首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to determine the roles of nerves in the formation of clusters of acetylcholine receptors (AChRs) during synaptogenesis, we examined the distribution of AChRs in denervated, nerve-transplanted (neurotized) muscles and in regenerated skeletal muscles of adult chickens by fluorescence microscopy using curaremimetic toxins. In the denervated muscles, many extrajunctional clusters developed at the periphery of some of the muscle nuclei of a single muscle fiber and continued to be present for up to 3 months. The AChR accumulations originally present at the neuromuscular junctions disappeared within 3 weeks. In the neurotized muscles, line-shaped AChR clusters developed at 4 days after transection of the original nerve, but no change in the distribution of AChRs had occurred even at 2 months after implantation of the foreign nerve. The line-shaped AChR clusters were found to be newly formed junctional clusters as they were associated with nerve terminals of similar shape and size. Some of both the line-shaped and extrajunctional clusters were formed at least partly by the redistribution of preexisting AChRs. Finally, based on the above observations, the regenerating muscle fibers in normal muscles and in denervated muscles were examined: The extrajunctional clusters appeared in both kinds of muscles at 2 weeks after injury. Afterward, during the innervation process, the line-shaped AChR clusters developed while the extrajunctional clusters disappeared in the innervated muscles. In contrast with this, in the absence of innervation, only the extrajunctional clusters continued to be present for up to 3 months. These results demonstrate clearly that the nerve not only induces the formation of junctional clusters at the contact site, but also prevents the formation of clusters at the extrajunctional region during synaptogenesis.  相似文献   

2.
Rat soleus muscles were ectopically innervated by implanting a foreign nerve in an endplate-free region of muscle and, 2–3 weeks later, cutting the original nerve. The junctional, 16 S form of acetylcholinesterase (AChE) and focal staining for AChE disappeared from the old endplate region within a few days after denervation. In muscles with an ectopic nerve, but not in paired control muscles, 16 S AChE and focal staining were restored in the old endplate region 1–2 weeks after denervation even though nerve fibers could not be detected in that region. These results suggest that the nerve exerts a local effect, specifying the site at which junctional AChE appears, and a nonlocal effect, perhaps mediated by muscle activity, regulating the amount of junctional AChE.  相似文献   

3.
Formation of the vertebrate neuromuscular junction (NMJ) takes place in a stereotypic pattern in which nerves terminate at select sarcolemmal sites often localized to the central region of the muscle fibers. Several lines of evidence indicate that the muscle fibers may initiate postsynaptic differentiation independent of the ingrowing nerves. For example, nascent acetylcholine receptors (AChRs) are pre-patterned at select regions of the muscle during the initial stage of neuromuscular synaptogenesis. It is not clear how these pre-patterned AChR clusters are assembled, and to what extent they contribute to pre- and post-synaptic differentiation during development. Here, we show that genetic deletion of the AChR gamma-subunit gene in mice leads to an absence of pre-patterned AChR clusters during initial stages of neuromuscular synaptogenesis. The absence of pre-patterned AChR clusters was associated with excessive nerve branching, increased motoneuron survival, as well as aberrant distribution of acetylcholinesterase (AChE) and rapsyn. However, clustering of muscle specific kinase (MuSK) proceeded normally in the gamma-null muscles. AChR clusters emerged at later stages owing to the expression of the AChR epsilon-subunit, but these delayed AChR clusters were broadly distributed and appeared at lower level compared with the wild-type muscles. Interestingly, despite the abnormal pattern, synaptic vesicle proteins were progressively accumulated at individual nerve terminals, and neuromuscular synapses were ultimately established in gamma-null muscles. These results demonstrate that the gamma-subunit is required for the formation of pre-patterned AChR clusters, which in turn play an essential role in determining the subsequent pattern of neuromuscular synaptogenesis.  相似文献   

