首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biphasic modulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase) has been demonstrated in primary hepatocyte cultures treated with the lanosterol 14 alpha-methyl demethylase inhibitor miconazole. At concentrations of the drug which lead to suppressed levels of reductase activity, the appearance of a polar, mevalonate-derived sterol is noted. Cochromatography of the identified sterol with 3 beta-hydroxylanost-8-en-32-aldehyde tentatively identified the metabolite as a lanosterol 14 alpha-methyl demethylation intermediate. Subsequent isolation and characterization of the metabolite by gas chromatography/mass spectroscopy confirmed this structural assignment. When the lanosterol 14 alpha-methyl demethylase-deficient mutant, AR45, was treated with authentic metabolite, a suppression of HMG-CoA reductase was observed. These results demonstrate that metabolism of the oxygenated biosynthetic intermediate is not required to suppress reductase activity. The results also strongly support the hypothesis that oxygenated 14 alpha-methyl demethylase intermediates are endogenously generated modulators of HMG-CoA reductase activity.  相似文献   

2.
The involvement of oxygenated cholesterol precursors in the regulation of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase activity was studied by examining the effect of ketoconazole on the metabolism of mevalonic acid, lanosterol and the lanosterol metabolites, lanost-8-ene-3 beta,32-diol,3 beta-hydroxylanost-8-en-32-al and 4,4-dimethylcholesta-8,14-dien-3 beta-ol, in liver subcellular fractions and hepatocyte cultures. Inhibition of cholesterol synthesis from mevalonate by ketoconazole at concentrations up to 30 microM was due exclusively to a suppression of cytochrome P-450LDM (LDM = lanosterol demethylase) activity, resulting in a decreased rate of lanosterol 14 alpha-demethylation. No enzyme after the 14 alpha-demethylase step was affected. When [14C]mevalonate was the cholesterol precursor, inhibition of cytochrome P450LDM was accompanied by the accumulation of several labelled oxygenated sterols, quantitatively the most important of which was the C-32 aldehyde derivative of lanosterol. There was no accumulation of the 24,25-oxide derivative of lanosterol, nor of the C-32 alcohol. Under these conditions the activity of HMG-CoA reductase declined. The C-32 aldehyde accumulated to a far greater extent when lanost-8-ene-3 beta,32-diol rather than mevalonate was used as the cholesterol precursor in the presence of ketoconazole. With both precursors, this accumulation was reversed at higher concentrations of ketoconazole in liver subcellular fractions. A similar reversal was not observed in hepatocyte cultures.  相似文献   

3.
With [3H-24,25]-dihydrolanosterol as substrate, large-scale metabolic formation of intermediates of lanosterol demethylation was carried out to identify all compounds in the metabolic process. Utilizing knowledge of electron transport of lanosterol demethylation, we interrupted the demethylation reaction allowing accumulation and confirmation of the structure of the oxygenated intermediates lanost-8-en-3 beta,32-diol and 3 beta-hydroxylanost-8-en-32-al, as well as the demethylation product 4,4-dimethyl-cholesta-8,14-dien-3 beta-ol. Further metabolism of the delta 8.14-diene intermediate to a single product 4,4-dimethyl-cholest-8-en-3 beta-ol occurs under interruption conditions in the presence of 0.5 mM CN-1. With authentic compounds, each intermediate has been rigorously characterized by high performance liquid chromatography and gas-liquid chromatography plus mass spectral analysis of isolated and derivatized sterols. Intermediates that accumulated in greater abundance were further characterized by ultraviolet, 1H-NMR, and infrared spectroscopy of the isolated sterols.  相似文献   

