首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inosine triphosphate pyrophosphohydrolase (ITPase) catalyzing the pyrophosphohydrolysis of inosine triphosphate, deoxyinosine triphosphate and xanthosine triphosphate is involved in the metabolism and tolerance of thiopurine drugs. ITPase activity plays an important role in the prediction of toxicity to thiopurine therapy. Activities in dry blood spots were compared with fresh erythrocytes. Samples were incubated with inosine triphosphate, then inosine monophosphate was determined by a capillary electrophoresis method. Calculated enzyme activities obtained from dry blood spots were in good accordance with activity in fresh erythrocytes.  相似文献   

2.
The role of inosine triphosphatase (ITPase) in adverse drug reactions associated with thiopurine therapy is still under heavy debate. Surprisingly, little is known about the way thiopurines are handled by ITPase. We studied the effect of ITPA polymorphisms on the handling of inosine triphosphate (ITP) and thioinosine triphosphate (TITP) to gain more insight into this phenomenon. Human erythrocyte ITPase activity was measured by incubation with ITP using established protocols, and the generated inosine monophosphate (IMP) was measured using ion-pair RP-HPLC. Molecular analysis of the ITPA gene was performed to establish the genotype. Kinetic parameters were established for the two common polymorphisms for both ITP and TITP as substrates using the above mentioned protocol. Both ITP and TITP are substrates for ITPase and their enzyme activities are comparable. Substrate binding is not altered in the different ITPA polymorphisms. It is shown that the velocity of pyrophosphohydrolysis is compromised when the c.94C > A polymorphism is present, both in the heterozygous and in the homozygous state. TITP is handled by ITPase in a similar way as for ITP, which implies that TITP will accumulate in the erythrocytes of patients with an ITPase deficiency, resulting in adverse drug reactions (ADRs) on thiopurine therapy. In carriers of ITPA polymorphisms, the matter is more complex and the development of ADR may depend on additional epigenetic factors rather than on the accumulation of thiopurinenucleotides.  相似文献   

3.
The indication for the determination of both thiopurine methyltransferase (TPMT) and inosine triphosphate pyrophosphohydrolase is identical (i.e., adverse drug reactions toward mercaptopurines). Therefore, we tested whether or not our standard procedure to prepare erythrocyte lysates for measurement of TPMT activity, which includes treatment with Chelex 100 (a chelating resin), was suitable for the measurement of ITPase activity. It also was tested to see if ITPase activity differs in EDTA and Heparin anti-coagulated blood samples. We found that there was no difference between the ITPase activity in erythrocyte lysates prepared from EDTA or Heparin anti-coagulated blood. Treatment with a chelating resin or omission of magnesium from the assay procedure resulted in decreased and nearly absent ITPase activity, respectively. We conclude that untreated erythrocyte lysates obtained for determination of TPMT activity are suitable for determination of ITPase activity. However, after treatment with Chelex 100 the erythrocyte lysates become unsuitable for determination of ITPase activity.  相似文献   

4.
The indication for the determination of both thiopurine methyltransferase (TPMT) and inosine triphosphate pyrophosphohydrolase is identical (i.e., adverse drug reactions toward mercaptopurines). Therefore, we tested whether or not our standard procedure to prepare erythrocyte lysates for measurement of TPMT activity, which includes treatment with Chelex 100 (a chelating resin), was suitable for the measurement of ITPase activity. It also was tested to see if ITPase activity differs in EDTA and Heparin anti-coagulated blood samples. We found that there was no difference between the ITPase activity in erythrocyte lysates prepared from EDTA or Heparin anti-coagulated blood. Treatment with a chelating resin or omission of magnesium from the assay procedure resulted in decreased and nearly absent ITPase activity, respectively. We conclude that untreated erythrocyte lysates obtained for determination of TPMT activity are suitable for determination of ITPase activity. However, after treatment with Chelex 100 the erythrocyte lysates become unsuitable for determination of ITPase activity.  相似文献   