4.
To test the hypothesis that synaptic basal lamina can induce synapse-specific expression of acetylcholine receptor (AChR) genes, we examined the levels mRNA for the alpha- and epsilon-subunits of the AChR in regenerating rat soleus muscles up to 17 days of regeneration. Following destruction of all muscle fibres and their nuclei by exposure to venom of the Australian tiger snake, new fibres regenerated within the original basal lamina sheaths. Northern blots showed that original mRNA was lost during degeneration. Early in regeneration, both alpha- and epsilon-subunit mRNAs were present throughout the muscle fibres but in situ hybridization showed them to be concentrated primarily at original synaptic sites, even when the nerve was absent during regeneration. A similar concentration was seen in denervated regenerating muscles kept active by electrical stimulation and in muscles frozen 41-44 hours after venom injection to destroy all cells in the synaptic region of the muscle. Acetylcholine-gated ion channels with properties similar to those at normal neuromuscular junctions were concentrated at original synaptic sites on denervated stimulated muscles. Taken together, these findings provide strong evidence that factors that induce the synapse-specific expression of AChR genes are stably bound to synaptic basal lamina.  相似文献   

5.
In skeletal muscles that have been damaged in ways which spare the basal lamina sheaths of the muscle fibers, new myofibers develop within the sheaths and neuromuscular junctions form at the original synaptic sites on them. At the regenerated neuromuscular junctions, as at the original ones, the muscle fibers are characterized by junctional folds and accumulations of acetylcholine receptors and acetylcholinesterase (AChE). The formation of junctional folds and the accumulation of acetylcholine receptors is known to be directed by components of the synaptic portion of the myofiber basal lamina. The aim of this study was to determine whether or not the synaptic basal lamina contains molecules that direct the accumulation of AChE. We crushed frog muscles in a way that caused disintegration and phagocytosis of all cells at the neuromuscular junction, and at the same time, we irreversibly blocked AChE activity. New muscle fibers were allowed to regenerate within the basal lamina sheaths of the original muscle fibers but reinnervation of the muscles was deliberately prevented. We then stained for AChE activity and searched the surface of the new muscle fibers for deposits of enzyme they had produced. Despite the absence of innervation, AChE preferentially accumulated at points where the plasma membrane of the new muscle fibers was apposed to the regions of the basal lamina that had occupied the synaptic cleft at the neuromuscular junctions. We therefore conclude that molecules stably attached to the synaptic portion of myofiber basal lamina direct the accumulation of AChE at the original synaptic sites in regenerating muscle. Additional studies revealed that the AChE was solubilized by collagenase and that it remained adherent to basal lamina sheaths after degeneration of the new myofibers, indicating that it had become incorporated into the basal lamina, as at normal neuromuscular junctions.  相似文献   

6.
《The Journal of cell biology》1984,98(4):1453-1473
If skeletal muscles are damaged in ways that spare the basal lamina sheaths of the muscle fibers, new myofibers develop within the sheaths and neuromuscular junctions form at the original synaptic sites on them. At the regenerated neuromuscular junctions, as at the original ones, the muscle fiber plasma membrane is characterized by infoldings and a high concentration of acetylcholine receptors (AChRs). The aim of this study was to determine whether or not the synaptic portion of the myofiber basal lamina sheath plays a direct role in the formation of the subsynaptic apparatus on regenerating myofibers, a question raised by the results of earlier experiments. The junctional region of the frog cutaneous pectoris muscle was crushed or frozen, which resulted in disintegration and phagocytosis of all cells at the synapse but left intact much of the myofiber basal lamina. Reinnervation was prevented. When new myofibers developed within the basal lamina sheaths, patches of AChRs and infoldings formed preferentially at sites where the myofiber membrane was apposed to the synaptic region of the sheaths. Processes from unidentified cells gradually came to lie on the presynaptic side of the basal lamina at a small fraction of the synaptic sites, but there was no discernible correlation between their presence and the effectiveness of synaptic sites in accumulating AChRs. We therefore conclude that molecules stably attached to the myofiber basal lamina at synaptic sites direct the formation of subsynaptic apparatus in regenerating myofibers. An analysis of the distribution of AChR clusters at synaptic sites indicated that they formed as a result of myofiber-basal lamina interactions that occurred at numerous places along the synaptic basal lamina, that their presence was not dependent on the formation of plasma membrane infoldings, and that the concentration of receptors within clusters could be as great as the AChR concentration at normal neuromuscular junctions.  相似文献   