4.
J Iglesias  G F Gibbons 《Steroids》1989,53(3-5):311-328
The effects of ketoconazole, an inhibitor of cytochrome P-450, on the metabolism of the cholesterol precursors lanosterol, dihydrolanosterol, lanost-8-en-3 beta,32-diol, and 3 beta-hydroxylanost-8-en-32-al were investigated in subcellular fractions of rat liver and in rat hepatocytes in culture. At low (1-2 microM) concentrations of the drug, the oxidative demethylation of lanosterol was inhibited by about 70% in the subcellular fractions but there was no effect on the metabolism of the 3 beta, 32-diol or the 32-aldehyde. Higher drug concentrations (10-20 microM) were required to inhibit the oxidative metabolism of these cholesterol precursors. Similar results were obtained during longer-term incubations using hepatocytes in culture medium, but higher concentrations of ketoconazole were required to effect the same degree of inhibition of each precursor. In the subcellular fractions, dihydrolanosterol, the 3 beta,32-diol and the 32-aldehyde were each metabolized to more polar sterols, in addition to cholesterol. Ketoconazole also inhibited the formation of these polar substances.  相似文献   

5.
Carbon monoxide inhibited the removal of C-32 of dihydrolanosterol (I), but not of its metabolites 5 alpha-lanost-8-ene-3 beta,32-diol (II) and 3 beta-hydroxy-5 alpha-lanost-8-en-32-al (III). It appears therefore that cytochrome P-450 is a component of the enzyme system required to initiate oxidation of the 14 alpha-methyl group, but not of that responsible for the subsequent oxidation steps required for elimination of C-32 as formic acid. Non-radioactive compounds (II) and (III), when added to cell-free systems actively converting dihydrolanosterol into cholesterol, inhibited 14 alpha-demethylation measured by the rate of formation of labelled cholesterol from dihydro[1,7,15,22,26,30-14C]lanosterol or of labelled formic acid from dihydro[32-14C]lanosterol. However, neither compound (II) nor compound (III) accumulated radioactive label under these conditions. These observations could be attributed partly to inhibition of the initial oxidation of the 14 alpha-methyl group by compounds (II) and (III).  相似文献   

6.
Lanosterol 14 alpha-methyl demethylation is a cytochrome P-450-dependent process that proceeds through the oxidative sequence of alcohol, aldehyde followed by decarbonylation with formic acid release. Microsomal metabolism studies shown here indicate that only lanostenols and 32-oxy-lanostenols with unsaturation at either the delta 7 or delta 8 position in the sterol can be demethylated. The 14 alpha-methyl group of either lanostan-3 beta-ol or delta 6 lanostenol is not oxidized to the anticipated C-32 alcohol or aldehyde by the enzyme, nor are the corresponding 32-oxy-lanostanols demethylated when incubated with microsomal preparations. Despite the lack of metabolism, the saturated and delta 6 sterol analogues are effective competitive inhibitors of demethylase activity. Utilizing preferred substrates, comparison of the component reactions of the demethylation sequence shows that both the oxidative function and lyase function are sensitive to common inhibitors and that both activities require NADPH. These findings strongly support the premise that a P-450 isozyme does catalyze each phase of the lanosterol 14 alpha-methyl demethylation sequence. Collectively these results demonstrate the double-bond requirement for both components of the demethylation sequence and suggest that the olefinic electrons at delta 7 or delta 8 but not delta 6 may participate directly during demethylation. This participation may involve stabilizing a transition state intermediate or directing activated oxygen insertion as part of the P-450 monoxygenase mechanism.  相似文献   

7.
Conditions have been established which promote the accumulation of the dihydrolanosterol C-32 demethylation intermediates lanost-8-en-3 beta,32-diol and 3 beta-hydroxylanost-8-en-32-aldehyde with intact hepatic microsomes. Accumulation of dihydrolanosterol-derived oxysterols occurs with a variety of assay manipulations which include short incubation times, limiting enzyme amounts, high pH, and increasing substrate concentration. In addition, competitive inhibition of dihydrolanosterol demethylation by lanosterol, or the reciprocal inhibition of lanosterol demethylation by dihydrolanosterol, leads to oxysterol accumulation at the expense of demethylated end product. Similarly, the nonsteroidal demethylase inhibitors miconazole and ketoconazole promote oxysterol accumulation in a concentration-dependent manner. Finally, cholesterol loading of isolated microsomes results in changes in the measured kinetic constants, Km and Vmax, and results in enhanced oxysterol accumulation above that seen in control microsomal preparations. The major oxysterol intermediate accumulated under all the conditions described above is the C-32 aldehyde in an approximate 3:1 ratio to the C-32 alcohol. These data support the conclusion that a single enzyme species is responsible for all three oxidations of the C-32 demethylation sequence. In addition, intermediates which do not routinely accumulate during demethylation are freely diffusible from the enzyme when appropriate conditions are established to prevent their further metabolism.  相似文献   

