共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Pritchard JB Sweet DH Miller DS Walden R 《The Journal of biological chemistry》1999,274(47):33382-33387
The mechanism and membrane localization of choroid plexus (CP) organic anion transport were determined in apical (or brush border) membrane vesicles isolated from bovine choroid plexus and in intact CP tissue from cow and rat. Brush border membrane vesicles were enriched in Na(+),K(+)-ATPase (20-fold; an apical marker in CP) and demonstrated specific, sodium-coupled transport of proline, glucose, and glutarate. Vesicular uptake of the anionic herbicide 2, 4-dichlorophenoxyacetic acid (2,4-D) was markedly stimulated by an inward sodium gradient but only in the presence of glutarate, indicating the presence of apical dicarboxylate/organic anion exchange. Consistent with this interpretation, an imposed outward glutarate gradient stimulated 2,4-D uptake in the absence of sodium. Under both conditions, uptake was dramatically slowed and overshoot was abolished by probenecid. Likewise, apical accumulation of 2,4-D by intact bovine choroid plexus tissue in vitro was stimulated by external glutarate in the presence of sodium. Glutarate stimulation was abolished by 5 mM LiCl. Identical findings were obtained using rat CP tissue, which showed both sodium/glutarate-stimulated 2,4-D (tissue/medium (T/M) approximately 8) and p-aminohippurate (T/M = 2) transport. Finally, since the renal exchanger (rROAT1) has been cloned in rat kidney, a rROAT1-green fluorescent protein construct was used to analyze exchanger distribution directly in transiently transfected rat CP. As predicted by the functional studies, the fluorescently tagged transporter was seen in apical but not basolateral membranes of the CP. 相似文献
3.
The activity of Na+/H(+)-exchange and H(+)-ATPase was measured in the absence of CO2/HCO3 by microfluorometry at the single cell level in rat proximal tubules (superficial S1/S2 segments) loaded with BCECF [2'7'-bis(carboxyethyl)5-6-carboxyfluorescein- acetoxymethylester]. Intracellular pH (pHi) was lowered by a NH4Cl-prepulse technique. In the absence of Na+ in the superfusion solutions, pHi recovered from the acid load by a mechanism inhibited by 0.1 microM bafilomycin A1, a specific inhibitor of a vacuolar-type H(+)-ATPase. Readdition of Na+ in the presence of bafilomycin A1 produced an immediate recovery of pHi by a mechanism sensitive to the addition of 10 microM EIPA (ethylisopropylamiloride), a specific inhibitor of Na+/H+ exchange. The transport rate of the H(+)-ATPase is about 40% of Na+/H(+)-exchange activity at a similar pHi (0.218 +/- 0.028 vs. 0.507 +/- 0.056 pH unit/min. Pre-exposure of the tubules to 30 mM fructose, 0.5 mM iodoacetate and 1 mM KCN (to deplete intracellular ATP) prevented a pHi recovery in Na(+)-free media; readdition of Na+ led to an immediate pHi recovery. Tubules pre-exposed to Cl(-)-free media for 2 hr also reduced the rate of Na(+)-independent pHi recovery. In free-flow electrophoretic separations of brush border membranes and basolateral membranes, a bafilomycin A1-sensitive ATPase activity was found to be associated with the brush border membrane fraction; half maximal inhibition is at 6 x 10(-10) M bafilomycin A1.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
4.
Characterization of the phosphate transport system across the basolateral membrane of renal proximal tubule has been attempted using isolated proximal tubule cells prepared from chicks. The Pi efflux system is independent of Na+ ions and is not influenced by the nature of the chief anion present in the bathing medium. Pi efflux is not sensitive to DIDS and it is concluded that a generalized anion transporter of band III type is not the chief agent for facilitating Pi exit from the cell across the basolateral membrane. Inhibition of efflux by vanadate is evidence for a specific carrier protein in the membrane. The carrier probably possesses thiol group(s) that are essential for activity. The carrier may effect electroneutral transport of Pi possibly in exchange for OH- ions. The activity of the transport process is not stimulated by depleting the cells of phosphate or inhibited by rearing the chicks on a vitamin D-deficient diet. The system is unlikely to be of great importance for the expression of various regulatory mechanisms that act on the kidney to control the excretion of Pi. The activity declines as the chicks mature however. 相似文献
5.
