首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 303 毫秒
1.
Patterns of co‐occurrence of species are increasingly used to examine the contribution of biotic interactions to community assembly. We assessed patterns of co‐occurrence at four scales, in two types of tropical cloud forests in Hainan Island, China (tropical montane evergreen forests, TMEF and tropical dwarf forests, TDF) that varied significantly in soil nutrients and temperature. We tested if the patterns of co‐occurrence changed when we sorted species into classes by abundance and diameter at breast height (dbh). Co‐occurrence differed by forest type and with plot size, with significant species aggregation observed across larger plots in TDF and patterns of species segregation observed in smaller plots in TMEF. Analyses of differential abundance and dbh classes also showed that smaller plots in TMEF tend to have negative co‐occurrence patterns, but larger plots in TDF tend to show patterns of aggregation, suggesting competitive and facilitative interactions. This underscores the scale‐dependence of the processes contributing to community assembly. Furthermore, it is consistent with predictions of the stress gradient hypothesis that facilitation will be most important in biological systems subject to abiotic stress, while competition will be more important in less abiotically stressful habitats. Our results clearly demonstrate that these two types of tropical cloud forest exhibit different co‐occurrence patterns, and that these patterns are scale‐dependent, though independent of plant abundance and size class.  相似文献   

2.
The stress‐gradient hypothesis (SGH) posits that the relative importance of facilitative interactions versus negative interactions increases as levels of abiotic stress increase. Originally formulated in empirical studies of plant populations, in recent years the SGH has been found to describe how interactions change in response to stress in a wide range of species including algae, mussels and moths. However, there has been little theory attempting to predict patterns from first principles in relation to different types of interactions. Here, we use mathematical models of microbial populations to investigate whether patterns consistent with the SGH arise when species interact through resource use and allelopathy. Evolution alters the degree to which competition for resource use versus facilitation (cross‐feeding) occurs. Our results are consistent with the SGH; species interactions evolve to be more facilitative as average stress intensifies. This occurs because at greater stress the species evolve to become specialists on either of the two resources thereby decreasing overlap in resource use and increasing facilitation through cross‐feeding. In addition, the production of toxic allelopathic compounds decreases as stress intensifies due to density‐dependent effects. Our results suggest that the SGH could arise through fundamental interactions that are common to many organisms and therefore that the SGH could be a more widespread phenomenon than previously recognised.  相似文献   

3.
Non‐random patterns of species segregation and aggregation within ecological communities are often interpreted as evidence for interspecific interactions. However, it is unclear whether theoretical models can predict such patterns and how environmental factors may modify the effects of species interactions on species co‐occurrence. Here we extend a spatially explicit neutral model by including competitive effects on birth and death probabilities to assess whether competition alone is able to produce non‐random patterns of species co‐occurrence. We show that transitive and intransitive competitive hierarchies alone (in the absence of environmental heterogeneity) are indeed able to generate non‐random patterns with commonly used metrics and null models. Moreover, even weak levels of intransitive competition can increase local species richness. However, there is no simple rule or consistent directional change towards aggregation or segregation caused by competitive interactions. Instead, the spatial pattern depends on both the type of species interaction and the strength of dispersal. We conclude that co‐occurrence analysis alone may not able to identify the underlying processes that generate the patterns.  相似文献   

4.
Pamela Graff  Martín R. Aguiar 《Oikos》2011,120(7):1023-1030
Since many arid ecosystems are overstocked with domestic herbivores, biotic stress could have a stronger influence in modulating the balance of species interactions than expected from the stress gradient hypothesis (SGH). Here we tested a priori predictions about the effect of grazing on species interactions and fine scale spatial structure of grasses in water‐limited ecosystems. We used detailed vegetation mapping and spatial analysis, and performed a field experiment where the direct and indirect components of positive interactions were disentangled to provide evidence of links between process and pattern. We found associational resistance (biotic refuge) to be the dominant process in grazing situations, while competition, instead of direct facilitation, seemed to govern grass spatial patterns when herbivore pressure was relaxed. These results suggest that facilitation between grasses in arid communities may be related to herbivory rather than nurse plant effects. Associational resistance tends to have the strongest effect on spatial aggregation of species at intermediate grazing pressure. Results suggest that contrary to SGH, this physical clustering of species decreased when grazing pressure reached their maximum levels. Positive associations remained significant only when palatability differences between neighbours is large, suggesting that managing stocking rate is a key factor determining the persistence of herbivory refuges. These refuges are potential foci to initiate population recovery of high quality forage species in arid degraded areas.  相似文献   