7.
The effects of muscle activity on the growth of synaptic acetylcholine receptor (AChR) accumulations and on the metabolic AChR stability were investigated in rat skeletal muscle. Ectopic end plates induced surgically in adult soleus muscle were denervated early during development when junctional AChR number and stability were still low and, subsequently, muscles were either left inactive or they were kept active by chronic exogenous stimulation. AChR numbers per ectopic AChR cluster and AChR stabilities were estimated from the radioactivity and its decay with time, respectively, of end plate sites whose AChRs had been labeled with 125I-alpha-bungarotoxin (alpha-butx). The results show that the metabolic stability of the AChRs in ectopic clusters is reversibly increased by muscle activity even when innervation is eliminated very early in development. 1 d of stimulation is sufficient to stabilize the AChRs in ectopic AChR clusters. Muscle stimulation also produced an increase in the number of AChRs at early denervated end plates. Activity-induced cluster growth occurs mainly by an increase in area rather than in AChR density, and for at least 10 d after denervation is comparable to that in normally developing ectopic end plates. The possible involvement of AChR stabilization in end plate growth is discussed.  相似文献   

8.
This study aimed to generate a probe for perisynaptic Schwann cells (PSCs) to investigate the emerging role of these synapse-associated glial cells in the formation and maintenance of the neuromuscular junction (NMJ). We have obtained a novel monoclonal antibody, 2A12, which labels the external surface of PSC membranes at the frog NMJ. The antibody reveals PSC fine processes or “fingers” that are interposed between nerve terminal and muscle membrane, interdigitating with bands of acetylcholine receptors. This antibody also labels PSCs at the avian neuromuscular junction and recognizes a 200 kDa protein in Torpedo electric organs. In frog muscles, axotomy induces sprouting of PSC processes beyond clusters of acetylcholine receptors and acetylcholinesterase at denervated junctional branches. PSC branches often extend across several muscle fibers. At some junctions, PSC sprouts join the tips of neighboring branches. The average length of PSC sprouts is approximately 156 µ at 3-week denervated NMJs. PSC sprouting is accompanied by a significant increase in the number of Schwann cell bodies per NMJ. Following nerve regeneration, nerve terminals reinnervate the junction along the PSC processes. In vivo observations of normal frog muscles also show PSC processes longer than nerve terminals at some junctional branches. The results suggest that nerve injury induces profuse PSC sprouting that may play a role in guiding nerve terminal regeneration at frog NMJs. In addition, antibody 2A12 reveals the fine morphology of PSCs in relation to other synaptic elements and is a useful probe in elucidating the function of these synapse-associated glial cells in vivo.  相似文献   

9.
The effects of denervation and of direct electrical stimulation of denervated muscle upon the acetylcholine receptor (AChR) clusters and acetylcholinesterase (AChE) spots in the fast avian muscle posterior latissimus dorsi have been investigated. Denervation at day 2 after hatching leads to a disappearance of the junctional AChR clusters and to a marked decrease of AChE spots. Direct electrical stimulation of denervated muscle allows the maintenance of AChR clusters and partly prevents the loss of AChE spots. When AChR cluster and post-synaptic AChE have disappeared in a denervated muscle, muscle activity induced by direct stimulation is unable to induce their accumulation.  相似文献   