8.
By using cell-free preparations of rat liver it was shown that the removal of the 14alpha-methyl group (C-32) of steroids containing either a delta7(8) or a delta8(9) double bond is attended exclusively by the formation of the corresponding 7,14- and 8,14-dienes respectively (structures of types III and VIII). Cumulative evidence from a variety of experimental approaches had led to the deduction that delta8(14)-steroids are not involved as intermediates on the major pathway of cholesterol biosynthesis. The metabolism of [32-3H]lanost-7-ene-3beta,32-diol (structure of type I) results in the formation of radioactive formic acid, no labelled formaldehyde being formed. By using appropriately labelled species of the compound (I) it was found that the release of formic acid and the formation of 4,4-dimethylcholesta-7,14-dien-3beta-ol (strurcture of type III) were closely linked processes, and that in the conversion of compound (I) into compound (III), 3-beta-hydroxylanost-7-en-32-al (II) is an obligatory intermediate. Both the conversion of lanost-7-ene-3beta,32-diol (I) into 3beta-hydroxylanost-7-en-32-al (II) and the further metabolism of the latter (II) to 4,4-dimethylcholesta-7,14-dien-3beta-ol (III) exhibited a requirement for NADPH and O2. This suggests that the oxidation of the 32-hydroxy group of compound (I) to the aldehyde group of compound (II) does not occur by the conventional alcohol dehydrogenase type of reaction, but may proceed by a novel mechanism involving the intermediacy of a gem-diol. A detailed overall pathway for the 14alpha-demethylation in cholesterol biosynthesis is considered, and proposals about the mechanism of individual steps in the pathway are made.  相似文献   

9.
The purified lanosterol 14a-demethylase (P-45014DM) of S. cerevisiae catalyzed the 14a-demethylation of 24-methylene-24,25-dihydrolanosterol (24-methylenelanost-8-en-3 beta-ol, 24-methylene-DHL), the natural substrate of the demethylase of filamentous fungi, as well as its natural substrate, lanosterol. Lanosterol 14a-demethylase of rat liver microsomes also catalyzed the 14a-demethylation of 24-methylene-DHL, but the activity was considerably lower than that for lanosterol. The activity of the rat liver enzyme for 24-methylene-DHL was also lower than that for 24,25-dihydrolanosterol (DHL), while the activity of yeast P-45014DM for 24-methylene-DHL was considerably higher than that for DHL. Since 24-substituted sterols are not found in mammals and DHL is not an intermediate of ergosterol biosynthesis by yeast, above-mentioned different substrate specificities between the yeast and the mammalian 14a-demethylases may reflect certain evolutional alteration in their active sites in relation to the difference in their sterol biosynthetic pathways.  相似文献   