5.
Two major theories of community assembly – based on the assumption of ‘limiting similarity’ or ‘habitat filtering’, respectively – predict contrasting patterns in the spatial arrangement of functional traits. Previous analyses have made progress in testing these predictions and identifying underlying processes, but have also pointed to theoretical as well as methodological shortcomings. Here we applied a recently developed methodology for spatially explicit analysis of phylogenetic meta‐community structure to study the pattern of co‐occurrence of functional traits in Afrotropical and Neotropical bird species inhabiting forest fragments. Focusing separately on locomotory, dietary, and dispersal traits, we tested whether environmental filtering causes spatial clustering, or competition leads to spatial segregation as predicted by limiting similarity theory. We detected significant segregation of species co‐occurrences in African fragments, but not in the Neotropical ones. Interspecific competition had a higher impact on trait co‐occurrence than filter effects, yet no single functional trait was able to explain the observed degree of spatial segregation among species. Despite high regional variability spanning from spatial segregation to aggregation, we found a consistent tendency for a clustered spatial patterning of functional traits among communities in fragmented landscapes, particularly in non‐territorial species. Overall, we show that behavioural effects, such as territoriality, and environmental effects, such as the area of forest remnants or properties of the landscape matrix in which they are embedded, can strongly affect the pattern of trait co‐occurrence. Our findings suggest that trait‐based analyses of community structure should include behavioural and environmental covariates, and we here provide an appropriate method for linking functional traits, species ecology and environmental conditions to clarify the drivers underlying spatial patterns of species co‐occurrence.  相似文献   

6.
Water is crucial for plant productivity and survival as a fundamental resource, but water conditions can also cause physiological stress and mechanical disturbance to vegetation. However, these different influences of water on vegetation patterns have not been evaluated simultaneously. Here, we demonstrate the importance of three water aspects (spatial and temporal variation of soil moisture and fluvial disturbance) for three ecologically and evolutionary distinct taxonomical groups (vascular plants, mosses and lichens) in Fennoscandian mountain tundra. Fine‐scale plant occurrence data for 271 species were collected from 378 × 1 m2 plots sampled over broad environmental gradients (water, temperature, radiation, soil pH, cryogenic processes and the dominant allelopathic plant species). While controlling all other key environmental variables, water in its different aspects proved to be a crucial environmental driver, acting on individual species and on community characteristics. The inclusion of the water variables significantly improved our models. In this high‐latitude system, the importance of spatial variability of water exceeds the importance of temperature for the fine‐scale distribution of species from the three taxonomical groups. We found differing responses to the three water variables between and within the taxonomical groups. Water as a resource was the most important water‐related variable in species distribution models across all taxonomical groups. Both water resource and disturbance were strongly related to vascular plant species richness, whereas for moss species richness, water resources had the highest influence. For lichen species richness, water disturbance was the most influential water‐related variable. These findings demonstrate that water variables are not only independent properties of tundra hydrology, but also that water is truly a multifaceted driver of vegetation patterns at high‐latitudes.  相似文献   