G. Malnic A. G. Lopes A. C. Cassola A. L. Berardi M. Mello Aires G. Giebisch 《The Journal of membrane biology》1990,118(2):121-130
Summary The pH-stat technique has been used to measure H+ fluxes in gastric mucosa and urinary bladder in vitro while keeping mucosal pH constant. We now report application of this method in renal tubules. We perfused proximal tubules with double-barreled micropipettes, blocked luminal fluid columns with oil and used a double-barreled Sb/reference microelectrode to measure pH, and Sb or 1n HC1-filled microelectrodes to inject OH– or H+ ions into the tubule lumen. By varying current injection, pH was kept constant at adjustable levels by an electronic clamping circuit. We could thus obtain ratios of current (nA) to pH change (apparent H+-ion conductance). These ratios were reduced after luminal 10–4
m acetazolamide, during injection of OH–, but they increased during injection of H+. The point-like injection source causes pH to fall off with distance from the injecting electrode tip even in oil-blocked segments. Therefore, a method analogous to cable analysis was used to obtain H+ fluxes per cm2 epithelium. The relation betweenJ
H
+
and pH gradient showed saturation kinetics of H fluxes, both during OH– and H+ injection. This kinetic behavior is compatible with inhibition ofJ
H by luminal H+. It is also compatible with dependence on Na+ and H+ gradients of a saturable Na/H exchanger. H+-ion back-flux into the tubule lumen also showed saturation kinetics. This suggests that H+ flow is mediated by a membrane component, most likely the Na+–H+ exchanger. 相似文献
6.
Gromova LV Grefner NM Gruzdkov AA Komissarchik IaIu 《Rossi?skii fiziologicheski? zhurnal imeni I.M. Sechenova / Rossi?skaia akademiia nauk》2006,92(3):362-373
In chronic experiments on Wistar rats, glucose and galactose absorption in the isolated loop of the small intestine considerably decreased in presence of both phloridzine am phloritine (inhibitors of the glucose transporters SGLT1 and GLUT2). The load of the isolated loop with glucose or galactose solutions scarcely influenced the absorption of 2-deoxi-D-glucose (substrate for GLUT2). According to the immunocytochemical analysis by means of confocal microscopy, after the load of the isolated loop with glucose (75 mM) the labels to GLUT2 and proteinkinase C (PKC betalI) were concentrated mainly in the apical part of the enterocytes, whereas after the load with the Ringer solution--in the basal part of the enterocytes. It was shown on the mathematical model that the part of the facilitated diffusion in the total glucose absorption was considerably lesser in comparison with the active transport mediated by SGLT1. Thus the findings support the hypothesis about a recruitment of the transporter GLUT2 into the apical membrane of the enterocytes and its involvement in glucose transfer across this membrane. However, under natural conditions, the active transport is the main mechanism of glucose absorption, whereas the facilitated diffusion plays a certain role only at high carbohydrate loads. 相似文献
7.
P I Campbell M I Abraham J H Dominguez J A McAteer S A Kempson 《Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.)》1990,193(4):253-258
Suspensions of proximal tubules were obtained by collagenase digestion of rat renal cortex followed by centrifugation on a percoll gradient. NAD content in tubules incubated at 37 degrees C was decreased by 40-60% compared with tubules incubated at 4 degrees C. This change occurred within 30 min and was maintained for up to 2 hr. Inhibitors of NAD hydrolysing enzymes prevented the depletion of cellular NAD at 37 degrees C. Acute changes in proximal tubule NAD content at 37 degrees C were not accompanied by changes in phosphate uptake by brush border membrane vesicles subsequently prepared from the same tubules. In contrast, incubation of tubules with parathyroid hormone (10(-6) M) produced the expected inhibition (20%) of brush border membrane transport of phosphate. One implication of these findings is that acute changes in total NAD content of proximal tubules at 37 degrees C may not influence the phosphate transport system in the renal brush border membrane. Other interpretations are discussed. 相似文献
8.