10.
The lanosterol 14 alpha-methyl demethylase inhibitors miconazole and ketoconazole have been used to assess their effects upon cholesterol biosynthesis in cultured Chinese hamster ovary cells. In Chinese hamster ovary cells treated with either agent, an initial accumulation of lanosterol and dihydrolanosterol has been observed. At elevated concentrations, however, ketoconazole, but not miconazole, causes the preferential accumulation of 24,25-epoxylanosterol and squalene 2,3:22,23-dioxide. These metabolites accumulate at the expense of lanosterol, thereby demonstrating a second site of inhibition for ketoconazole in the sterol biosynthetic pathway. Both demethylase inhibitors produced a biphasic modulation of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, the rate-limiting enzyme in the cholesterol biosynthetic pathway. The biphasic modulation is characterized by low levels of the drugs suppressing HMG-CoA reductase activity which is restored to either control or above control values at higher drug concentrations. This modulatory effect of the lanosterol demethylase inhibitors upon HMG-CoA reductase was not observed in the lanosterol 14 alpha-methyl demethylase-deficient mutant AR45. Suppression of HMG-CoA reductase activity is shown to be due to a decrease in the amount of enzyme protein consistent with a steroidal regulatory mechanism. Collectively, the results establish that lanosterol 14 alpha-methyl demethylation, but not 24,25-epoxylanosterol formation, is required to suppress HMG-CoA reductase in the manner described by lanosterol demethylase inhibitors.  相似文献   

11.
Metabolism of 32-hydroxy-24,25-dihydrolanosterol (lanost-8-ene-3 beta,32-diol), a posturated intermediate of the 14 alpha-demethylation (removal of C-32) of 24,25-dihydrolanosterol (lanost-8-en-3 beta-ol), by a reconstituted system consisting of yeast cytochrome P-450 which catalyzes lanosterol 14 alpha-demethylation (cytochrome P-45014DM) (Yoshida, Y., and Aoyama, Y. (1984) J. Biol. Chem. 259, 1655-1660 and Aoyama, Y., Yoshida, Y., and Sato, R. (1984) J. Biol. Chem. 259, 1661-1666) and NADPH-cytochrome P-450 reductase was studied. The reconstituted system converted both 32-hydroxy-24,25-dihydrolanosterol and 24,25-dihydrolanosterol to 4,4-dimethyl-5 alpha-cholesta-8,14-dien-3 beta-ol, the 14 alpha-demethylated product of the latter. The metabolism of these compounds was inhibited by a low concentration of ketoconazole which is a potent cytochrome P-45014DM inhibitor. Affinity of cytochrome P-45014DM for 32-hydroxy-24,25-dihydrolanosterol was about 20 times higher than for 24,25-dihydrolanosterol and the cytochrome metabolized the former about 4 times faster than the latter under the experimental conditions. Spectral analysis suggested that the 32-hydroxyl group of 32-hydroxy-24,25-dihydrolanosterol interacted with the heme iron of the oxidized cytochrome and this interaction might support the high affinity of this compound for the cytochrome. These lines of evidence indicate that 32-hydroxy-24,25-dihydrolanosterol is the intermediate of the 14 alpha-demethylation of 24,25-dihydrolanosterol by cytochrome P-45014DM. It is also clear that the cytochrome catalyzes further metabolism of the 32-hydroxylated intermediate to the 14 alpha-demethylated product with higher efficiency than the 32-hydroxylation of the substrate. Cytochrome P-45014DM is thus classified as lanosterol C14-C32 lyase.  相似文献   

12.
Identification of lanosterol 14 alpha-methyl demethylase in human tissues   总被引:1,自引:0,他引:1  
Lanosterol 14 alpha-methyl demethylase was investigated in human tissues using a radio-HPLC assay to detect the 4,4-dimethyl-5 alpha-cholesta-8, 14-dien-3 beta-ol (diene) metabolite. The sequence of events leading to the demethylated product in human liver microsomes involves the conversion of the diol to the aldehyde followed by diene formation. Enzyme activity displayed a greater than 10 fold variation among the 9 liver samples studied. Kinetic parameters were determined and shown to differ between two separate liver samples. Addition of inhibitors of yeast lanosterol 14 alpha demethylase, ketoconazole and miconazole, resulted in extensive inhibition of formation of the demethylated metabolite. The enzyme, detected in microsomes isolated from human kidney and lymphocytes, also catalyzed the conversion of dihydrolanosterol to oxylanosterol intermediates and the diene. The presence of this enzyme in microsomes from various human tissues suggests that it may play a role in cellular regulation of cholesterol synthesis.  相似文献   