7.
Aim During recent and future climate change, shifts in large‐scale species ranges are expected due to the hypothesized major role of climatic factors in regulating species distributions. The stress‐gradient hypothesis suggests that biotic interactions may act as major constraints on species distributions under more favourable growing conditions, while climatic constraints may dominate under unfavourable conditions. We tested this hypothesis for one focal tree species having three major competitors using broad‐scale environmental data. We evaluated the variation of species co‐occurrence patterns in climate space and estimated the influence of these patterns on the distribution of the focal species for current and projected future climates. Location Europe. Methods We used ICP Forest Level 1 data as well as climatic, topographic and edaphic variables. First, correlations between the relative abundance of European beech (Fagus sylvatica) and three major competitor species (Picea abies, Pinus sylvestris and Quercus robur) were analysed in environmental space, and then projected to geographic space. Second, a sensitivity analysis was performed using generalized additive models (GAM) to evaluate where and how much the predicted F. sylvatica distribution varied under current and future climates if potential competitor species were included or excluded. We evaluated if these areas coincide with current species co‐occurrence patterns. Results Correlation analyses supported the stress‐gradient hypothesis: towards favourable growing conditions of F. sylvatica, its abundance was strongly linked to the abundance of its competitors, while this link weakened towards unfavourable growing conditions, with stronger correlations in the south and at low elevations than in the north and at high elevations. The sensitivity analysis showed a potential spatial segregation of species with changing climate and a pronounced shift of zones where co‐occurrence patterns may play a major role. Main conclusions Our results demonstrate the importance of species co‐occurrence patterns for calibrating improved species distribution models for use in projections of climate effects. The correlation approach is able to localize European areas where inclusion of biotic predictors is effective. The climate‐induced spatial segregation of the major tree species could have ecological and economic consequences.  相似文献   

8.
Questions: To what degree do biological soil crusts (BSCs), which are regulators of the soil surface boundary, influence associated microbial communities? Are these associations important to ecosystem functioning in a Mediterranean semi‐arid environment? Location: Gypsum outcrops near Belmonte del Tajo, Central Spain. Methods: We sampled a total of 45 (50 cm × 50 cm) plots, where we estimated the cover of every lichen and BSC‐forming lichen species. We also collected soil samples to estimate bacterial species richness and abundance, and to assess different surrogates of ecosystem functioning. We used path analysis to evaluate the relationships between the richness/abundance of above‐ and below‐ground species and ecosystem functioning. Results: We found that the greatest direct effect upon the ecosystem function matrix was that of the biological soil crust (BSC) richness matrix. A few bacterial species were sensitive to the lichen community, with a disproportionate effect of Collema crispum and Toninia sedifolia compared to their low abundance and frequency. The lichens Fulgensia subbracteata and Toninia spp. also had negative effects on bacteria, while Diploschistes diacapsis consistently affected sensitive bacteria, sometimes positively. Despite these results, very few of the BSC effects on ecosystem function could be ascribed to changes within the bacterial community. Conclusion: Our results suggest the primary importance of the richness of BSC‐forming lichens as drivers of small‐scale changes in ecosystem functioning. This study provides valuable insights on semi‐arid ecosystems where plant cover is spatially discontinuous and ecosystem function in plant interspaces is regulated largely by BSCs.  相似文献   

9.
Disentangling how communities of soil organisms are deterministically structured by abiotic and biotic factors is of utmost relevance, and few data sets on co‐occurrence patterns exist in soil ecology compared to other disciplines. In this study, we assessed species spatial co‐occurrence and niche overlap together with the heterogeneity of selected soil properties in a gallery forest (GF) of the Colombian Llanos. We used null‐model analysis to test for non‐random patterns of species co‐occurrence and body size in assemblages of earthworms and whether the pattern observed was the result of environmental heterogeneity or biotic processes structuring the community at small scales by means of co‐inertia analysis (CoIA). The results showed that earthworm species co‐occurred more frequently than expected by chance at short distances, and CoIA highlighted a significant specific relationship between earthworm species and soil variables. The effect of soil environmental heterogeneity on one litter‐feeding species but also the impact of soil‐feeding species on soil physical properties was revealed. Correlogram analysis on the first axis extracted in the CoIA showed the scale of the common structure shared by the fauna and soil variable tables. The earthworm community was not deterministically structured by competition and co‐occurrence of competing species was facilitated by soil environmental heterogeneity at small scales in the GF. Our results agreed with the coexistence aggregation model which suggests that spatial aggregation of competitors at patchily distributed resources (environment) can facilitate species coexistence.  相似文献   

