首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nucleosome dimers containing, on average, a single molecule of histone H5 have been isolated from chicken erythrocyte nuclei and the associated DNA fragments cloned and sequenced. The average sequence organization of at least one of the two nucleosomes in the dimers is highly asymmetric and suggests that the torsional, as well as the axial, flexibility of DNA is a determinant of nucleosome positioning. On average the nucleosome dimer is a polar structure containing linker DNA of variable lengths. The sequences associated with H5 containing nucleosomes and core particles are sufficiently different to indicate that removal of histone H5 (or H1) from chromatin may result in the migration of the histone octamer and a consequent exposure of sites for regulatory proteins.  相似文献   

2.
3.
The epigenome represents a major regulatory interface to the eukaryotic genome. Nucleosome positions, histone variants, histone modifications and chromatin associated proteins all play a role in the epigenetic regulation of DNA function.  相似文献   

4.
Nucleosome positioning along the genome is partially determined by the intrinsic DNA sequence preferences on histone. RRRRRYYYYY (R5Y5, R?=?Purine and Y?=?Pyrimidine) motif in nucleosome DNA, which was presented based on several theoretical models by Trifonov et al., might be a facilitating sequence pattern for nucleosome assembly. However, there is not a high conformity experimental evidence to support the concept that R5Y5 motif is a key element for the determination of nucleosome positioning. In this work, the ability of the canonical, H2A.Z- and H3.3-containing octamers to assemble nucleosome on DNA templates containing R5Y5 motif and TA repeats within 10.5-bp periodicity was investigated by using salt-dialysis method in vitro. The results showed that the10.5-bp periodical distributions of both R5Y5 motif and TA repeats along DNA templates can significantly promote canonical nucleosome assembly and may be key sequence factors for canonical nucleosome assembly. Compared with TA repeats within 10.5-bp periodicity, R5Y5 motif in DNA templates did not elevate H2A.Z- and H3.3-containing nucleosome formation efficiency in vitro. This result indicates that R5Y5 motif probably isn’t a pivotal factor to regulate nucleosome assembly on histone variants. It is speculated that the regulatory mechanism of nucleosome assembly is different between canonical and variant histone. These conclusions can provide a deeper insight on the mechanism of nucleosome positioning.

Communicated by Ramaswamy H. Sarma  相似文献   


5.
Antibodies directed against whole histone and purified lysine-rich histone H1 extracted from isolated macronuclei of the ciliate Tetrahymena were obtained and conjugated to fluorescein isothiocyanate. The fluorescein-antibody conjugates were used to directly label Tetrahymena cells. Both macro- and micronuclei were visibly fluorescent in cells stained with anti-whole histone conjugate. However, the anti-H1 conjugate only labeled macronuclei. This in situ demonstration of the lack of positive immunofluorescent staining of micronuclei with anti-H1 conjugate provide further evidence for the absence of H1 in the genetically inactive, mitotically dividing Tetrahymena micronucleus.  相似文献   

6.
7.
Nucleosome positioning is important for the structural integrity of chromosomes. During metaphase the mitotic spindle exerts physical force on pericentromeric chromatin. The cell must adjust the pericentromeric chromatin to accommodate the changing tension resulting from microtubule dynamics to maintain a stable metaphase spindle. Here we examine the effects of spindle-based tension on nucleosome dynamics by measuring the histone turnover of the chromosome arm and the pericentromere during metaphase in the budding yeast Saccharomyces cerevisiae. We find that both histones H2B and H4 exhibit greater turnover in the pericentromere during metaphase. Loss of spindle-based tension by treatment with the microtubule-depolymerizing drug nocodazole or compromising kinetochore function results in reduced histone turnover in the pericentromere. Pericentromeric histone dynamics are influenced by the chromatin-remodeling activities of STH1/NPS1 and ISW2. Sth1p is the ATPase component of the Remodels the Structure of Chromatin (RSC) complex, and Isw2p is an ATP-dependent DNA translocase member of the Imitation Switch (ISWI) subfamily of chromatin-remodeling factors. The balance between displacement and insertion of pericentromeric histones provides a mechanism to accommodate spindle-based tension while maintaining proper chromatin packaging during mitosis.  相似文献   