5.
The enzyme inosine triphosphate pyrophosphatase (ITPase) catalyses the pyrophosphohydrolysis of ITP to IMP. ITPase deficiency is a clinically benign autosomal recessive condition characterised by the abnormal accumulation of ITP in erythrocytes. A deficiency of ITPase may predict adverse reactions to therapy with the thiopurine drug 6-mercaptopurine and its prodrug azathioprine. In this study, we examine the frequencies of ITPA polymorphisms in 100 healthy Japanese individuals. The allele frequency of the 94C > A variant in the Japanese sample was 0.135 (Caucasian allele frequency 0.06). The IV2 + 21A > C polymorphism was not found in Japanese (Caucasian allele frequency 0.130). Allele frequencies of the 138G > A, 561G > A and 708G > A polymorphisms were 0.57, 0.18 and 0.06 respectively in the Japanese population, and with the exception of the 138G > A polymorphism, similar to allele frequencies in Caucasians.  相似文献   

6.
Pure nucleotide precursor pools are a prerequisite for high-fidelity DNA replication and the suppression of mutagenesis and carcinogenesis. ITPases are nucleoside triphosphate pyrophosphatases that clean the precursor pools of the non-canonical triphosphates of inosine and xanthine. The precise role of the human ITPase, encoded by the ITPA gene, is not clearly defined. ITPA is clinically important because a widespread polymorphism, 94C>A, leads to null ITPase activity in erythrocytes and is associated with an adverse reaction to thiopurine drugs. We studied the cellular function of ITPA in HeLa cells using the purine analog 6-N hydroxylaminopurine (HAP), whose triphosphate is also a substrate for ITPA. In this study, we demonstrate that ITPA knockdown sensitizes HeLa cells to HAP-induced DNA breaks and apoptosis. The HAP-induced DNA damage and cytotoxicity observed in ITPA knockdown cells are rescued by an overexpression of the yeast ITPase encoded by the HAM1 gene. We further show that ITPA knockdown results in elevated mutagenesis in response to HAP treatment. Our studies reveal the significance of ITPA in preventing base analog-induced apoptosis, DNA damage and mutagenesis in human cells. This implies that individuals with defective ITPase are predisposed to genome damage by impurities in nucleotide pools, which is drastically augmented by therapy with purine analogs. They are also at an elevated risk for degenerative diseases and cancer.  相似文献   

7.
The enzyme inosine triphosphate pyrophosphatase (ITPase) catalyses the pyrophosphohydrolysis of ITP to IMP. ITPase deficiency is a clinically benign autosomal recessive condition characterised by the abnormal accumulation of ITP in erythrocytes. A deficiency of ITPase may predict adverse reactions to therapy with the thiopurine drug 6‐mercaptopurine and its prodrug azathioprine. In this study, we examine the frequencies of ITPA polymorphisms in 100 healthy Japanese individuals. The allele frequency of the 94C > A variant in the Japanese sample was 0.135 (Caucasian allele frequency 0.06). The IV2 + 21A > C polymorphism was not found in Japanese (Caucasian allele frequency 0.130). Allele frequencies of the 138G > A, 561G > A and 708G > A polymorphisms were 0.57, 0.18 and 0.06 respectively in the Japanese population, and with the exception of the 138G > A polymorphism, similar to allele frequencies in Caucasians.  相似文献   

8.
Genetic basis of inosine triphosphate pyrophosphohydrolase deficiency   总被引:12,自引:0,他引:12  
Inosine triphosphate pyrophosphohydrolase (ITPase) deficiency is a common inherited condition characterized by the abnormal accumulation of inosine triphosphate (ITP) in erythrocytes. The genetic basis and pathological consequences of ITPase deficiency are unknown. We have characterized the genomic structure of the ITPA gene, showing that it has eight exons. Five single nucleotide polymorphisms were identified, three silent (138G-->A, 561G-->A, 708G-->A) and two associated with ITPase deficiency (94C-->A, IVS2+21A-->C). Homozygotes for the 94C-->A missense mutation (Pro32 to Thr) had zero erythrocyte ITPase activity, whereas 94C-->A heterozygotes averaged 22.5% of the control mean, a level of activity consistent with impaired subunit association of a dimeric enzyme. ITPase activity of IVS2+21A-->C homozygotes averaged 60% of the control mean. In order to explore further the relationship between mutations and enzyme activity, we examined the association between genotype and ITPase activity in 100 healthy controls. Ten subjects were heterozygous for 94C-->A (allele frequency: 0.06), 24 were heterozygotes for IVS2+21A-->C (allele frequency: 0.13) and two were compound heterozygous for these mutations. The activities of IVS2+21A-->C heterozygotes and 94C-->A/IVS2+21A-->C compound heterozygotes were 60% and 10%, respectively, of the normal control mean, suggesting that the intron mutation affects enzyme activity. In all cases when ITPase activity was below the normal range, one or both mutations were found. The ITPA genotype did not correspond to any identifiable red cell phenotype. A possible relationship between ITPase deficiency and increased drug toxicity of purine analogue drugs is proposed.  相似文献   

