首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Interactions of antibody stabilized phosphatidylethanolamine (PE) immunoliposomes with Herpes Simplex virus (HSV) and virus infected cells were studied by detecting the immune-dependent lysis of liposomes. Employing PE immunoliposomes bearing anti-HSV glycoprotein D (gD) IgG, immune-specificity of these liposomes were documented by the sole ability of HSV and the HSV-infected L cells to induce immunoliposome lysis. In addition, inhibition of PE immunoliposome lysis by free anti-gD IgG, but not anti-HSV glycoprotein B IgG, indicated the target antigen specificity of these immunoliposomes. Based on these observations, alkaline phosphate encapsulated PE liposomes were used to directly detect HSV in fluid phase. This immunoliposome assay which does not require washing was shown to be very rapid and sensitive: 35pfu of HSV-1 in 5ul could be detected within 1.5hr.  相似文献   

2.
A novel approach based on a plasma membrane permeability-disturbing agent was proposed as an antisense oligonucleotide delivery system. AMA, a derivative of the polyene antibiotic amphotericin B, formed a stable complex when mixed with phosphodiester oligodeoxynucleotides and enhanced the intracellular uptake of a 5' fluoresceinated anti-mdr1 20-mer into NIH-MDR-G185 cells. The nonlabeled phosphorothioate form of the oligodeoxynucleotide, complexed to AMA, inhibited P-glycoprotein expression with better efficiency and less nonspecific effects than when vectorized by Lipofectin. AMA may thus be a good agent for antisense strategy.  相似文献   

3.
A system has been developed for reversibly binding and thermoprecipitating biotinylated macromolecules. A high off-rate Ser45Ala (S45A) streptavidin mutant has been covalently conjugated to poly(N-isopropylacrylamide) (PNIPAAm), a temperature-responsive polymer. The resulting conjugate is shown to coprecipitate biotinylated immunoglobulin G (IgG) and a biotinylated oligonucleotide in response to a thermal stimulus. Thermally precipitated biotinylated macromolecules can be released from the S45A-PNIPAAm conjugate by simple treatment with excess free biotin. This release step has been shown to be unique to the mutant streptavidin conjugate-a conjugate of wild type (WT) streptavidin and PNIPAAm does not release bound biotinylated molecules upon treatment with excess free biotin. The capture efficiency (fraction of target molecule precipitated from solution) of the S45A-PNIPAAm conjugate is similar to that of the WT-PNIPAAm conjugate for the biotinylated IgG target molecule (near 100%), but significantly smaller for the biotinylated oligonucleotide target (approximately 60% for the S45A-PNIPAAm conjugate compared to 80% for the WT-PNIPAAm conjugate). The release efficiency (fraction of originally precipitated target molecule released after treatment with free biotin) of the S45A-PNIPAAm conjugate is 70-80% for the biotinylated IgG target and nears 100% for the biotinylated oligonucleotide target. This system demonstrates the use of a high off-rate streptavidin mutant to add reversibility to a system based on smart-polymer-streptavidin conjugates.  相似文献   

4.
We investigated the binding, uptake and intracellular degradation of immunoliposomes by isolated rat liver macrophages in vitro. Immunoliposomes were prepared either by coupling a randomly thiolated anti-CC531 rat colon adenocarcinoma monoclonal antibody to bilayer-incorporated MPB-PE by means of a thioether linkage or by attaching it through its Fc moiety to the distal terminus of hydrazide-modified PEG-DSPE. The two immunoliposome preparations clearly differ in their interaction with the tumor target cells, as well as with the macrophages. At comparable antibody densities both cell types show 1.5-2-fold higher levels of association for the Hz-PEG-immunoliposomes than for the MPB-PEG-immunoliposomes. We provide evidence that immunoliposome macrophage-interaction is both Fc-receptor and scavenger receptor mediated to about equal extents. At low antibody density the hydrazide immunoliposomes favor interaction with the tumor cells to that with macrophages. At higher antibody densities, on the other hand, interaction of these liposomes with the macrophages is increasingly favored, mostly due to enhanced scavenger receptor mediated uptake. The rate of intracellular degradation of (immuno)liposomes internalized by liver macrophages is barely influenced by the presence of either PEG or immunoglobulins on the liposomal surface.  相似文献   