Huber K Muscher A Breves G 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2007,146(2):215-222
NaPi IIb cotransporter is expressed in various tissues including mammary glands of mice. The physiological role of NaPi IIb in lactating mammary glands is still unclear. Therefore, it was the aim of the study to detect and to localize NaPi IIb protein in lactating goat mammary glands by Western analysis and immunohistochemistry. Furthermore, Na(+)-dependent P(i) uptake into apical membrane vesicles isolated from goat milk was determined using rapid filtration technique. NaPi IIb protein could specifically be detected in the apical membranes of lactating alveolar epithelial cells. Na(+)-dependent P(i) uptake into apical membrane vesicles could be measured, which was inhibited by phosphonoformic acid. The kinetic parameters were V(max) with 0.9 nmol/mg protein/10 s and K(m) with 0.22 mmol/L for P(i) affinity, K(m) value for Na(+) affinity 11 mmol/L. Stoichiometry of this mammary gland Na(+)/P(i) transport across the apical membranes seemed to be 1:1 P(i):Na(+) without cooperativity in P(i) and Na(+) binding as assessed by Scatchard and Hill plots. These features of Na(+)/P(i) transport suggest that it could be mediated by NaPi IIb. The quantitative role of this P(i) transport which is directed from the alveolar lumen into the epithelial cell of goat mammary gland will be the topic of further investigations. 相似文献
9.
Summary We have previously shown that stimulation of apical Na-coupled glucose and alanine transport produces a transient depolarization of basolateral membrane potential (V
bl) in rabbit proximal convoluted tubule (PCT. Sl segment). The present study is aimed at understanding the origin of the membrane repolarization following the intial effect of addition of luminal cotransported solutes. Luminal addition of 10–15mMl-alanine produced a rapid and highly significant depolarization ofV
bl (20.3±1.1 mV,n=15) which was transient and associated with an increase in the fractional K+ conductance of the basolateral membrane (t
K) from 8 to 29% (P<0.01,n=6). Despite the significant increase int
K, the repolarization was only slightly reduced by the presence of basolateral Ba2+ (2mM,n=6) or quinine (0.5 mM,n=5). The repolarization was greatly reduced in the presence of 0.1 mM 4-acetamino-4isothiocyamostilbene-2,2-disulfonic acid (SITS) and blunted by bicarbonate-free solutions. Intracellular pH (pH
i
) determined with the fluorescent dye 2, 7-bis-2-carboxyethyl-5(and-6)-carboxyfluorescein (BCECF), averaged 7.39±0.02 in control solution (n=9) and increased to 7.50±0.03 in the first 15 sec after the luminal application of alanine. This was followed by a significant acidification averaging 0.16±0.01 pH unit in the next 3 min. In conclusion, we believe that, contrary to other leaky epithelia, rabbit PCT can regulate its basolateral membrane potential not only through an increase in K+ conductance but also through a cellular acidification reducing the basolateral HCO
3
–
exit through the electrogenic Na-3(HCO3) cotransport mechanism. 相似文献
10.
Glucose transport and metabolism, and the effect of insulin thereon, was studied using suspensions of rat renal tubules enriched in the proximal component. [U-14C]Glucose oxidation is a saturable process (Km 3.1 +/- 0.2 mM; Vmax 14 +/- 0.2 mumole 14CO2 formed/g tissue protein per h). Glucose oxidation and [14C]lactate formation from glucose are inhibited in part by phlorizin and phloretin: the data suggest that the rate-limiting entry of glucose into the cell metabolic pool occurs by both the Na-glucose cotransport system (at the brush border) and the equilibrating, phloretin-sensitive system (at the basal-lateral membrane). Raising external glucose from 5 to 30 mM markedly increases aerobic and anaerobic lactate formation. Gluconeogenesis from lactate is not affected by variations of glucose concentrations. 24 h after streptozotocin administration, aerobic lactate formation is enhanced, as is the uptake of methyl alpha-D-glucoside by the tubules, while anaerobic glycolysis is depressed. Streptozotocin treatment (ST) increases both the Km and Vmax of glucose oxidation; gluconeogenesis and lactate oxidation are not affected. The effect of streptozotocin treatment on lactate formation are abolished by 1 mU/ml insulin. Streptozotocin treatment increases tissue hexokinase activity, decreases glucose-6-phosphatase, but has no significant effect on fructose-1,6-diphosphatase; phosphoenolpyruvate carboxykinase and pyruvate dehydrogenase. The data demonstrate fast streptozotocin-induced changes in cellular enzymes of carbohydrate metabolism. The enhancing effect of streptozotocin on methyl alpha-glucoside uptake is transient: 8 days after administration of the agent, no significant difference from controls is found. It is concluded that under the given experimental conditions insulin enhances the equilibrating glucose entry by the phloretin-sensitive pathway at the basal-lateral membrane, and transiently inhibits the Na-glucose cotransport system. 相似文献
11.