8.
9.
10.
真核细胞中,作为染色质基本结构单元的核小体参与调控基因的转录、DNA复制、重组以及RNA剪接等诸多生物学过程。阐明核小体定位机制并准确预测核小体在染色体上的位置对解读染色质结构与功能有重要生物学意义。在过去30多年时间里,研究人员发展了多种预测核小体位置的方法。最理想的方法应考虑DNA序列、组蛋白修饰和染色质重塑等影响核小体定位的诸多因素,然而现实中,捕捉主要因素的模型也往往具有很高的鲁棒性和实用价值。DNA序列偏好性是在全基因组尺度上影响核小体定位的最重要因素之一,因此基于DNA序列的核小体定位预测方法也最常见。这种方法可大致分为两类,即基于DNA序列信息的生物信息学模型和基于DNA变形能的生物物理学模型。本文重点介绍生物物理学模型近些年取得的主要进展。  相似文献   

11.
Linker histone H1 is highly phosphorylated in normal growing Tetrahymena thermophila but becomes noticeably dephosphorylated in response to certain conditions such as prolonged starvation. Because phosphorylation of H1 has been associated with the regulation of gene expression, DNA repair, and other critical processes, we sought to use mass spectrometry-based approaches to obtain an in depth phosphorylation "signature" for this linker histone. Histone H1 from both growing and starved Tetrahymena was analyzed by nanoflow reversed-phase HPLC MS/MS following enzymatic digestions, propionic anhydride derivatization, and phosphopeptide enrichment via IMAC. We confirmed five phosphorylation sites identified previously and detected two novel sites of phosphorylation and two novel minor sites of acetylation. The sequential order of phosphorylation on H1 was deduced by using mass spectrometry to define the modified sites on phosphorylated H1 isoforms separated by cation-exchange chromatography. Relative levels of site-specific phosphorylation on H1 isolated from growing and starved Tetrahymena were obtained using a combination of stable isotopic labeling, IMAC, and tandem mass spectrometry.  相似文献   

12.
Nucleosome positioning on linear polyomavirus DNA was evaluated by Fourier transform analysis of data obtained by electron microscopy visualization of reconstituted nucleosomes after photoreaction with trimethylpsoralen. Results show a non random nucleosome positioning and this implies that the histone octamer discriminates among various nucleotide sequences also in the very simple model system adopted in this study. This recognition process appears rather complex because of the limited correlation between nucleosome distribution and DNA curvature, suggesting that other interactions could play a role.  相似文献   

13.
Rexer CH  Chalker DL 《Eukaryotic cell》2007,6(8):1320-1329
Extensive genome-wide rearrangements occur during somatic macronuclear development in Tetrahymena thermophila. These events are guided by RNA interference-directed chromatin modification including histone H3 lysine 9 methylation, which marks specific germ line-limited internal eliminated sequences (IESs) for excision. Several genes putatively involved in these developmental genome rearrangements were identified based on their proteins' localization to differentiating somatic nuclei, and here we demonstrate that one, LIA1, encodes a novel protein that is an essential component of the genome rearrangement machinery. A green fluorescent protein-Lia1 fusion protein exhibited dynamic nuclear localization during development that has striking similarity to that of the dual chromodomain-containing DNA rearrangement protein, Pdd1p. Coimmunoprecipitation experiments showed that Lia1p associates with Pdd1p and IES chromatin during macronuclear development. Cell lines in which we disrupted both the germ line and somatic copies of LIA1 (DeltaLIA1) grew normally but were unable to generate viable progeny, arresting late in development just prior to returning to vegetative growth. These mutant lines failed to properly form Pdd1p-containing nuclear structures and eliminate IESs despite showing normal levels of H3K9 methylation. These data indicate that Lia1p is required late in conjugation for the reorganization of the Tetrahymena genome.  相似文献   