10.
Aim A major endeavour of community ecology is documenting non‐random patterns in the composition and body size of coexisting species, and inferring the processes, or assembly rules, that may have given rise to the observed patterns. Such assembly rules include species sorting resulting from interspecific competition, aggregation at patchily distributed resources, and co‐evolutionary dynamics. However, for any given taxon, relatively little is known about how these patterns and processes change through time and vary with habitat type, disturbance history, and spatial scale. Here, we tested for non‐random patterns of species co‐occurrence and body size in assemblages of ground‐foraging ants and asked whether those patterns varied with habitat type, disturbance history, and spatial scale. Location Burned and unburned forests and fens in the Siskiyou Mountains of southern Oregon and northern California, USA. Methods We describe ground‐foraging ant assemblages sampled over two years in two discrete habitat types, namely Darlingtonia fens and upland forests. Half of these sites had been subject to a large‐scale, discrete disturbance – a major fire – in the year prior to our first sample. We used null model analyses to compare observed species co‐occurrence patterns and body‐size distributions in these assemblages with randomly generated assemblages unstructured by competition both within (i.e. at a local spatial scale) and among (i.e. at a regional scale) sites. Results At local spatial scales, species co‐occurrence patterns and body‐size ratios did not differ from randomness. At regional scales, co‐occurrence patterns were random or aggregated, and there was evidence for constant body‐size ratios of forest ants. Although these patterns varied between habitats and years, they did not differ between burned and unburned sites. Main conclusions Our results suggest that the operation of assembly rules depends on spatial scale and habitat type, but that it was not affected by disturbance history from fire.  相似文献   

11.
Negative species co‐occurrence patterns have long intrigued ecologists because of their potential link to competition. Although manipulative field experiments have consistently revealed evidence of competition in natural communities, there is little evidence that this competition produces negative co‐occurrence patterns. Evidence does suggest that abiotic variation, dispersal limitation and herbivory can contribute to patterns of negative co‐occurrence among species; it is possible these influences have obscured a link with competition. Here, we test for a connection between negative co‐occurrence and competition by examining a small‐scale, relatively homogeneous old‐field plant community where the influence of abiotic variation was likely to be minimal and we accounted for the impact of herbivory with an herbivore exclosure treatment. Using three years of data (two biennial periods), we tested whether negatively co‐occurring pairs of species, when occasionally found together, experienced asymmetric abundance decline more frequently than positively co‐occurring pairs, for which there is no such expectation. We found no evidence that negatively co‐occurring pairs consistently suffered asymmetric abundance decline more frequently than positively co‐occurring pairs, providing no evidence that competition is a primary driver of negative co‐occurrence patterns in this community. Our results were consistent across control and herbivore exclosure treatments, suggesting that herbivores are not driving patterns of negative species co‐occurrence in this community. Any influence of competition or herbivory on co‐occurrence patterns is small enough that it is obscured by other factors such as substrate heterogeneity, dispersal and differential species responses to climatic variation through time. We interpret our results as providing evidence that competition is not responsible for producing negative co‐occurrence patterns in our study community and suggest that this may be the case more broadly.  相似文献   

12.
Abstract. The investigation of vegetation pattern and plant association by spatial statistics has become increasingly popular among plant ecologists. Recently, Individual‐centered analysis (ICA) has been introduced as a new tool for analysis of multi‐species co‐occurrence patterns. We tested this new technique by applying it to spatial data from grazed and ungrazed shrub communities in the semi‐arid Great Karoo, South Africa. There were substantial but complex and scale‐dependent differences in pattern between grazed and ungrazed vegetation. Unpalatable species that increase in abundance in grazed vegetation possibly play a key role in the change of vegetation pattern. At small scales we found indications of aggregation (< 30 cm) at the ungrazed, but of repulsion (30 – 40 cm) at the grazed site. An additional non‐random pattern at 60 – 170 cm at the grazed site was probably due to the clumped distributions of some species on broader scales. We show that the interpretability of ICA results is improved when the actual observed and expected frequencies of species combinations are added to the program output. The main strength of ICA is that it has the potential to detect association patterns that involve more than two species.  相似文献   

13.
14.
Community assembly is the result of multiple ecological and evolutionary forces that influence species coexistence. For flowering plants, pollinators are often essential for plant reproduction and establishment, and pollinator‐mediated interactions may influence plant community composition. Here, we use null models and community phylogenetic analyses of co‐occurrence patterns to determine the role of pollinator‐mediated processes in structuring plant communities dominated by congeners. We surveyed three species‐rich genera (Limnanthes, Mimulus and Clarkia) with centres of diversity in the Sierra Nevada of California. Each genus contains species that co‐flower and share pollinators, and each has a robust phylogeny. Within each genus, we surveyed 44–48 communities at three spatial scales, measured floral and vegetative traits and tested for segregation or aggregation of: (i) species, (ii) floral traits (which are likely to be influenced by pollinators), and (iii) vegetative traits (which are likely affected by other environmental factors). We detected both aggregation and segregation of floral traits that were uncorrelated with vegetative trait patterns; we infer that pollinators have shaped the community assembly although the mechanisms may be varied (competition, facilitation, or filtering). We also found that mating system differences may play an important role in allowing species co‐occurrence. Together, it appears that pollinators influence community assemblage in these three clades.  相似文献   