5.
ABSTRACT

We investigated the binding, uptake and intracellular degradation of immunoliposomes by isolated rat liver macrophages in vitro. Immunoliposomes were prepared either by coupling a randomly thiolated anti-CC531 rat colon adenocarcinoma monoclonal antibody to bilayer-incorporated MPB-PE by means of a thioether linkage or by attaching it through its Fc moiety to the distal terminus of hydrazide-modified PEG-DSPE. The two immunoliposome preparations clearly differ in their interaction with the tumor target cells, as well as with the macrophages. At comparable antibody densities both cell types show 1.5–2-fold higher levels of association for the Hz-PEG-immunoliposomes than for the MPB-PEG-immunoliposomes. We provide evidence that immunoliposome macrophage-interaction is both Fc-receptor and scavenger receptor mediated to about equal extents. At low antibody density the hydrazide immunoliposomes favor interaction with the tumor cells to that with macrophages. At higher antibody densities, on the other hand, interaction of these liposomes with the macrophages is increasingly favored, mostly due to enhanced scavenger receptor mediated uptake. The rate of intracellular degradation of (immuno)liposomes internalized by liver macrophages is barely influenced by the presence of either PEG or immunoglobulins on the liposomal surface.  相似文献   

6.
Interactions of immunoliposomes with target cells   总被引:7,自引:0,他引:7  
We have covalently attached a monoclonal antibody (11-4.1) against the murine major histocompatibility antigen, H-2Kk, on the surface of liposomes. The interaction of these antibody-coated liposomes (immunoliposomes) with target cells, RDM-4 lymphoma (H-2Kk), was investigated. About 90% of the immunoliposomes taken up by target cells at 4 degrees C could be removed by a mild protease treatment of the cells, whereas only 30% of the uptake at 37 degrees C was labile to the same treatment. Furthermore, the uptake of immunoliposomes at 37 degrees C was inhibitable by cytochalasin B or by a combination of 2-deoxyglucose and NaN3. These results suggest that immunoliposome binding to the target cell surface is the primary uptake event at 4 degrees C and that the surface-bound liposomes are rapidly internalized by the cells at 37 degrees C, probably via an endocytic pathway. Studies with fluorescence microscopy of target cells treated with immunoliposomes containing carboxyfluorescein also supported this conclusion. If endocytosis is the mechanism by which immunoliposomes gain entry into target cells, the efficacy of a cytotoxic drug encapsulated would depend on the resistance of the drug to lysosomal inactivation and its ability to escape from the lysosomal system. Consistent with this notion, we observed that methotrexate encapsulated in liposomes bearing 11-4.1 antibody specifically inhibited deoxy[6-3H]uridine incorporation into DNA in target RDM-4 cells but not in P3-X63-Ag8 myeloma cells (H-2Kd) at the same doses. The observed cytotoxic effect of encapsulated methotrexate could be reversed by the treatment of cells with a lysosomotropic amine, chloroquine, which has been shown to increase the intralysosomal pH of mammalian cells. On the other hand, cytosine-beta-D-arabinofuranoside encapsulated in immunoliposomes showed no target-specific killing, probably because the drug is readily inactivated in the lysosomal system. These results are discussed in terms of the drug carrier potential of immunoliposomes.  相似文献   