10.
Lømo  Terje 《Brain Cell Biology》2003,32(5-8):835-848
This review focuses on mechanisms that determine the position, number, size, and distribution of neuromuscular junctions (NMJs) on skeletal muscle fibers. Most of the data reviewed derive from studies of ectopic NMJ formation on soleus (SOL) muscle fibers in adult rats, which recapitulates essential aspects of NMJ formation in normal development. Transplanted axons induce acetylcholine receptor (AChR) aggregates, which are multiple and irregularly distributed initially but subsequently undergo massive reorganization such that one or a few winners survive and reach a certain size while the rest are eliminated (the losers). Results obtained by blocking nerve activity early and stimulating the SOL electrically show that evoked muscle impulse activity is responsible for the growth of winners to a given size and the creation of refractory zones, about 0.75 long, on each side of the winners, in which the elimination of losers occurs. Consequently, when two or more aggregates or NMJs survive on one fiber, they are, on average, at least 1.5 mm apart. Locally applied neural agrin induces comparable aggregation of AChRs and other postsynaptic proteins on denervated SOL fibers and such aggregates undergo similar activity-dependent selection for survival or elimination in refractory zones. In a dose-dependent way, neural agrin alone also induces expression of ε-AChR subunits and stabilizes AChRs to a half-life of 10 days, as found at normal NMJs. It is argued that signs of prepatterning of innervation sites by intrinsic muscle mechanisms may refer to epiphenomena that play no important role in NMJ formation. The conclusion is that neural agrin initiates and then maintains NMJs where motor axons happen to contact receptive muscle fibers and that evoked muscle impulse activity then ensures that the NMJs reach their appropriate size, efficiency and spatial distribution along each fiber.  相似文献   

11.
M Rich  J W Lichtman 《Neuron》1989,3(6):677-688
The fate of nerve terminals following elimination of postsynaptic target cells was studied in living mouse muscle. Several days after muscle fiber damage, observations of previously identified neuromuscular junctions showed that motor nerve terminal branches had rapidly disappeared from degenerating muscle fibers. Following muscle fiber regeneration, loss of terminal branches ceased and nerve terminals regrew, reestablishing some of the original sites and adding new branches. The distribution of acetylcholine receptors reorganized in the regenerated muscle so that perfect alignment was reestablished with the newly configured nerve terminals. These results argue that the maintenance of the full complement of nerve terminal branches at a neuromuscular junction is dependent on the presence of a healthy muscle fiber. Similarly, regenerating muscle is dependent on the nerve terminal for the organization and maintenance of postsynaptic receptors.  相似文献   

12.
During the development of the neuromuscular junction, motor axons induce the clustering of acetylcholine receptors (AChRs) and increase their metabolic stability in the muscle membrane. Here, we asked whether the synaptic organizer agrin might regulate the metabolic stability and density of AChRs by promoting the recycling of internalized AChRs, which would otherwise be destined for degradation, into synaptic sites. We show that at nerve-free AChR clusters induced by agrin in extrasynaptic membrane, internalized AChRs are driven back into the ectopic synaptic clusters where they intermingle with pre-existing and new receptors. The extent of AChR recycling depended on the strength of the agrin stimulus, but not on the development of junctional folds, another hallmark of mature postsynaptic membranes. In chronically denervated muscles, in which both AChR stability and recycling are significantly decreased by muscle inactivity, agrin maintained the amount of recycled AChRs at agrin-induced clusters at a level similar to that at denervated original endplates. In contrast, AChRs did not recycle at agrin-induced clusters in C2C12 or primary myotubes. Thus, in muscles in vivo, but not in cultured myotubes, neural agrin promotes the recycling of AChRs and thereby increases their metabolic stability.  相似文献   

13.
A critical event in the formation of vertebrate neuromuscular junctions (NMJs) is the postsynaptic clustering of acetylcholine receptors (AChRs) in muscle. AChR clustering is triggered by the activation of MuSK, a muscle-specific tyrosine kinase that is part of the functional receptor for agrin, a nerve-derived heparan sulfate proteoglycan (HSPG). At the NMJ, heparan sulfate (HS)-binding growth factors and their receptors are also localized but their involvement in postsynaptic signaling is poorly understood. In this study we found that hepatocyte growth factor (HGF), an HS-binding growth factor, surrounded muscle fibers and was localized at NMJs in rat muscle sections. In cultured Xenopus muscle cells, HGF was enriched at spontaneously occurring AChR clusters (hot spots), where HSPGs were also concentrated, and, following stimulation of muscle cells by agrin or cocultured neurons, HGF associated with newly formed AChR clusters. HGF presented locally to cultured muscle cells by latex beads induced new AChR clusters and dispersed AChR hot spots, and HGF beads also clustered phosphotyrosine, activated c-Met, and proteins of dystrophin complex; clustering of AChRs and associated proteins by HGF beads required actin polymerization. Lastly, although bath-applied HGF alone did not induce new AChR clusters, addition of HGF potentiated agrin-dependent AChR clustering in muscle. Our findings suggest that HGF promotes AChR clustering and synaptogenic signaling in muscle during NMJ development.  相似文献   

14.