15.
In a secondary successional community, we focused on the role of local dispersion mediated by clonal growth in the density and spatial patterning of tillers of three dominant grass species (Elymus repens, Brachypodium pinnatum and Calamagrostis epigejos) on the plant neighbourhood scale. We also asked whether the spatial pattern/density of their tillers were linked to the local diversity structure. In ten 75 cm?×?75 cm quadrats for each of the three species, we quantified i) the clonal morphology patterns from measuring spacer length, branching rate and the number of clumping tillers per module, ii) the spatial patterns and density of tillers in grids at four different resolutions (cell sizes varied between 1 cm?×?1 cm; 2.5 cm?×?2.5 cm; 5 cm?×?5 cm and 7.5 cm?×?7.5 cm), and iii) local species richness and local dominance based on botanical relevés. Then, we explored the relationships between iv) the clonal architecture pattern and the density/spatial pattern of tillers and v) the density/spatial pattern of tillers and local diversity variables, through regression analyses. Aggregation intensity on the smallest scales and tiller density were negatively linked to spacer length and positively linked to branching rate and number of clumping tillers. Species richness and dominance in quadrats were negatively and positively linked to tiller density, respectively. Dominance was positively linked to aggregation intensity on a 1-cm scale. This study emphasized and quantified the importance of clonal growth in the intensity and quality of grass tiller patterning in space on the plant neighbourhood scale. Our approach allowed the accurate positioning of species, or even clones on the phalanx-guerrilla continuum. This should help us to understand how dominant grass species affect the dynamics of stand communities.  相似文献   

16.
1.  The stress gradient hypothesis (SGH) predicts a shift from net negative interactions in benign environments towards net positive in harsh environments in ecological communities. While several studies found support for the SGH, others found evidence against it, leading to a debate on how nature and strength of species interactions change along stress gradients, and to calls for new empirical and theoretical work.
2.  In the latest attempt in this journal, it is successfully argued how the SGH should be expanded by considering different life strategies of species (stress tolerance versus competitive ability) and characteristics of abiotic stress (resource versus non-resource based) over wider stress gradients (opposed to low–high contrasts), but the crucial role of biotic stress by consumers is largely ignored in this refinement.
3.  We point out that consumers strongly alter the outcome of species interactions in benign and harsh environments, and show how inclusion of consumer-incurred biotic stress alters the predicted outcome of interactions along resource- and non-resource-based stress gradients for stress-tolerant and competitive benefactors and beneficiaries.
4.   Synthesis. New studies should include stress gradients consisting of both abiotic and biotic components to disentangle their impacts, and to improve our understanding of how species interactions change along environmental gradients.  相似文献   

17.
Species interactions are dynamic processes that vary across environmental and ecological contexts, and operate across scale boundaries, making them difficult to quantify. Nevertheless, ecologists are increasingly interested in inferring species interactions from observational data using statistical analyses of their spatial co‐occurrence patterns. Trophic interactions present a particular challenge, as predators and prey may frequently or rarely co‐occur, depending on the spatial or temporal scale of observation. In this study, we investigate the accuracy of inferred interactions among species that both compete and trophically interact. We utilized a long‐term dataset of pond‐breeding amphibian co‐occurrences from Mt Rainier National Park (Washington, USA) and compiled a new dataset of their empirical interactions from the literature. We compared the accuracy of four statistical methods in inferring these known species interactions from spatial associations. We then used the best performing statistical method, the Markov network, to further investigate the sensitivity of interaction inference to spatial scale‐dependence and the presence of predators. We show that co‐occurrence methods are generally inaccurate when estimating trophic interactions. Further the strength and sign of inferred interactions were dependent upon the spatial scale of observation and predator presence influenced the detectability of competitive interactions among prey species. However, co‐occurrence analysis revealed new patterns of spatial association among pairs of species with known interactions. Overall, our study highlights a limiting frontier in co‐occurrence theory and the disconnect between widely implemented methodologies and their ability to accurately infer interactions in trophically‐structured communities.  相似文献   