7.
Summary The potential of small unilamellar liposomes coupled to anti-tumour monoclonal antibodies (immunoliposomes) to accumulate in solid tumour tissue was tested in two systems, i.e. a human malignant melanoma xenografted into nude mice and a syngeneic murine lymphoma ESb.Mp exhibiting spontaneous metastasis to the liver. Both monoclonal antibodies tested were partly released from immunoliposomes within a few hours, thus generating a seemingly constant level of circulating antibody. Nevertheless it was possible to follow the biodistribution of intact immunoliposomes by virtue of a radioiodine label incorporated into the lipid moiety. It was found that in both tumor systems, though they differed with respect to the size of lesions and maybe also to the vascular architecture of surrounding tissue, immunoliposome uptake was virtually nil. The blockade of uptake into solid tumour tissue was caused by the limited availability of immunoliposomes due to their moderate stability, but especially by the inability of the particulate carrier to extravasate.  相似文献   

8.
Fluorescence immunoassays are widely used in life science research, medical diagnostics, and environmental monitoring due to the intrinsically high specificity, simplicity, and versatility of immunoassays, as well as the availability of a large variety of fluorescent labeling molecules. However, the sensitivity needs to be improved to meet the ever-increasing demand in the new proteomics era. Here, we report a simple method of attaching multiple fluorescent labels on an antibody with a dye/DNA conjugate to increase the immunoassay sensitivity. In the work, mouse IgG adsorbed on the surface of a 96-well plate was detected by its immunoreaction with biotinylated goat anti-mouse antibody. A 30 base pair double-stranded oligonucleotide terminated with biotin was attached to the antibody through the biotin/streptavidin/biotin interaction. Multiple labeling of the antibody was achieved after a fluorescent DNA probe was added into the solution and bound to the oligonucleotide at high ratios. By comparison with fluorescein-labeled streptavidin, the assay with the dye/DNA label produced up to 10-fold increase in fluorescence intensity, and consequently about 10-fold lower detection limit. The multiple labeling method uses readily available reagents, and is simple to implement. Further sensitivity improvement can be obtained by using longer DNAs for antibody labeling, which can incorporate more fluorescent dyes on each DNA.  相似文献   

9.
We have investigated the role of multivalency in immunoliposome binding to cells displaying different amounts of surface antigen using liposomes with increasing numbers of palmitoyl anti-H2Kk antibodies incorporated into the bilayer. RDM-4 lymphoma cells were treated with proteinase k to generate a series of cells with various amounts of H2Kk antigen. Percent binding of immunoliposomes was related to the number of antigens displayed by the RDM-4 cell. Increasing liposome binding was observed with increasing number of antibody molecules per liposome. However, the ratio of binding of the high-antigen-density cells to that of the low-antigen-density cells was higher with immunoliposomes of lower antibody density than the ones with higher antibody density. This result suggests that for better discrimination between cells differing in antigen density, liposomes with lower numbers of antibody molecules per liposome may be more useful as a discriminatory tool for cells with a low level antigen expression than liposomes with greater antibody densities.  相似文献   

10.
The goal of our studies was to develop liposomes containing antiviral drugs and targeted with antiviral antibody (immunoliposomes) that would be effective at inhibiting replication of herpes simplex virus (HSV) in vitro. To achieve this, a monoclonal antibody to glycoprotein D of HSV was derivatized with palmitic acid and was incorporated into the lamellae of dehydration-rehydration vesicles. The gD containing immunoliposomes were shown to bind specifically to HSV-infected rabbit corneal cells in vitro, whereas control immunoliposomes prepared with a monoclonal antibody of the same class as the anti-gD failed to preferentially bind to virus-infected cells. The gD immunoliposome binding was inhibitable by pretreatment with rabbit anti-HSV serum but not by aggregated normal serum. Thus liposome binding was judged to represent an antigen-antibody reaction not binding to Fc receptors expressed by cells infected with HSV. Immunoliposomes loaded with iododeoxyuridine (IUDR) leaked drug rapidly at 37 degrees C, whereas acyclovir (ACV)-loaded liposomes still contained 48% of drug after 24 hr at 37 degrees C. The ACV-liposomes retained 44% of drug after 14 days at 4 degrees C. The ability of immunoliposomes to inhibit virus replication was compared with that of untargeted and empty liposomes by means of virus yield assays in vitro, Immunoliposomes loaded with either IUDR or ACV inhibited virus replication, although ACV-containing immunoliposomes were the most efficacious. The implications of our in vitro results for the development of immunoliposomes suitable for the treatment of ocular herpes infection are briefly discussed.  相似文献   

