of p73 in cancer development and therapy. However, in contrast with p53, the TAp73 gene has two distinct promoters coding for two protein isoforms with opposite effects: while the transactivation proficient TAp73 shows pro-apoptotic effects, the amino-terminal-deleted DeltaNp73 has an anti-apoptotic function. Indeed, the relative expression of these two proteins is related to the prognosis of several cancers. Here we discuss recent developments in the control of p73-induced apoptosis. First, TAp73 induces ER stress via the direct transactivation of Scotin. Second, TAp73 induces the mitochondrial pathway by directly transactivating both Bax and the BH3 only protein PUMA promoters. While the first transactivation is weak, and not sufficient to trigger apoptosis (at least in the in vitro cellular models so far evaluated), the induction of PUMA is strong and lethal. Third, the promoter of the death receptor CD95 contains a p53 responsive element and preliminary experiments suggest that TAp73 also activates the death receptor pathway. In addition, TAp73 is able to transactivate its own second promoter, thus inducing the expression of the anti-apoptotic DeltaNp73 isoform. Therefore, the balance between TAp73 and DeltaNp73 finely regulates cellular sensitivity to death.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号