首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S Bon  J Y Chang  A D Strosberg 《FEBS letters》1986,209(2):206-212
We have determined partial N-terminal sequences of acetylcholinesterase (AChE) catalytic subunits from Torpedo marmorata electric organs and from bovine caudate nucleus. We obtain identical sequences (23 amino acids) for the soluble ('low-salt-soluble' or LSS fraction) and particulate ('detergent-soluble', or DS fraction) amphiphilic dimers (G2 form) and for the asymmetric, collagen-tailed forms ('high-salt-soluble', or HSS fraction, A12 + A8 forms). There are two amino acid differences, at position 3 (Asp/His) and 20 (Ile/Val), with the sequences obtained for T. californica by MacPhee-Quigley et al. [(1985) J. Biol. Chem. 260, 12185-12189] for the soluble G2 form and the lytic G4 form which is derived from asymmetric AChE. The bovine sequence (12 amino acids) presents an identity of 4 amino acids (Glu-Leu-Leu-Val) with that of Torpedo, at positions 5-8 (Torpedo) and 7-10 (bovine). There is also a clear homology with the sequence of human butyrylcholinesterase [(1986) Lockridge et al. J. Biol. Chem., in press] indicating that these enzymes probably derive from a common ancestor.  相似文献   

2.
《Gene》1996,171(2):307-308
We have isolated and sequenced the 5′ end of the cDNA encoding the rat microtubule-associated protein 1B (MAP1B). We found that this region is highly homologous to the corresponding regions of the human [Lien et al., 22 (1994) 273–280] and mouse [Noble et al., J. Cell Biol. 109 (1989) 3367–3376] MAPIB genes. The combination of the sequence that we are presenting with the previously published sequence [Zauner et al., Eur. J. Cell Biol. 57 (1992) 66–74], represents the complete rat MAP1B cDNA coding sequence.  相似文献   

3.
Using modifications of the methods of Bokoch et al. (Bokoch, G.M., Katada, T., Northup, J. K., Ui, M., and Gilman, A. G. (1984) J. Biol. Chem. 259, 3560-3567) and Codina et al. (Codina, J., Hildebrandt, J. D., Sekura, R. D., Birnbaumer, M., Bryan, J., Manclark, C. R., Iyengar, R., and Birnbaumer, L. (1984) J. Biol. Chem. 259, 5871-5886), we have purified a pertussis toxin substrate with the expected characteristics of the inhibitory guanine nucleotide-binding protein (Ni) essentially to homogeneity. The purified protein consists of 3 subunits of Mr 40,000, 35,000, and less than 10,000. The Mr 40,000 band is found, upon close examination, to consist of a poorly resolved doublet. Starting with the membranes from 1,320 g of bovine forebrain we purified the protein some 100-fold with approximately 20% yield to obtain 13 mg of a greater than 95% pure protein. Chromatography on octyl-Sepharose provided efficient separation of Ni from Ns (the stimulatory guanine nucleotide-binding protein). Analytical ultracentrifugation indicates an Mr of 82,000 and a sedimentation coefficient S20,w of 5.1. The protein is able to restore opiate-mediated inhibition of adenylate cyclase to membranes prepared from NG 108-15 cells which had been treated with pertussis toxin. Bovine brain Ni has the enzymatic properties of a low Km GTPase with a turnover number of 0.3 and affinities for nucleotides in the order GppNHp greater than or equal to GTP greater than or equal to GDP much greater than ATP, CTP, UTP, and GMP. Na+ specifically stimulates the GTPase and low concentrations of Mg2+ (less than 50 microM) are inhibitory. Some Mg2+ is apparently necessary because EDTA, but not EGTA, abolishes the GTPase activity.  相似文献   

4.
D Dunon-Bluteau  G Brun 《FEBS letters》1986,198(2):333-338
Extensive corrections of the nucleotide sequence of the Xenopus laevis mitochondrial small ribosomal subunit RNA gene [Roe et al. (1985) J. Biol. Chem. 260, 9759-9774] are reported. We found an additional fragment of 142 nucleotides and describe 25 nucleotide differences scattered in the gene. The nucleotide sequence the same gene of bovine mitochondrion. We propose a new secondary structure for the product of the X. laevis gene. Contrary to the finding of Roe et al., we observed the same general organization of stems and loops as for the human mitochondrial 12 S rRNA gene product. On the other hand, the structural homology observed between the mitochondrial and cytoplasmic small subunit rRNAs of X. laevis appears much lower. These results strongly suggest that animal vertebrate mitochondrial DNAs have followed the same evolutionary pathway.  相似文献   