11.
The fusion protein of streptavidin to aequorin (STA-AQ) was highly purified from inclusion bodies in Escherichia coli cells and applied to a bioluminescent sandwich immunoassay. α-Fetoprotein (AFP), which is a serological marker of liver cancer, was used as a model analyte to test STA-AQ in an immunoassay. The measurable range of AFP by the sandwich immunoassay, using the complex of STA-AQ and the biotinylated anti-AFP antibody, was 0.02-200 ng/mL with an average coefficient of variation of 4.9%. The detection sensitivity with the complex of STA-AQ and the biotinylated anti-AFP antibody was similar to that with the complex of biotinylated aequorin, streptavidin and the biotinylated anti-AFP antibody. STA-AQ would be a useful reporter protein for immunoassays.  相似文献   

12.
The use of antisense oligodeoxynucleotides (ODNs) to inhibit the expression of specific mRNA targets represents a powerful technology for control of gene expression. Cationic lipids and polymers are frequently used to improve the delivery of ODNs to cells, but the resulting complexes often aggregate, bind to serum components, and are trafficked poorly within cells. We show that the addition of a synthetic, pH-sensitive, membrane-disrupting polyanion, poly(propylacrylic acid) (PPAA), improves the in vitro efficiency of the cationic lipid, DOTAP, with regard to oligonucleotide delivery and antisense activity. In characterization studies, ODN complexation with DOTAP/ODN was maintained even when substantial amounts of PPAA were added. The formulation also exhibited partial protection of phosphodiester oligonucleotides against enzymatic digestion. In Chinese hamster ovary (CHO) cells, incorporation of PPAA in DOTAP/ODN complexes improved 2- to 3-fold the cellular uptake of fluorescently tagged oligonucleotides. DOTAP/ODN complexes containing PPAA also maintained high levels of uptake into cells upon exposure to serum. Addition of PPAA to DOTAP/ODN complexes enhanced the antisense activity (using GFP as the target) over a range of PPAA concentrations in both serum-free, and to a lesser extent, serum-containing media. Thus, PPAA is a useful adjunct that improves the lipid-mediated delivery of oligonucleotides.  相似文献   

13.
Interactions between target-sensitive (TS) immunoliposomes and herpes simplex virus (HSV) were investigated. Target sensitivity of phosphatidylethanolamine (PE) immunoliposomes is a result of the ability of acylated monoclonal anti-HSV glycoprotein D (gD) to stabilize the bilayer phase of PE, whereas by itself, PE does not form stable liposomes (Ho, R. J. Y., Rouse, B. T., and Huang, L. (1986) Biochemistry 25, 5500-5506). Upon binding of these immunoliposomes to HSV antigen-containing gD, destabilization of PE immunoliposomes was observed. By encapsulating either a self-quenching fluorescent dye, calcein, or alkaline phosphatase inside the liposomal compartment, the HSV-induced destabilization of TS immunoliposomes was shown to be target-specific. Neither Sendai, Semliki Forest, nor Sindbis virus could significantly destabilize the TS immunoliposomes. Moreover, HSV-induced liposome destabilization could be inhibited by free anti-gD (the same antibody used in TS immunoliposomes) but not by monoclonal anti-HSV glycoprotein B, indicating that the interaction was antigen-specific. Destabilization could also be induced by binding to truncated gD (tgD), but only when in a multivalent form immobilized on latex beads. Truncated gD is a cloned, 312-amino acid fragment of HSV-gD that lacks the transmembrane segment. Preincubation of soluble tgD with the TS immunoliposomes failed to induce destabilization and, in addition, abolished the tgD-bead-induced destabilization. This finding strongly indicated that multivalent binding is essential for TS immunoliposome destabilization. Using alkaline phosphatase encapsulated in the liposomes, TS immunoliposomes could be used to detect HSV in fluid phase with 50% signal recorded at 5 microliters of 3.2 x 10(3) pfu/ml; at least 10-fold more sensitive than the standard double-antibody sandwich enzyme-linked immunosorbent assay. The interactions described here may be useful in designing a homogeneous and sensitive immunoliposome assay.  相似文献   

