首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Valdar WS  Thornton JM 《Proteins》2001,42(1):108-124
Evolutionary information derived from the large number of available protein sequences and structures could powerfully guide both analysis and prediction of protein-protein interfaces. To test the relevance of this information, we assess the conservation of residues at protein-protein interfaces compared with other residues on the protein surface. Six homodimer families are analyzed: alkaline phosphatase, enolase, glutathione S-transferase, copper-zinc superoxide dismutase, Streptomyces subtilisin inhibitor, and triose phosphate isomerase. For each family, random simulation is used to calculate the probability (P value) that the level of conservation observed at the interface occurred by chance. The results show that interface conservation is higher than expected by chance and usually statistically significant at the 5% level or better. The effect on the P values of using different definitions of the interface and of excluding active site residues is discussed.  相似文献   

3.
In eukaryotic organisms clathrin-coated vesicles are instrumental in the processes of endocytosis as well as intracellular protein trafficking. Hence, it is important to understand how these vesicles have evolved across eukaryotes, to carry cargo molecules of varied shapes and sizes. The intricate nature and functional diversity of the vesicles are maintained by numerous interacting protein partners of the vesicle system. However, to delineate functionally important residues participating in protein-protein interactions of the assembly is a daunting task as there are no high-resolution structures of the intact assembly available. The two cryoEM structures closely representing intact assembly were determined at very low resolution and provide positions of Cα atoms alone. In the present study, using the method developed by us earlier, we predict the protein-protein interface residues in clathrin assembly, taking guidance from the available low-resolution structures. The conservation status of these interfaces when investigated across eukaryotes, revealed a radial distribution of evolutionary constraints, i.e., if the members of the clathrin vesicular assembly can be imagined to be arranged in spherical manner, the cargo being at the center and clathrins being at the periphery, the detailed phylogenetic analysis of these members of the assembly indicated high-residue variation in the members of the assembly closer to the cargo while high conservation was noted in clathrins and in other proteins at the periphery of the vesicle. This points to the strategy adopted by the nature to package diverse proteins but transport them through a highly conserved mechanism.  相似文献   

4.
Residue frequencies and pairing preferences at protein-protein interfaces   总被引:3,自引:0,他引:3  
We used a nonredundant set of 621 protein-protein interfaces of known high-resolution structure to derive residue composition and residue-residue contact preferences. The residue composition at the interfaces, in entire proteins and in whole genomes correlates well, indicating the statistical strength of the data set. Differences between amino acid distributions were observed for interfaces with buried surface area of less than 1,000 A(2) versus interfaces with area of more than 5,000 A(2). Hydrophobic residues were abundant in large interfaces while polar residues were more abundant in small interfaces. The largest residue-residue preferences at the interface were recorded for interactions between pairs of large hydrophobic residues, such as Trp and Leu, and the smallest preferences for pairs of small residues, such as Gly and Ala. On average, contacts between pairs of hydrophobic and polar residues were unfavorable, and the charged residues tended to pair subject to charge complementarity, in agreement with previous reports. A bootstrap procedure, lacking from previous studies, was used for error estimation. It showed that the statistical errors in the set of pairing preferences are generally small; the average standard error is approximately 0.2, i.e., about 8% of the average value of the pairwise index (2.9). However, for a few pairs (e.g., Ser-Ser and Glu-Asp) the standard error is larger in magnitude than the pairing index, which makes it impossible to tell whether contact formation is favorable or unfavorable. The results are interpreted using physicochemical factors and their implications for the energetics of complex formation and for protein docking are discussed. Proteins 2001;43:89-102.  相似文献   

5.