18.
Semi‐natural meadows host a great number of species coexisting at fine spatial scales. Different assembly mechanisms, related to differences in functional traits between species, can influence such coexistence. Coexisting species could be either functionally dissimilar to occupy different niches (‘divergence’) or functionally similar due to exclusion of species with traits less adapted to the prevailing abiotic and biotic conditions (‘convergence’). Various theories differently predict how trait convergence and divergence should differ due to disturbance, along productivity gradients, and across different functional traits. We tested such theories in 21 wet meadows of different productivity in central Europe. In each meadow, four 1 × 1 m plots were established in which disturbance by mowing was combined with fertilization. Species presence was recorded in 100 quadrats 10 × 10 cm in size within the plots over five years. Convergence and divergence were assessed at very fine spatial scales (10 × 10 cm) to focus on the processes driven by the interactions for similar resources. Convergence emerged as the dominant pattern for all traits and across all years. It was particularly strong in the least productive conditions while divergence emerged in some of the most productive meadows. Mowing increased convergence in meadows with low productivity, but increased divergence in productive meadows. Fertilization generally increased convergence, with this increase being more pronounced in mown plots. Convergence in unproductive conditions could be caused by either higher fitness of stress‐tolerant species (more abundant in the species pool of these sites) or by functionally similar species sharing similar patches within fine‐scale heterogeneous plots. This outcome also suggests abiotic filters can have an important role at fine scales, where plant‐ecological theory usually predicts the prevalence of biotic processes.  相似文献   

19.
Understanding how and to what extent the influence of temperature on physiological performance scales up to interspecific interactions and process rate patterns remains a major scientific challenge faced by ecologists. Here, we combined approaches developed by two conceptual frameworks in ecology, the stress‐gradient hypothesis (SGH), and the biodiversity–ecosystem functioning relationship (B‐EF), to test the hypothesis that interspecific difference in thermal performance modulates multiple species interactions along a thermal stress (SGH) and the subsequent richness effects on process rates (B‐EF). We designed an experiment using three species of herbivorous agricultural pests with different thermal optima for which we determined how temperature influences the direction and the strength of interaction and subsequent richness effects on crop damage (7 species interaction treatments × 6 temperature treatments × 10 replicates). We showed that both biotic interactions and species richness effects drive variations in crop damages along a thermal stress gradient, and thus have the potential to drive agro‐system responses to climate change. To help explain and generalize underlying mechanisms of richness effects on process rates, we further proposed a conceptual model that views interaction outcomes as shifting between positive and negative along a thermal stress depending on species thermal optima. Overall, our study demonstrates that nonlinear effects of temperature on process rates must be a major concern in terms of prediction and management of the consequences of global warming.  相似文献   

20.
Abstract. A method is proposed to estimate the frequency and the spatial heterogeneity of occurrence of individual plant species composing the community of a grassland or a plant community with a short height. The measure is based on the beta‐binomial distribution. The weighted average heterogeneity of all the species composing a community provides a measure of community‐level heterogeneity determining the spatial intricateness of community composition of existing species. As an example to illustrate the method, a sown grassland with grazing cows was analysed, on 102 quadrats of 50 cm × 50 cm, each of which divided into four small quadrats of 25 cm × 25 cm. The frequency of occurrence for all the species was recorded in each small quadrat. Good fits to the beta‐binomial series for most species of the community were obtained. These results indicate that (1) each species is distributed heterogeneously with respective spatial patterns, (2) the degree of heterogeneity is different from species to species, and (3) the beta‐binomial distribution can be applied for grassland communities. In most of the observed species spatial heterogeneity is often characterized by species‐specific propagating traits: seed‐propagating plant species exhibited a low heterogeneity/random pattern while clonal species exhibited a high heterogeneity/aggregated pattern. This measure can be applied to field surveys and to the estimation of community parameters for grassland diagnosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号