V M Bresler S N Val'ter V V Isaev-Ivanov E N Kazbekov A P Kle?ner 《Tsitologiia》1987,29(10):1177-1184
The kinetics of the transport of 3H-para-aminohippuric acid (PAH) and the influence of the temperature on the initial rate of transport were studied on the vesicles of a purified fraction of the apical membrane isolated from cells of kidney proximal tubules. The PAH transport is accomplished owing to the facilitate diffusion mechanism. The apparent Michaelis constant at 36 degrees C was equal to 7.0 + 1.0 mM, the maximum rate was 15 nmol/min on 1 mg of protein, the inhibition constant for the PAH transport by probenecid being 0.5 mM. At 22 degrees C the apparent Michaelis constant was drastically increased. When the temperature dependence of the initial rate of PAH transport into vesicles was replotted in the form of the Arrhenius plot, there was a turning-point of the line at 28-30 degrees C. The same turning-point is shown on the Arrhenius plot for temperature dependence of alkaline phosphatase activity (a marker enzyme for the apical membrane). The electron paramagnetic resonance spectra analysis of 5-doxylstearate-labeled apical membrane preparation reveals a thermotropic transition near 21-29 degrees C. It is concluded that the function of the carrier and the activity of alkaline phosphatase depend on the phasic state of membrane lipids; the normal function of membrane proteins is possible under the liquid-crystalline state of the lipid bilayer. 相似文献
12.
Transtubular transport of proteins in rabbit proximal tubules 总被引:4,自引:0,他引:4
The purpose of the present experiments was to study possible different pathways of intracellular transport of proteins after luminal and basolateral uptake in isolated rabbit proximal tubules. Tubules were exposed to cationized ferritin (CF) in the perfusion fluid and horseradish peroxidase (HRP) in the bath simultaneously or to HRP in the bath alone for 30 min. The peritubular fluid (bath) and perfusion fluid were then exchanged and the tubules either fixed immediately or allowed to function during chase-periods for 10, 20, 30, or 60 min before fixation to follow the migration of the proteins through the cells. The proteins were to a large extent found separated in different vacuoles and lysosomes at all time periods studied, indicating separate pathways after uptake via the luminal and basolateral membranes respectively. About 0.5% of the CF taken up by the cells was transported through the cells and became located in the intercellular spaces. HRP was transported from the peritubular fluid to the apical cytoplasm of the tubules indicated by a gradual accumulation of small HRP-containing vesicles, first in the basal part of the cells and then in the apical cytoplasm. In tubules perfused with both CF and HRP in the perfusate, the CF and HRP were found together in apical vacuoles and lysosomes. After perfusion with HRP alone, this tracer was found in similar large vacuoles and lysosomes in the apical cytoplasm, in contrast to the small HRP-filled vacuoles seen after uptake from the bath. 相似文献
13.
Summary Movement of Cl from the lumen ofNecturus proximal tubule into the cells is mediated and dependent on the presence of luminal Na. Intracellular Cl activity was monitored with ion selective microelectrodes. In Cl Ringer's perfused kidneys, cell Cl activity was 24.5±1.1mm, 2 to 3 times higher than that predicted for passive distribution. When luminal NaCl was partially replaced by mannitol (capillaries perfused with Cl Ringer's) cell Cl decreased showing a sigmoidal dependence on luminal NaCl. Peritubular membrane potential was unaltered. Sulfate Ringer's perfusion of the kidneys washed out all cell Cl but did not alter peritubular membrane potential. Chloride did not enter the cell when the tubule lumen was perfused with 100mm KCl, LiCl, or tetramethylammonium Cl. Luminal perfusion of NaCl caused cell Cl to rise rapidly to the same value as the controls in the Cl Ringer's experiments. Perfusion of the tubule lumen with mixtures of NaCl and Na2SO4, while the capillaries contained sulfate Ringer's yielded a sigmoidal dependence of cell Cl on luminal NaCl activity. Chloride movement from the lumen into the proximal tubule cells required approximately equal concentrations of Na and Cl. Current clamp experiments indicated that intracellular chloride activity was insensitive to alterations in liminal membrane potential, suggesting that chloride entry was electrically neutral. The transcellular chloride flux was calculated to constitute about one half of the normal chloride reabsorption rate. We conclude that the cell Cl activity is primarily determined by the NaCl concentration in the tubule lumen and that Cl entry across the luminal membrane is mediated. 相似文献
14.