13.
A Chinese hamster ovary cell mutant, AR45, was selected for amphotericin B resistance after treatment with the mutagen ethyl methanesulfonate. The mutant is a cholesterol auxotroph with a deficiency in cholesterol biosynthesis. Whole cell experiments demonstrate that the mutant accumulates the C30 sterols, lanosterol and dihydrolanosterol, under culture conditions which promote active sterol biosynthesis. Metabolic studies show that the C29 sterol demethylation product of lanosterol, but not lanosterol itself, is actively converted to end product cholesterol by whole cells as well as by microsomal preparations derived from the mutant. Detectable amounts of several cytochromes can be observed spectrally in the AR45 demonstrating that it is not a general heme-deficient mutant. Collectively, these results characterize the AR45 mutant cells as being lanosterol 14 alpha-methyl demethylase-deficient. The cell line should prove useful in studying regulation of the demethylase enzyme and the putative endogenous regulatory oxysterol. It should also be a useful tool in the molecular cloning and elucidation of genetic properties of the demethylase.  相似文献   

14.
Binding of sterol response element binding protein 1a to sterol response element-1 (SRE-1) in the promoter region of lanosterol 14 alpha-demethylase (14DM) has been demonstrated previously. Decreased 14DM activity has been shown to result in accumulation of the intermediate, 3 beta-hydroxy-lanost-8-en-32-al, a known translational downregulator of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Since it has also been demonstrated that feedback regulation of hepatic HMG-CoA reductase occurs primarily at the level of translation, the effects of dietary cholesterol and cholesterol lowering agents on levels of hepatic 14DM mRNA and immunoreactive protein were investigated. Addition of 1% cholesterol to a chow diet markedly decreased hepatic 14DM mRNA and protein levels in Sprague-Dawley rats. The extent and time course of this decrease in 14DM immunoreactive protein closely paralleled that of HMG-CoA reductase. Supplementation of the diet with the HMG-CoA reductase inhibitor, Lovastatin, to a level of 0.02%, raised 14DM mRNA and protein levels 2- to 3-fold. Addition of 2% Colestipol, a bile acid binding resin, to the chow diet caused smaller increases. The highest level of 14DM protein expression was observed in liver, the major site of feedback regulation of HMG-CoA reductase by cholesterol. Taken together, these observations suggest a critical role for 14DM in the feedback regulation of hepatic HMG-CoA reductase.  相似文献   

15.
Electron transfer to rat liver microsomal cytochrome P-450 of 14 alpha-methyl group demethylation of 24,25-dihydrolanosterol (C30-sterol) has been studied with a new radio-high-performance liquid chromatography assay. The monooxygenase is dependent upon NADPH plus oxygen, insensitive to CN-, and sensitive to CO. Microsomal oxidation is also sensitive to trypsin digestion, and reactivation is dependent upon the addition of purified, detergent-solubilized cytochrome P-450 reductase. Electron transport of C-32 sterol demethylation can be fully supported by very low concentrations of NADPH (approximately 10 microM) only in the presence of saturating concentrations of NADH (approximately 200 microM) suggesting involvement of cytochrome b5-dependent electron transfer in addition to the NADPH-supported pathway. The cytochrome P-450 of 14 alpha-demethylation has been solubilized with detergents, resolved chromatographically from cytochrome P-450 reductase and cytochrome b5, and fully active C-32 demethylase reconstituted. Incubation of intact microsomes with NADH and very low concentrations of NADPH described above leads to interruption of demethylation without 14 alpha-methyl group elimination. Under these conditions, C-32 oxidation products of the C30-sterol substrate accumulate at the expense of formation of demethylated, C29-sterol products. This enzymic interruption of C-32 demethylation, accumulation of oxygenated C30-sterols, along with subsequent demethylation of the isolated C30-oxysterols under similar oxidative conditions supports the suggestion that 14 alpha-hydroxymethyl and aldehydic sterols are metabolic intermediates of sterol 14 alpha-demethylation. Only very modest inductions of the constitutive cytochrome P-450 isozyme of 14 alpha-methyl sterol oxidase can be obtained with just 2 out of 12 known, potent inducers of mammalian hepatic cytochrome P-450s. Alternatively, administration of complete adjuvant in mineral oil drastically reduces amounts of total microsomal cytochrome P-450 while activity of 14 alpha-methyl sterol oxidase is not affected dramatically. Thus, as much as 2.5-fold enhancement of C-32 oxidase specific activity is obtained when expressed per unit of cytochrome P-450.  相似文献   