Background  

A polypeptide chain of a protein-protein complex is said to be obligatory if it is bound to another chain throughout its functional lifetime. Such a chain might not adopt the native fold in the unbound form. A non-obligatory polypeptide chain associates with another chain and dissociates upon molecular stimulus. Although conformational changes at the interaction interface are expected, the overall 3-D structure of the non-obligatory chain is unaltered. The present study focuses on protein-protein complexes to understand further the differences between obligatory and non-obligatory interfaces.  相似文献   

6.
7.
Single-span transmembrane (TM) helices have structural and functional roles well beyond serving as mere anchors to tether water-soluble domains in the vicinity of the membrane. They frequently direct the assembly of protein complexes and mediate signal transduction in ways analogous to small modular domains in water-soluble proteins. This review highlights different sequence and structural motifs that direct TM assembly and discusses their roles in diverse biological processes. We believe that TM interactions are potential therapeutic targets, as evidenced by natural proteins that modulate other TM interactions and recent developments in the design of TM-targeting peptides.  相似文献   

8.
Hot spot residues contribute dominantly to protein-protein interactions. Statistically, conserved residues correlate with hot spots, and their occurrence can distinguish between binding sites and the remainder of the protein surface. The hot spot and conservation analyses have been carried out on one side of the interface. Here, we show that both experimental hot spots and conserved residues tend to couple across two-chain interfaces. Intriguingly, the local packing density around both hot spots and conserved residues is higher than expected. We further observe a correlation between local packing density and experimental deltadeltaG. Favorable conserved pairs include Gly coupled with aromatics, charged and polar residues, as well as aromatic residue coupling. Remarkably, charged residue couples are underrepresented. Overall, protein-protein interactions appear to consist of regions of high and low packing density, with the hot spots organized in the former. The high local packing density in binding interfaces is reminiscent of protein cores.  相似文献   

9.
Neuronal migration, like the migration of many cell types, requires an extensive rearrangement of cell shape, mediated by changes in the cytoskeleton. The genetic analysis of human brain malformations has identified several biochemical players in this process, including doublecortin (DCX) and LIS1, mutations of which cause a profound migratory disturbance known as lissencephaly ('smooth brain') in humans. Studies in mice have identified additional molecules such as Cdk5, P35, Reelin, Disabled and members of the LDL superfamily of receptors. Understanding the cell biology of these molecules has been a challenge, and it is not known whether they function in related biochemical pathways or in very distinct processes. The last year has seen rapid advances in the biochemical analysis of several such molecules. This analysis has revealed roles for some of these molecules in cytoskeletal regulation and has shown an unexpected conservation of the genetic pathways that regulate neuronal migration in humans and nuclear movement in simple eukaryotic organisms.  相似文献   

10.
11.
Auditory cortex mapmaking: principles, projections, and plasticity   总被引:3,自引:0,他引:3  
Schreiner CE  Winer JA 《Neuron》2007,56(2):356-365
Maps of sensory receptor epithelia and computed features of the sensory environment are common elements of auditory, visual, and somatic sensory representations from the periphery to the cerebral cortex. Maps enhance the understanding of normal neural organization and its modification by pathology and experience. They underlie the derivation of the computational principles that govern sensory processing and the generation of perception. Despite their intuitive explanatory power, the functions of and rules for organizing maps and their plasticity are not well understood. Some puzzles of auditory cortical map organization are that few complete receptor maps are available and that even fewer computational maps are known beyond primary cortical areas. Neuroanatomical evidence suggests equally organized connectional patterns throughout the cortical hierarchy that might underlie map stability. Here, we consider the implications of auditory cortical map organization and its plasticity and evaluate the complementary role of maps in representation and computation from an auditory perspective.  相似文献   

12.
A vast network of genes is inter-linked through protein-protein interactions and is critical component of almost every biological process under physiological conditions. Any disruption of the biologically essential network leads to pathological conditions resulting into related diseases. Therefore, proper understanding of biological functions warrants a comprehensive knowledge of protein-protein interactions and the molecular mechanisms that govern such processes. The importance of protein-protein interaction process is highlighted by the fact that a number of powerful techniques/methods have been developed to understand how such interactions take place under various physiological and pathological conditions. Many of the key protein-protein interactions are known to participate in disease-associated signaling pathways, and represent novel targets for therapeutic intervention. Thus, controlling protein-protein interactions offers a rich dividend for the discovery of new drug targets. Availability of various tools to study and the knowledge of human genome have put us in a unique position to understand highly complex biological network, and the mechanisms involved therein. In this review article, we have summarized protein-protein interaction networks, techniques/methods of their binding/kinetic parameters, and the role of these interactions in the development of potential tools for drug designing.  相似文献   