B Lucas-Heron 《Comptes rendus des séances de la Société de biologie et de ses filiales》1978,172(4):759-783
Urate transport seems dependant of ATP. So, we studied urate behaviour in relation with the isolated membrane: we observed a linkage between urate and a membrane protein of which molecular weight was estimated to twenty thousand. The exact role of this protein remains to be clarify. 相似文献
15.
Nishimura H Fan Z 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2003,136(3):479-498
Kidneys play an essential role in fluid-ion balance, but the mechanisms of renal handling of water vary depending on structural organization of kidneys and the environment. Fishes and amphibians in a hypoosmotic environment excrete excess water by forming dilute urine, whereas terrestrial tetrapods require water conservation by the kidney for survival. Diluting segments operated by a luminal Na(+)-K(+)-2Cl(-) cotransporter coupled with a basolateral Na(+)-K(+) pump are essential in forming dilute urine. In birds and mammals, the diluting segment that has the same transport characteristics now serves, with the development of additional architectural organization, for countercurrent urine concentration and water conservation. Recently, a number of aquaporin (AQP) water channels have been identified in various transporting epithelia. AQPs conserve the NPA (asparagine-proline-alanine) motif, forming pores selective to water. Although all vertebrate kidneys presumably possess AQP water channels, AQP homologues have been cloned only from amphibian, avian and mammalian renal systems. Studies on expression sites, function and regulation of AQPs will provide important insight into cellular and molecular mechanisms of epithelial water transport and its control by humoral, neural and hemodynamic mechanisms. 相似文献
16.
The lateral intercellular spaces (LIS) are believed to be the final common pathway for fluid reabsorption from the renal proximal tubule. We postulate that electrogenic sodium pumps in the lateral membranes produce an electrical potential within the LIS, that the lateral membranes bear a net negative charge, and that fluid moves parallel to these membranes because of Helmholtz-type electro-osmosis, the field- induced movement of fluid adjacent to a charged surface. Our theoretical analysis indicates that the sodium pumps produce a longitudinal electric field of the order of 1 V/cm in the LIS. Our experimental measurements demonstrate that the electrophoretic mobility of rat renal basolateral membrane vesicles is 1 micron/s per V/cm, which is also the electro-osmotic fluid velocity in the LIS produced by a unit electric field. Thus, the fluid velocity in the LIS due to electro-osmosis should be of the order of 1 micron/s, which is sufficient to account for the observed reabsorption of fluid from renal proximal tubules. Several experimentally testable predictions emerge from our model. First, the pressure in the LIS need not increase when fluid is transported. Thus, the LIS of mammalian proximal tubules need not swell during fluid transport, a prediction consistent with the observations of Burg and Grantham (1971, Membranes and Ion Transport, pp. 49-77). Second, the reabsorption of fluid is predicted to cease when the lumen is clamped to a negative voltage. Our analysis predicts that a voltage of -15 mV will cause fluid to be secreted into the Necturus proximal tubule, a prediction consistent with the observations of Spring and Paganelli (1972, J. Gen. Physiol., 60:181). 相似文献
17.