16.
Lanosterol 14 alpha-demethylase (P45014DM) is the cytochrome P450 enzyme complex responsible for an early step in cholesterol biosynthesis, namely the 14 alpha-demethylation of lanosterol. We have synthesized a novel series of steroidal substrate analogues, designed to be specific and potent inhibitors of P45014DM. We describe here the effects of these compounds on sterol biosynthesis downstream from lanosterol, focusing ultimately on their efficacy as inhibitors of cholesterol biosynthesis. Results using a radio-high performance liquid chromatography (HPLC) assay show that in rat liver microsomal preparations, with [24,25-3H]dihydrolanosterol as substrate, the compounds do indeed inhibit the biosynthesis of sterols downstream from lanosterol. A range of inhibitory potencies was observed, and the key enzyme being inhibited was believed to be P45014DM. Inhibitor efficacy was readily correlated with non-metabolized [24,25-3H]dihydrolanosterol, formation of 4,4-dimethyl-cholest-8-en-3 beta-ol, and formation of lathosterol, a sterol believed to be an excellent indicator of whole body cholesterol biosynthesis in humans.  相似文献   

17.
A suite of six sterols, lanosterol, lanost-8(9)-en-3beta-ol, 4, 4-dimethylcholesta-8(14),24-dien-3beta-ol, 4, 4-dimethylcholest-8(14)-en-3beta-ol, 4-methylcholesta-8(14), 24-dien-3beta-ol and 4-methylcholest-8(14)-en-3beta-ol, were identified in the psychrophilic methanotrophic bacterium, Methylosphaera hansonii. Their presence suggests that the capacity for sterol biosynthesis in methanotrophic bacteria is limited to the family Methylococcaceae but which have widely different optimal growth temperatures.  相似文献   

18.
Cholest-8(14)-enol is the major radioactive component of the 4-di-demethyl sterol fraction biosynthesized from 4,4-dimethyl[2-(3)H(2)]cholest-8(14)-enol by rat liver microsomal fractions, and therefore the first steps in the biosynthesis of cholesterol from the latter compound probably involve removal of the 4-methyl groups. 4,4-Dimethylcholesta-8,14-dienol therefore is not an intermediate in this process, although its presence in the incubation medium at a concentration of 0.146mm almost completely inhibits the demethylation of 4,4-dimethyl[2-(3)H(2)]cholest-8(14)-enol. Nor is cholesta-8,14-dienol an intermediate in the conversion of cholest-8(14)-enol into cholest-7-enol and cholesterol. With 4,4-dimethyl[2-(3)H(2)]cholesta-8,14-dienol as the cholesterol precursor, 4,4-dimethylcholest-8(9)-enol becomes heavily labelled and there is very little radioactivity associated with cholesta-8,14-dienol.In this case, the most heavily labelled 4-di-demethyl sterols are cholest-7-enol and cholesterol with the former predominating. There is little or no radio-activity associated with cholest-8(14)-enol. A similar labelling pattern amongst the 4-di-demethyl sterols was observed with dihydro[(14)C]lanosterol as the precursor. The first step therefore in the synthesis of cholesterol from the 4,4-dimethyl[2-(3)H(2)]dienol is reduction of the Delta(14(15)) bond and not removal of the 4alpha-methyl group. Depending on the nature of the precursor, addition of the soluble fraction of the cell to the microsomal fraction resulted in a two- to four-fold stimulation of 4-di-demethyl sterol biosynthesis from the 4,4-dimethyl sterols studied. Under these conditions, 4,4-dimethylcholesta-8,14-dienol is the most efficient precursor of cholesterol and cholest-7-enol, and dihydrolanosterol is better than 4,4-dimethylcholest-8(14)-enol.  相似文献   