14.
The fusion protein of streptavidin to aequorin (STA-AQ) was highly purified from inclusion bodies in Escherichia coli cells and applied to a bioluminescent sandwich immunoassay. α-Fetoprotein (AFP), which is a serological marker of liver cancer, was used as a model analyte to test STA-AQ in an immunoassay. The measurable range of AFP by the sandwich immunoassay, using the complex of STA-AQ and the biotinylated anti-AFP antibody, was 0.02–200 ng/mL with an average coefficient of variation of 4.9%. The detection sensitivity with the complex of STA-AQ and the biotinylated anti-AFP antibody was similar to that with the complex of biotinylated aequorin, streptavidin and the biotinylated anti-AFP antibody. STA-AQ would be a useful reporter protein for immunoassays.  相似文献   

15.
Abstract

This presentation is divided into three parts: long-circulating liposomes, immunoliposomes and gene transfer with liposomes. The mechanism of action for the poly(ethylene glycol)-phospholipid conjugates to prolong the circulation time of liposomes can be understood on the basis of steric barrier activity imposed by the flexible PEG chains on the liposome surface. The action of ganglioside GM1, on the other hand, probably involves specific interactions with serum protein(s). Immunoliposomes can efficiently bind with the target only if the target is readily accessible and the liposomes stay in the circulation for a relatively long period of time. Coating the liposome surface with PEG chains or GM1 enhances the target binding of immunoliposomes, except when PEG of greater than 5000 dalton is used. In this case, immunoliposome binding to the target is sterically hindered by the long PEG chains. To overcome the problem, antibody molecule is conjugated to the distal end of the PEG chain. This approach works well except that the liver uptake of immunoliposomes is somewhat enhanced. For the delivery of DNA into cells, a novel cationic amphiphile (DC-chol) is synthesized and is now used in clinical trials of gene therapy for melanoma. Current effort is concentrated on the means to enhance the level and duration of transgene expression.  相似文献   

16.
Systemic treatment with antisense oligonucleotides is confounded by the dual problems of potential cytotoxicity of antisense oligonucleotides and carrier molecules such as cationic lipids. Treatment of pathologic conditions affecting the skin may avoid these problems to a large degree due to local application. The success of antisense strategies has been limited by the poor uptake of the transfection reagent and inadequate intracellular compartmentalization. Human skin epithelial cells, therefore, are attractive experimental tools for testing both in vitro and in vivo antisense therapies. In the present study, we determined commercially available liposomes which reproducibly induced a nontoxic increase of oligonucleotide uptake in cultured SZ95 sebocytes and keratinocytes. The final protocol for SZ95 sebocytes was a 4-hour incubation with DOTAP in a 2:1 (w/w) lipid/oligonucleotide ratio in serum-free medium. The fluorescein-labeled (ATCG)(5) random oligonucleotide molecules were detected within the nucleus. The optimum transfection system for primary keratinocytes was poly-L-ornithine (12 microg/ml) in a medium without bovine pituitary extract over 4 hours. The uptake of the oligonucleotide increased in the presence of the polycation and oligonucleotide molecules were localized in the cytoplasm of keratinocytes. Oligonucleotide transfection with the help of cationic lipids did not affect the expression of androgen receptor and of the house-keeping gene beta-actin. Thus, cationic lipids are useful for delivery of antisense oligonucleotides into skin cells in vitro and may be used for topical application on animal and human skin.  相似文献   