5.
Recently two reports [J. A. Robertson et al. (1986) J. Biol. Chem. 261, 15794-15799 and R. M. Bayney et al. (1987) J. Biol. Chem. 262, 572-575] have appeared concerning the nucleotide sequence of quinone reductase cDNA clones. Although the cDNA clones are virtually identical, they diverge in the 5' region that encodes the NH2 terminus of the protein. In order to clarify the sequence of this region, we have isolated quinone reductase clones from a rat genomic library using a cDNA clone, pDTD55, isolated and characterized by our laboratory. We have determined the sequence of exons 1 and 2 of the structural gene by double-stranded sequencing using oligonucleotide primers. The sequence of exons 1 and 2 of the quinone reductase structural gene along with our previous nucleotide sequence analysis of pDTD55 as well as conventional amino acid sequence analysis of the purified protein indicates that quinone reductase is composed of 274 amino acids with a molecular weight of 30,946. These data agree with the published sequence of lambda NMOR1 reported by Robertson et al.  相似文献   

6.
An aminoacyl-tRNA synthetase subunit, p43, was previously demonstrated to be released from mammalian cells, and to function as an extracellular regulator of both angiogenesis and inflammatory responses (Ko et al., [2001] J Biol Chem, 276; 23028; Park et al.[2002], J Biol Chem 277; 45243). Here, we report that p43 is internalized to the endothelial cells via lipid rafts. Exogenous p43 was co-localized on bovine aorta endothelial cells with cholera toxin B (CTB), which binds to cholesterol-enriched lipid rafts. The p43 was rapidly internalized to the cells, as early as 5 min after binding to the surfaces of the cells. p43 bound to the isolated lipid rafts, and its interaction with the lipid rafts, was prevented by high salt content, but not by detergent. This suggests that ionic bonds are involved in the molecular association of p43 with the lipid rafts. Taken together, we conclude that p43 binds to the endothelial cell surface via lipid rafts.  相似文献   

7.
CK2-dependent phosphorylation of a kinase-specific Hsp90 co-chaperone Cdc37 on a conserved serine residue (Ser13) is essential for the function of Cdc37 [Bandhakavi S. et al. J. Biol. Chem. 278:2829-2836, 2003; Shao J. et al. J. Biol. Chem. 278:38117-38220, 2003; Miyata Y., & Nishida E. Mol. Cell. Biol. 24:4065-4074, 2004]. We have recently produced an anti-[pSer13]-Cdc37 antibody which specifically recognizes Cdc37 that is phosphorylated on Ser 13 [Miyata Y. & Nishida E. FEBS J. 274:5690-5703, 2007]. Here we investigated CK2 activity both in vitro and in cultured cells by using anti-[pSer13]-Cdc37 antibody. Immunoblotting with this antibody showed that heparin and 4,5,6,7-tetrabromobenzotriazole (TBB), known CK2 inhibitors, inhibited in vitro phosphorylation of Cdc37 on Ser13 by CK2 holoenzyme or CK2alpha, confirming the specificity of the antibody to detect CK2 activity. Treatment of cells with TBB resulted in the decrease in the phosphorylation level of endogenous Cdc37 on Ser13, as revealed by anti-[pSer13]-Cdc37, and overexpression of either CK2alpha or CK2beta subunit enhanced the Cdc37 phosphorylation level. While CK2 is suggested to be involved in cell proliferation, mitogenic stimulation of starved cells by fresh serum or insulin-like growth factor-I did not enhance phosphorylation of Cdc37 on Ser13. CK2 inhibitors are known to induce cell apoptosis, suggesting a reverse correlation between cell apoptosis and CK2 activity. However, cellular apoptotic stresses, such as anisomycin treatment and UV irradiation, were found to rather modestly increase phosphorylation of Cdc37 on Ser13. These results show that the anti-[pSer13]-Cdc37 antibody can be a promising new tool to evaluate in vivo CK2 activity.  相似文献   