14.
Nucleosome destabilization by histone variants and modifications has been implicated in the epigenetic regulation of gene expression, with the histone variant H2A.Z and acetylation of H3K56 (H3K56ac) being two examples. Here we find that deletion of SWR1, the major subunit of the SWR1 complex depositing H2A.Z into chromatin in exchange for H2A, promotes epigenetic white-opaque switching in Candida albicans. We demonstrate through nucleosome mapping that SWR1 is required for proper nucleosome positioning on the promoter of WOR1, the master regulator of switching, and that its effects differ in white and opaque cells. Furthermore, we find that H2A.Z is enriched adjacent to nucleosome-free regions at the WOR1 promoter in white cells, suggesting a role in the stabilization of a repressive chromatin state. Deletion of YNG2, a subunit of the NuA4 H4 histone acetyltransferase (HAT) that targets SWR1 activity through histone acetylation, produces a switching phenotype similar to that of swr1, and both may act downstream of the GlcNAc signaling pathway. We further uncovered a genetic interaction between swr1 and elevated H3K56ac with the discovery that the swr1 deletion mutant is highly sensitive to nicotinamide. Our results suggest that the interaction of H2A.Z and H3K56ac regulates epigenetic switching at the nucleosome level, as well as having global effects.  相似文献   

15.
The complete amino acid sequence of a high mobility group (HMG) nonhistone chromosomal protein of the ciliated protozoan Tetrahymena pyriformis (GL strain) was determined. This protein was extracted with 0.5 M HClO4 together with histone H1 (molar ratio 1:1) from the whole histone extract, then purified by gel filtration and reverse-phase HPLC. The HMG protein showed a single electrophoretic band on SDS gel electrophoresis. The amino acid sequence was determined by Edman degradation of intact protein, BrCN fragments, and their staphylococcal protease and tryptic peptides. Thus the total sequence, consisting of 99 amino acid residues and having a molecular weight of 11,626, was completely determined. Phosphorus analysis of the tryptic peptides, containing serine or threonine, showed that this HMG protein was phosphorylated at two positions, each 6-7%, and contained 0.15 mol phosphate/mol protein. This Tetrahymena HMG is rather similar to the central part of vertebrate HMG 1 in terms of the amino acid sequence and the hydropathy profile.  相似文献   

16.
H1 histone, polylysine and spermine facilitate nucleosome assembly in vitro   总被引:1,自引:0,他引:1  
E S Bogdanova 《FEBS letters》1984,175(2):321-324
Nucleosome formation has been studied in a system containing relaxed Col E1 DNA, core histones and an extract of Drosophila embryos. The formation of nucleosomes was established by the introduction of supercoils into DNA. The degree of DNA supercoiling was shown to be higher if nucleosomes were assembled in the presence of the H1 histone, polylysine (Mr 20 000) or spermine. These agents do not stimulate relaxation and are the more effective the earlier they are added to the reaction. Thus, the H1 histone, polylysine and spermine facilitate nucleosome assembly in vitro.  相似文献   

17.
18.
19.
20.
Growth-associated H1 histone kinase, a homolog of the yeast cdc2+/CDC28 protein kinases that control entry into mitosis, is a chromatin-bound cyclic nucleotide-independent enzyme found only in growing cells. In a procedure involving salt extraction of chromatin, ammonium sulfate precipitation, and three chromatographic steps, the enzyme has been purified greater than 10,000-fold from Novikoff hepatoma cells. Enzyme purified by this procedure catalyzes the transfer to H1 histone of 2.7 mumol of phosphate/min/mg, a specific activity within the range of those reported for a number of homogeneous or nearly homogeneous protein kinases. Further purification to near homogeneity was achieved by an additional step of sucrose density gradient fractionation. Enzyme activity in the sucrose gradient is associated with two polypeptides of apparent Mr 60,000 and 33,000 on sodium dodecyl sulfate-gel electrophoresis. Substrate specificity studies show that in addition to H1, proteins with H1-like structure and function including histone H1(0), the erythrocyte-specific H5 histone, and the testis-specific H1t histone are phosphorylated. Nucleosome core histone H3, high mobility group proteins 1, 2, 14, and 17, protamine, casein, and ribosomal protein S6 are not substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号