13.
We have investigated the influence of the N-terminal domain of the 94-kDa glucocorticoid receptor on the DNA:receptor interaction. An alpha-chymotrypsin-induced 39-kDa receptor fragment, containing the hormone and DNA binding domains, binds DNA with a reduced specificity compared to the intact 94-kDa receptor. Various footprinting assays did not reveal any qualitative differences when comparing the DNA contact points made by the two different receptor entities. Like the intact receptor, the 39-kDa receptor fragment binds as a dimer to DNA. Glutaraldehyde cross-linking demonstrated a difference in the protein:protein contacts of the two homodimers. Furthermore, the dimeric 94-kDa receptor did not recognize a half-DNA site, while the dissociated 94-kDa receptor dimer and the dimeric 39-kDa receptor fragment allowed binding to such a site. These results suggest that the loss of the N-terminal domain of the receptor affects the steric arrangement and/or rigidity of the two DNA binding domains of the receptor homodimer, resulting in a decreased DNA binding specificity of the 39-kDa receptor fragment.  相似文献   

14.
A combined reanalysis of the two largest yeast protein-protein interaction studies to date provides a large consolidated data set, with a level of accuracy matching the reliability of small-scale experiments.  相似文献   

15.
Protein-protein interaction and quaternary structure   总被引:3,自引:0,他引:3  
Protein-protein recognition plays an essential role in structure and function. Specific non-covalent interactions stabilize the structure of macromolecular assemblies, exemplified in this review by oligomeric proteins and the capsids of icosahedral viruses. They also allow proteins to form complexes that have a very wide range of stability and lifetimes and are involved in all cellular processes. We present some of the structure-based computational methods that have been developed to characterize the quaternary structure of oligomeric proteins and other molecular assemblies and analyze the properties of the interfaces between the subunits. We compare the size, the chemical and amino acid compositions and the atomic packing of the subunit interfaces of protein-protein complexes, oligomeric proteins, viral capsids and protein-nucleic acid complexes. These biologically significant interfaces are generally close-packed, whereas the non-specific interfaces between molecules in protein crystals are loosely packed, an observation that gives a structural basis to specific recognition. A distinction is made within each interface between a core that contains buried atoms and a solvent accessible rim. The core and the rim differ in their amino acid composition and their conservation in evolution, and the distinction helps correlating the structural data with the results of site-directed mutagenesis and in vitro studies of self-assembly.  相似文献   

16.
The past year has brought new insights into common structural motifs used for protein-protein interactions by DNA-binding proteins. In addition, there have been significant advances in our understanding of antibody-protein complexes.  相似文献   

17.
Experiments in which two specifically interacting protein molecules are dissociated by external force have yielded new insights into mechanisms involved in cell adhesion, leukocyte rolling, regulation of integrin activity, antigen-antibody interactions and other protein-mediated reactions contingent upon molecular recognition. Another important aspect of force-induced protein-protein unbinding studies is the new information being gleaned about the thermodynamics and kinetics of bond rupture.  相似文献   

18.
Protein-protein interaction networks: from interactions to networks   总被引:1,自引:0,他引:1  
The goal of interaction proteomics that studies the protein-protein interactions of all expressed proteins is to understand biological processes that are strictly regulated by these interactions. The availability of entire genome sequences of many organisms and high-throughput analysis tools has led scientists to study the entire proteome (Pandey and Mann, 2000). There are various high-throughput methods for detecting protein interactions such as yeast two-hybrid approach and mass spectrometry to produce vast amounts of data that can be utilized to decipher protein functions in complicated biological networks. In this review, we discuss recent developments in analytical methods for large-scale protein interactions and the future direction of interaction proteomics.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号