9.
10.
The high concentrations of inosine triphosphate in human erythrocytes of some subjects has been related to a deficiency in intracellular inosine triphosphatase. Evidence has been presented for genetic transmission of this enzyme and for the existence of a homozygous-heterozygous relationship. Pedigree studies of individuals with erythrocyte ITPase deficiency suggest a Mendelian autosomal trait.This investigation was partly supported by PHS Research Grant No. Am-11116 from the National Institute of Arthritis and Metabolic Disorders.  相似文献   

11.
12.
The aim of this study was to assess inosine triphosphate (ITPase) expression in the different leukocyte populations present in peripheral blood samples of a nonimmune compromised control group. For this purpose, a multiparameter flow cytometric assay was developed and performed to study ITPase expression in peripheral leukocyte subpopulations of healthy volunteers (n = 20). Qualitative ITPase expression was assessed by determining the percentage of ITPase-positive cells. Quantitative data were obtained by measuring the median fluorescent intensity (MFI). Subcellular localization of ITPase was analyzed using immunocytochemistry. Immunocytochemistry showed that ITPase is present in all leukocytes and localized intracellular. Based on this finding, a multiparameter flow cytometric assay was developed using a Fix & Perm strategy. Qualitative and quantitative ITPase expression remained stable (variation, <10%) for at least 48 h after blood sampling. MFI values showed that activated monocytes contained significantly more ITPase when compared to the total monocyte fraction (P < 0.0001), which subsequently had a higher amount of expression than granulocytes (P < 0.0001). In addition, the phagocyte subpopulations ([activated] monocytes and granulocytes) contained significantly higher levels of ITPase when compared to lymphocytes (P < 0.0001). Within the lymphocyte fraction, it appeared that T-helper cells contained significantly higher ITPase levels when compared to cytotoxic T cells, B lymphocytes, and natural killer cells (P < 0.0001). Our study is the first which describes a flow cytometry assay to analyze ITPase expression in leukocytes qualitatively as well as quantitatively and visualizes the intracellular localization of ITPase in leukocytes. ? 2012 International Society for Advancement of Cytometry.  相似文献   

13.
Human ITPase, encoded by the ITPA gene, and its orthologs (RdgB in Escherichia coli and HAM1 in Saccharomyces cerevisiae) exclude noncanonical nucleoside triphosphates (NTPs) from NTP pools. Deoxyinosine triphosphate (dITP) and 2′-deoxy-N-6-hydroxylaminopurine triphosphate are both hydrolyzed by ITPase to yield the corresponding deoxynucleoside monophosphate and pyrophosphate. In addition, metabolites of thiopurine drugs such as azathioprine have been shown to be substrates for ITPase. The ITPA 94C>A [P32T] variant is one of two polymorphisms associated with decreased ITPase activity. Furthermore, the ITPA 94C>A [P32T] variant is associated with an increased risk of adverse drug reactions for patients treated with azathioprine. The nature of the observed phenotypes for ITPA 94C>A [P32T] variant individuals is currently unclear. Our biochemical assays indicate the P32T ITPase has 55% activity with dITP compared to wild-type ITPase. Complementation experiments at 37 °C show that N-6-hydroxylaminopurine sensitivity of E. coli rdgB mutants is reduced with a plasmid bearing the ITPA 94C>A [P32T] gene approximately 50% less than with a plasmid bearing the wild-type ITPA gene. The reduction in sensitivity is less at 42 °C. Experiments with synthetic lethal E. coli recA(ts) rdgB mutants show that the ITPA 94C>A [P32T] gene also complements the recA(ts) rdgB growth deficiency at 42 °C approximately 40% lower than wild-type ITPA gene. Western blot analysis indicates that the expression level of P32T ITPase is reduced in these cells relative to wild type. Our data support the idea that P32T ITPase is a functional protein, albeit with a reduced rate of noncanonical NTP pyrophosphohydrolase activity and reduced protein stability.  相似文献   