H G?gelein 《Renal physiology and biochemistry》1990,13(1-2):8-25
In the plasma membranes of mammalian proximal renal tubules single ion channels were investigated mainly in isolated tubules perfused on one side, in isolated nonperfused (collapsed) tubules and in primary cell cultures. With these techniques, the following results were obtained: in the luminal membrane of isolated one-sided perfused tubules of rabbit and mouse S3 segments, K(+)-selective channels with single-channel conductance (g) of 33 pS and 63 pS, respectively, were recorded. In primary cultures of rabbit S1 segments, a small-conductance (42 pS) as well as a large-conductance (200 pS) K+ channel were observed. The latter was Ca2(+)- and voltage-sensitive. In cultured cells a Ca2(+)-activated, nonselective cation channel with g = 25 pS was also recorded. On the other hand, an amiloride-sensitive channel with g = 12 pS, which was highly selective for Na+ over K+, was observed in the isolated perfused S3 segment. In the basolateral membrane of isolated perfused S3 segments, two types of K+ channels with g = 46 pS and 36 pS, respectively, were observed. The latter channel was not dependent on cytosolic Ca2+ in cell-excised patches. A K+ channel with g = 54 pS was recorded in isolated nonperfused S1 segments. This channel showed inward rectification and was more active at depolarizing potentials. In isolated perfused S3 segments, in addition to the K+ channels also a nonselective cation channel with g = 28 pS was observed. This channel was highly dependent on cytosolic Ca2+ in cell-free patches. It can be concluded that the K+ channels both in the luminal and contraluminal cell membrane are involved in the generation of the cell potential. Na+ channels in the luminal membrane may participate in Na+ reabsorption, whereas the function of a basolateral cation channel remains unclear. Recently, single anion-selective channels were recorded in membranes of endocytotic vesicles, isolated from rat proximal tubules. Vesicles were enlarged by the dehydration/rehydration method and investigated with the patch clamp technique. The Cl- channel had a conductance of 73 pS, the current-voltage curve was linear and the channel inactivated at high negative clamp potentials. It is suggested that this channel is responsible for charge neutrality during active H+ uptake into the endosomes. 相似文献
18.
19.
Nikiforov AA Ostretsova IB 《Rossi?skii fiziologicheski? zhurnal imeni I.M. Sechenova / Rossi?skaia akademiia nauk》1997,83(5-6):165-189
Stimulatory effects of intermediates of the tricarboxylic acid cycle on renal uptake of a weak organic anion, fluorescein, were studied with the aid of the method of contact microfluorimetry of individual convoluted proximal tubules ascending to the surface of the rat renal cortex slices. The study was undertaken for verifying the hypothesis that energization of renal excretion of anionic exenobiotics is mediated through their transport across the basolateral membrane in exchange for cytoplasmic alpha-ketoglutarate serving as a counter-anion. Effects of inhibitors of the tricarboxylic acid cycle such as fluoroacetate, malonate and 5-methoxyindole-2-carboxylate on the fluorescein uptake and renal gluconeogenesis in the presence of the metabolic substrates were investigated in order to outline metabolic pathways that could be responsible for elevation of the cytoplasmic alpha-ketoglutarate. Obtained data evidence that the stimulatory effects of the tricarboxylic acid cycle intermediates on the transport process under study depend on the metabolic state of the mitochondria and involve an activation of certain reactions but not the cycle as a whole. It has been suggested that an elevation of the cytoplasmic alpha-ketoglutarate resulting from this activation can be conditioned by export of isocitrate from the mitochondria with its subsequent transformation into alpha-ketoglutarate in the cytoplasm in the isocitrate dehydrogenase reaction. 相似文献
20.
Visser WF van Roermund CW Ijlst L Waterham HR Wanders RJ 《The Biochemical journal》2007,401(2):365-375
In recent years, much progress has been made with respect to the unravelling of the functions of peroxisomes in metabolism, and it is now well established that peroxisomes are indispensable organelles, especially in higher eukaryotes. Peroxisomes catalyse a number of essential metabolic functions including fatty acid beta-oxidation, ether phospholipid biosynthesis, fatty acid alpha-oxidation and glyoxylate detoxification. The involvement of peroxisomes in these metabolic pathways necessitates the transport of metabolites in and out of peroxisomes. Recently, considerable progress has been made in the characterization of metabolite transport across the peroxisomal membrane. Peroxisomes posses several specialized transport systems to transport metabolites. This is exemplified by the identification of a specific transporter for adenine nucleotides and several half-ABC (ATP-binding cassette) transporters which may be present as hetero- and homo-dimers. The nature of the substrates handled by the different ABC transporters is less clear. In this review we will describe the current state of knowledge of the permeability properties of the peroxisomal membrane. 相似文献