Background

The unconventional motor protein, myosin Va, is crucial for the development of the mouse neuromuscular junction (NMJ) in the early postnatal phase. Furthermore, the cooperative action of protein kinase A (PKA) and myosin Va is essential to maintain the adult NMJ. We here assessed the involvement of myosin Va and PKA in NMJ recovery during muscle regeneration.

Methodology/Principal Findings

To address a putative role of myosin Va and PKA in the process of muscle regeneration, we used two experimental models the dystrophic mdx mouse and Notexin-induced muscle degeneration/regeneration. We found that in both systems myosin Va and PKA type I accumulate beneath the NMJs in a fiber maturation-dependent manner. Morphologically intact NMJs were found to express stable nicotinic acetylcholine receptors and to accumulate myosin Va and PKA type I in the subsynaptic region. Subsynaptic cAMP signaling was strongly altered in dystrophic muscle, particularly in fibers with severely subverted NMJ morphology.

Conclusions/Significance

Our data show a correlation between the subsynaptic accumulation of myosin Va and PKA type I on the one hand and NMJ regeneration status and morphology, AChR stability and specificity of subsynaptic cAMP handling on the other hand. This suggests an important role of myosin Va and PKA type I for the maturation of NMJs in regenerating muscle.  相似文献   

15.
Development of rat soleus endplate membrane following denervation at birth   总被引:1,自引:0,他引:1  
Rat soleus endplates develop some of their characteristic features before birth and others after birth. Specializations appearing before birth include a localized cluster of acetylcholine receptors (AChRs), an accumulation of acetylcholinesterase (AChE) in the synaptic basal lamina, and a cluster of nuclei near the endplate membrane. In contrast, postsynaptic membrane folds are elaborated during the first three weeks after birth. We denervated soleus muscles on postnatal day 1, before folds had appeared, and followed the subsequent development of endplate regions with light and electron microscopy. We found that the denervated endplates initiated fold formation on schedule and maintained their accumulations of AChRs, AChE, and endplate nuclei. However, the endplates stopped fold formation prematurely and eventually lost their rudimentary folds. At about the same time, the junctional AChR clusters were joined by ectopic patches of AChRs. The former endplate regions also became unusually elongated, possibly as a consequence of the lack of membrane folds. Apparently, endplate membranes have only a limited capacity for further development in the absence of both the nerve and muscle activity.  相似文献   

16.
Synapse formation requires the coordination of pre- and postsynaptic differentiation. An unresolved question is which steps in the process require interactions between pre- and postsynaptic cells, and which proceed cell-autonomously. One current model is that factors released from presynaptic axons organize postsynaptic differentiation directly beneath the nerve terminal. Here, we used neuromuscular junctions (NMJs) of the zebrafish primary motor system to test this model. Clusters of neurotransmitter (acetylcholine) receptors (AChRs) formed in the central region of the myotome, destined to be synapse-rich, before axons extended and even when axon extension was prevented. Time-lapse imaging revealed that pre-existing clusters on early-born slow (adaxial) muscle fibers were incorporated into NMJs as axons advanced. Axons were, however, required for the subsequent remodeling and selective stabilization of synaptic clusters that precisely appose post- to presynaptic elements. Thus, motor axons are dispensable for the initial stages of postsynaptic differentiation but are required for later stages. Moreover, many AChR clusters on later-born fast muscle fibers formed at sites that had already been contacted by axons, suggesting heterogeneity in the signaling mechanisms leading to synapse formation by a single axon.  相似文献   