14.
Thiopurine drug monitoring has become an important issue in treating children with acute lymphoblastic leukaemia (ALL). In this population, a genetic polymorphism causes wide differences in the activity of thiopurine S-methyletransferase (TPMT)--the rate-limiting enzyme of the thiopurine degradation metabolism--leading to the necessity of drug dose adjustments. It is not yet known if similar differences exist in the inosine 5'-monophosphate dehydrogenase (IMPDH; EC 1.1.1.205), the rate-limiting enzyme of the thiopurine synthesis. To test this, we established and validated a high-performance liquid chromatographic (HPLC)-based assay to determine the IMPDH enzyme activity in erythrocytes. The remarkable features of this assay are its simple erythrocyte separation/haemolysis and assay conditions and a distinct segregation of xanthosine 5'-monophosphate (XMP) from the clear supernatant after precipitation. The probes were processed without a time-consuming extraction and heating procedure and the assay demonstrated a good intra- and interday stability as well as a recovery rate of approximately 100%. The IMPDH enzyme activity was measured in erythrocytes of 75 children with diagnosis of ALL before starting antileukaemic therapy and their activity compared to those of 35 healthy adult controls. The measured enzyme activity was wide ranging in both groups. The individual enzyme activity differences observed in children with ALL might led to differences in the thionucleotide levels in those undergoing the standard thiopurine dose regimen.  相似文献   

15.
Thiopurine drug monitoring has become an important issue in treating children with acute lymphoblastic leukaemia (ALL). In this population,a genetic polymorphism causes wide differences in the activity of thiopurine S-methyletransferase (TPMT)--the rate-limiting enzyme of the thiopurine degradation metabolism--leading to the necessity of drug dose adjustments. It is not yet known if similar differences exist in the inosine 5'-monophosphate dehydrogenase (IMPDH; EC 1.1.1.205), the rate-limiting enzyme of the thiopurine synthesis. To test this, we established and validated a high-performance liquid chromatographic (HPLC)-based assay to determine the IMPDH enzyme activity in erythrocytes. The remarkable features of this assay are its simple erythrocyte separation/haemolysis and assay conditions and a distinct segregation of xanthosine 5'-monophosphate (XMP) from the clear supernatant after precipitation. The probes were processed without a time-consuming extraction and heating procedure and the assay demonstrated a good intra- and interday stability as well as a recovery rate of approximately 100%. The IMPDH enzyme activity was measured in erythrocytes of 75 children with diagnosis of ALL before starting antileukaemic therapy and their activity compared to those of 35 healthy adult controls. The measured enzyme activity was wide ranging in both groups. The individual enzyme activity differences observed in children with ALL might led to differences in the thionucleotide levels in those undergoing the standard thiopurine dose regimen.  相似文献   

16.
The levels of adenosine triphosphate (ATP) and 2,3-diphosphoglycerate in freshly drawn human erythrocytes can be tripled by a 2 h incubation at 37 degrees C in a medium containing 21 mM glucose, 1.8 mM adenine, 5 mM pyruvate, 10 mM inosine, and 96 mM phosphate. Similar incubation conditions will restore the levels of ATP and 2,3-diphosphoglycerate in erythrocytes from blood levels preserved for 12 and 15 weeks, respectively, to those of fresh cells. Omission of pyruvate from the incubation medium further increases the level of ATP slightly, but there is little elevation of 2,3-diphosphoglycerate. Under these conditions labelled pyruvate and lactate production from [14-C]glucose or [14-C]inosine is not diminished, but labelled fructose 1,6-diphosphate, rather than 2,3-diphosphoglycerate, accumulates. In addition, omission of pyruvate from the incubation medium, with a concomitant decrease in accumulation of 2,3-diphosphoglycerate, diminishes the concentration of inorganic phosphate required for optimal ATP elevation. A 5 h incubation in the glucose-adenine-pyruvate-inosine-phosphate medium elevates the levels of ATP and 2,3-diphosphoglycerate in erythrocytes from blood preserved in the cold for 15 weeks to twice that of fresh cells, indicating that the cells retain their metabolic potential even after prolonged storage at 2 degrees C. The medium may provide a method of rejuvenating 10-12 week cold-preserved erythrocytes for transfusion purposes, by a 1 h incubation at 37 degrees C.  相似文献   