19.
The chemical syntheses of a number of 4,4-dimethyl substituted 15-oxygenated sterols have been pursued to permit evaluation of their activity in the inhibition of the biosynthesis of cholesterol and other biological effects. Described herein are the first chemical syntheses of 4,4-dimethyl-14 alpha-ethyl-5 alpha-cholest-7-en-3 beta-ol-15-one, 3 beta,15 alpha-diacetoxy-4,4-dimethyl-14 alpha-ethyl-5 alpha-cholest-7-ene, 3 beta-acetoxy-4,4-dimethyl-14 alpha-ethyl-5 alpha-cholest-7-en-15 beta-ol, 4,4-dimethyl-14 alpha-ethyl-5 alpha-cholest-7-ene-3 beta,15 alpha-diol, 4,4-dimethyl-14 alpha-ethyl-5 alpha-cholest-7-ene-3 beta,15 beta-diol, 4,4-dimethyl-14 alpha-ethyl-5 alpha-cholest-7-en-15 alpha-ol-3-one, 3 beta-benzoyloxy-4,4-dimethyl-5 alpha-cholest-8(14)-ene-7 alpha,15 alpha-diol, 7 alpha,15 alpha-diacetoxy-3 beta-benzoyloxy-4,4-dimethyl-5 alpha-cholest-8(14)-ene, 4,4-dimethyl-5 alpha-cholest-8(14)-en-3 beta-ol-15-one and 3 beta,7 alpha,15 alpha-tri-o-bromobenzoyloxy-5 alpha-cholest-8(14)-ene. Also prepared for use in the biological experiments were 4,4-dimethyl-5 alpha-cholest-7-ene-3 beta,15 alpha-diol, 4,4-dimethyl-5 alpha-cholest-8-ene-3 beta,15 alpha-diol and 4,4-dimethyl-5 alpha-cholest-8(14)-ene-3 beta,7 alpha,15 alpha-triol. The effects of twelve 4,4-dimethyl substituted 15-oxygenated sterols and of four 4,4-dimethyl substituted 32-oxygenated sterols on sterol synthesis and on the level of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity were evaluated in mouse L cells. With the exception of 4,4-dimethyl-5 alpha-cholest-8(14)-ene-3 beta,7 alpha,15 alpha-triol, all of the 4,4-dimethyl substituted 15-oxygenated sterols caused a 50% inhibition of sterol synthesis at less than 10(-6) M and six of the 4,4-dimethyl substituted 15-oxygenated sterols caused a 50% inhibition of sterol synthesis at less than 10(-7) M. 4,4-Dimethyl-14 alpha-ethyl-5 alpha-cholest-7-ene-3 beta,15 alpha-diol caused a 50% decrease in sterol synthesis at 10(-8) M. The potencies of the 4,4-dimethyl substituted 15-oxygenated and C-32-oxygenated sterols with respect to inhibition of sterol synthesis and suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity have been compared with those of the corresponding sterols lacking the 4,4-dimethyl substitution.  相似文献   

20.
1. A convenient synthesis of 3-hydroxytrisnorlanost-8-en-24-al and its conversion into [24-(3)H]lanosterol and [26,27-(14)C(2)]lanosterol is described. 2. A method for the efficient incorporation of lanosterol into ergosterol by the whole cells of Saccharomyces cerevisiae is also described. 3. It is shown that in the biosynthesis of ergosterol from doubly labelled lanosterol the C-24 hydrogen atom of lanosterol is retained in ergosterol. 4. On the basis of unambiguous degradations it is shown that the C-alkylation step in ergosterol biosynthesis is accompanied by the migration of a hydrogen atom from C-24 to C-25. 5. The mechanism for the biosynthesis of the ergosterol side chain is presented. 6. Mechanisms of other C-alkylation reactions are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号