17.
The motor neuron, the Schwann cell and the muscle cell are highly specialized at the vertebrate skeletal neuromuscular junction (NMJ). The muscle cell surface contains a high local density of acetylcholine (ACh) receptors (AChRs), acetylcholinesterase (AChE) and their interacting macromolecules at the NMJ, forming the postsynaptic specializations. During the early stages of development, the incoming nerve terminal induces the formation of these postsynaptic specializations; the nerve secretes agrin and neuregulin (NRG), which are known to aggregate existing AChRs and to increase the expression of AChR at the synaptic region, respectively. In addition, adenosine 5'-triphosphate (ATP) is stored at the motor nerve terminals and is coreleased with ACh during muscle contraction. Recent evidence suggests that ATP can play a role in forming and maintaining the postsynaptic specializations by activating its corresponding receptors. In particular, one of the nucleotide receptor subtypes, the P2Y(1) receptor, is specifically localized at the NMJs. The gene expression of AChR and AChE is upregulated after the activation of P2Y(1) receptors. Thus, the synaptic ATP together with agrin and NRG can act as a synapse-organizing factor to induce the expression of postsynaptic functional effectors.  相似文献   

18.
The localization of acetylcholine receptors (AChR) in the surface of developing myogenic cells of the chick embryo anterior and posterior latissimus dorsi muscles in relation to the process of innervation has been studied at the ultrastructural level utilizing a horseradish peroxidase-alpha-bungarotoxin conjugate. Localized concentrations of AChR were found in small regions 0.1-0.4 micron in width on the surface of myogenic cells of 10- to 14-d-old muscles. Surface specializations consisting of an external coating of extraneous material and an internal accumulation of dense material are associated with the plasma membrane in the regions of AChR concentration. As the muscle fibers are innervated, reactive surface patches are found at the region of contact of the growing nerve fiber and the surface of myotubes or their fusing myoblasts. After the establishment of contact, the patches of reaction product become more numerous and coextensive within the region of the neuromuscular junction and its immediate surroundings forming a dense continuous deposit on the postsynaptic sarcolemma. Activity becomes increasingly restricted to the site of the neuromuscular junction as the embryos approach hatching. At all stages, specializations external and internal to the plasmalemma are found at regions of high density of AChR, suggesting that they play a role in the maintenance of a higher concentration of receptors at these sites. These specializations also occur at the region of initial synaptic contact, indicating that they might be recognized by the nerve and represent preferred sites of innervation. Innervation appears to exert a stabilizing influence on the area of high AChR concentration in contact with the nerve and to induce a further increase in the AChR density of this site while the number of AChR in the remaining portions of the muscle surface declines.  相似文献   

19.
Explants of thoracic body wall from rat embryos, including intercostal muscles, ribs, and the adjacent segments of spinal cord, were maintained in organ culture. Nerve-muscle differentiation proceeded in culture with a pattern and time course similar to that of the same synapses developing in utero. To understand further the factors that regulate acetylcholine sensitivity in developing rat myotubes, we studied the effects of electrical inactivity and denervation on the distribution of acetylcholine receptors. When muscle and spinal cord were explanted at 15 days of gestation, prior to the appearance of junctional receptor clusters, intact nerve terminals were required to initiate receptor aggregation at the site of nerve-muscle junction. Electrical activity was not necessary for induction of these primary junctional clusters. Inactivity resulted, however, in the appearance of secondary multiple receptor clusters at random sites along the fibers. In the presence of tetrodotoxin, the electrically inactive nerve terminals sprouted; this was accompanied by the enlargement of the junctional receptor clusters, at the end plate, but there was no correlation between nerve sprouting and the location of extrajunctional receptor aggregates. Later in development, at a time when the junctional receptors are metabolically more stable, terminal sprouting failed to induce the increase in size of junctional receptor aggregates.  相似文献   

20.
The formation of acetylcholine receptor (AChR) clusters can be induced by basic polypeptide-coated latex beads in cultured Xenopus muscle cells. Here we investigated the development of acetylcholinesterase (AChE) at the bead-induced AChR clusters. AChE activity began to appear at the clusters after 1 day of bead-muscle coculture and was present at all of the bead-induced clusters within 4-7 days. Electron microscopy revealed that AChE reaction products were discretely localized within the cleft and the membrane invaginations at the bead-muscle contacts. Thus, the beads can mimic the nerve in inducing a local accumulation of both the AChRs and AChE, suggesting that the development of both specializations can be effected by a common stimulus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号