17.
Inosine triphosphate pyrophosphatase (ITPase) deficiency occurs with polymorphic frequencies in Caucasians and results in the benign accumulation of the inosine nucleotide ITP. In 62 patients treated with azathioprine for inflammatory bowel disease, the ITPA 94C>A deficiency-associated allele was significantly associated with adverse drug reactions (OR 4.2, 95% CI 1.6-11.5, p = 0.0034). Significant associations were found for flu-like symptoms (OR 4.7, 95% CI 1.2-18.1, p = 0.0308), rash (OR 10.3, 95% CI 4.7-62.9, p = 0.0213) and pancreatitis (OR 6.2, CI 1.1-32.6, p = 0.0485). Polymorphism in the ITPA gene thus predicts AZA intolerance. Alternative immunosuppressive drugs, particularly 6-thioguanine, should be considered for AZA-intolerant patients with ITPase deficiency.  相似文献   

18.
The efficiency of Mycophenolate mofetil (MMF) and Azathioprine (AZA) as immunosuppressive agents depends on the activity of 2 enzymes, inosine monophosphate dehydrogenase (IMPDH) and thiopurine methyltransferase (TPMT) respectively. We present preliminary evaluation of nonradioactive methods that apply HPLC with ion-trap mass detection to measure the activities of IMPDH in peripheral blood mononuclear cells (PBMC) and TPMT in the erythrocytes (RBC). We found IMPDH activity of 0.9 +/- 0.2 nmol/hour/10(6) PBMC and TPMT activity of 19.9 +/- 4.7 nmol/hour/ml RBC in healthy subjects. These methods, following its further validation, could be useful for monitoring the activity in a clinical and experimental setting.  相似文献   

19.
The activity of inosine triphosphate pyrophosphohydrolase (ITPH) in human erythrocytes was found to be 1.50 +/- 0.39 mumol of inosine triphosphate (ITP) hydrolysed x min-1 per g Hb, and no measurable amount of ITP was detected. When dipyridamole was added to the medium composed of adenosine, pyruvate and inorganic phosphate, ITPH activity was 1.18 +/- 0.41, and at the same time ITP accumulation was 0.61 +/- 0.31 mumol/g Hb. The negative correlation between ITPH activity and accumulation of ITP was r = -0.87 at P less than 0.001.  相似文献   

20.
Cassava brown streak disease (CBSD) is a leading cause of cassava losses in East and Central Africa, and is currently having a severe impact on food security. The disease is caused by two viruses within the Potyviridae family: Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV), which both encode atypical Ham1 proteins with highly conserved inosine triphosphate (ITP) pyrophosphohydrolase (ITPase) domains. ITPase proteins are widely encoded by plant, animal, and archaea. They selectively hydrolyse mutagenic nucleotide triphosphates to prevent their incorporation into nucleic acid and thereby function to reduce mutation rates. It has previously been hypothesized that U/CBSVs encode Ham1 proteins with ITPase activity to reduce viral mutation rates during infection. In this study, we investigate the potential roles of U/CBSV Ham1 proteins. We show that both CBSV and UCBSV Ham1 proteins have ITPase activities through in vitro enzyme assays. Deep-sequencing experiments found no evidence of the U/CBSV Ham1 proteins providing mutagenic protection during infections of Nicotiana hosts. Manipulations of the CBSV_Tanza infectious clone were performed, including a Ham1 deletion, ITPase point mutations, and UCBSV Ham1 chimera. Unlike severely necrotic wild-type CBSV_Tanza infections, infections of Nicotiana benthamiana with the manipulated CBSV infectious clones do not develop necrosis, indicating that that the CBSV Ham1 is a necrosis determinant. We propose that the presence of U/CBSV Ham1 proteins with highly conserved ITPase motifs indicates that they serve highly selectable functions during infections of cassava and may represent a euphorbia host adaptation that could be targeted in antiviral strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号