17.
In this report a model to study the fate of target cells in the blood circulation after injection of appropriate immunoliposomes is discussed. The effect of intravenous administration of antimouse RBC immunoliposomes, F(ab')2 or IgG on the fate of intravenously injected 51Cr-labelled mouse RBC (Cr-mRBC) in the mouse and, particularly, in the rat was studied. The immunoliposome was of the Fab'-MPBPE-REV type (Fab'-fragments covalently linked to reverse phase evaporation vesicles by maleimido-4-(p-phenylbutyrate)phosphatidylethanolamine). In the rat model a high blood level (80%) of the injected dose of target cells, Cr-mRBC, was maintained for several hours. The elimination by Fab'-liposomes, F(ab')2 or IgG of Cr-mRBC, and subsequent uptake into liver and spleen was dose dependent. Administration of Fab'-liposomes or F(ab')2 resulted in a preferential uptake into the spleen (above a certain dose also, but much lower, uptake into the liver was observed), while after IgG administration 51Cr-label was mainly recovered in the liver. At equal protein doses (+/- 130 micrograms) Fab'-liposomes induced a faster elimination of the Cr-mRBC and a higher uptake into the spleen than F(ab')2. The potential advantage of the use of drug-loaded immunoliposomes to eliminate target cells from the blood stream and to induce a certain pharmacological effect in the target cells, in comparison with the free antibody administration of F(ab')2 or IgG is discussed.  相似文献   

18.
An antibody containing a genetically engineered lipid group at the N-terminus and a hexahistidinyl tag at the C-terminus (Lpp-scFv-His6) was immobilized in an oriented manner on the surface of liposomes. Liposomes, consisting of antibody and phosphatidylcholine, have been prepared and imaged by AFM. For AFM visualization, the resulting liposomes were bound on the surface of mica by two different mechanisms. The histidine tags present in the antibody molecules of the immunoliposome were anchored to the NiCl2 treated mica surface. Alternatively, the immunoliposomes were immunochemically bound on antigen-coated mica surface. Both approaches yielded liposomes which were clearly imaged without damage by AFM in ambient condition.  相似文献   

19.
Disulfide links of the IgG2ak anti-ovarian carcinoma antibody, 5G6.4, were site-specifically biotinylated [≈2 biotins/ IgG2a] using a novel crosslinking procedure using the biotin derivatized ETAC (equilibrium transfer alkylation crosslink reagent) 1a. Complexation of ETAC 1a biotinylated 5G6.4 on a column of immobilized protein A at high dilution, followed by passage of [125I]streptavidin, washing and pH change leads to elution of a streptavidin-free product with a molecular mass in the 200–300 kDa range. By contrast, direct mixing with [125I]streptavidin rapidly gave larger oligomers of ⪢669 and ≈440–669 kDa molecular mass, respectively. The biodistribution of the 200–300 kDa complex showed significantly diminished liver, kidney and spleen uptake as well as higher blood activity than the 440–669 kDa complex. The methodology represent the first application of ETAC chemistry to disulfide-bond directed biotinylation of antibodies and the synthesis of streptavidin antibody conjugates which minimizes their polymerization.  相似文献   

20.
Streptavidin substituted with mannose residues increased by 20-fold the intracellular concentration of a biotinylated dodecakis(alpha-deoxythymidylate) in macrophages by comparison with the uptake of free oligodeoxynucleotide. Streptavidin, the bacterial homologue of the very basic avidin, which does not contain any carbohydrate moieties and is a neutral protein, was substituted with 12 mannose residues in order to be recognized and internalized by mannose-specific lectins on the surface of macrophages. A 3'-biotinylated and 5'-fluoresceinylated dodecakis (alpha-deoxythymidylate) was synthesized and bound onto mannosylated streptavidin. The conjugate was isolated, and by using flow cytometry, it was shown that the uptake of fluoresceinylated oligodeoxynucleotides bound to mannosylated streptavidin by macrophages is 20-fold higher than that of free oligodeoxynucleotides and that the uptake was competively inhibited by mannosylated serum albumin. Glycosylated streptavidin conjugates recognizing specific membrane lectins on different cells provide the possibility to target biotinylated antisense oligodeoxynucleotides and to increase the biological effect of these chemotherapeutic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号