8.
A plasmid pUChEF-2 containing the coding sequence as well as the complete 3'-untranslated region (3'UTR) of human EF-2 mRNA was constructed. The plasmid construct was assembled from a cDNA insert of pHGR81 (Rapp et al., (1988) Biol. Chem. Hoppe-Seyler 369, 247-250) comprising the C-terminal portion of the coding region and the 3'UTR, as well as a polymer chain reaction PCR fragment (Rapp et al., (1989) Biol. Chem. Hoppe-Seyler 370, 1071-1075) covering the missing part of the coding region from the amino-terminus.  相似文献   

9.
When electrospray ionization mass spectrometry (ESMS) was used to analyze purified bovine gamma E (gamma IVa)-crystallin, it yielded a relative molecular mass (M(r)) of 20.955 +/- 5. This mass is significantly different from that calculated from the published sequence (M(r) 20.894) (White HE et al., 1989, J Mol Biol 207:217-235). Further, ES-MS analysis of the protein after it had been reduced and carboxymethylated indicated the presence of five cysteine residues, whereas the published sequence contains six (Kilby GW et al., 1995, Eur Mass Spectrom 1:203-208). The entire protein sequence of gamma E crystallin has therefore been studied via a combination of ES-MS, ES-MS/MS, and Edman amino acid sequencing. The corrected sequence gives an M(r) of 20.955.3, which matches that obtained by ES-MS analysis of the purified native protein. The corrected sequence is also in agreement with a recent cDNA sequence obtained for a bovine gamma-crystallin by R. Hay (pers. comm.).  相似文献   

10.
Mitochondrial Complex I (NADH:ubiquinone oxidoreductase) consists of at least 46 subunits. Phosphorylation of the 42-kDa subunit NDUFA10 was recently reported using a novel phosphoprotein stain [Schulenberg et al. (2003) Analysis of steady-state protein phosphorylation in mitochondria using a novel fluorescent phosphosensor dye. J. Biol. Chem. 278, 27251]. Two smaller Complex I phosphoproteins, ESSS and MWFE, and their sites of modification, have since been determined [Chen et al. (2004) The phosphorylation of subunits of complex I from bovine heart mitochondria. J. Biol. Chem. 279, 26036]. Here we identify the site of phosphorylation in NDUFA10 from bovine heart mitochondria by tandem mass spectrometry. A single phosphopeptide spanning residues 47-60 was identified and confirmed by synthesis to be (47)LITVDGNICSGKpSK(60), establishing serine-59 as the site of phosphorylation.  相似文献   

11.
Two Mg(2+)-dependent DNA endonucleases have been isolated from mammalian cells which have a strong preference to nick within long tracts of guanine residues in vitro. One endonuclease activity is mitochondrial (mt). The other endonuclease, called Endonuclease G, is associated with isolated nuclei, and is released when the nuclear chromatin is exposed to moderate ionic strength. Our laboratory has previously purified the mt endonuclease to near homogeneity from mitochondria of bovine heart and reported the enzyme to be a homodimer of a approximately 29 kDa polypeptide [Cummings, O. W. et al. (1987) J. Biol. Chem., 262, 2005-2015]. Although the purified mt endonuclease will extensively fragment M13 viral ssDNA and plasmid dsDNAs in vitro, the enzyme displays an unusually strong preference to nick within a (dG)12:(dC)12 sequence tract which resides just upstream from the origin of DNA replication in the mitochondrial genome. The nuclear Endonuclease G first identified from its selective targeting of several (dG)n:(dC)n tracts in vitro (where N = 3-29), was subsequently purified from calf thymus nuclei and shown to be a homodimer of a approximately 26-kDa polypeptide [Côté, J. et al. (1989) J. Biol. Chem., 264, 3301-3310]. In the present study, we find that Endonuclease G partially purified from calf thymus nuclei will extensively degrade both viral ss- and dsDNAs in vitro, and that the enzyme possesses biochemical properties and specificity for nucleotide sequences in DNA that are strongly related or identical to those of the mt endonuclease. These findings and the discovery of sequence identity between the proteins strengthen the conclusion that the nuclear Endonuclease G is the same enzyme as the mt endonuclease.  相似文献   

12.
Iron regulatory proteins (IRPs), the cytosolic proteins involved in the maintenance of cellular iron homeostasis, bind to stem loop structures found in the mRNA of key proteins involved iron uptake, storage, and metabolism and regulate the expression of these proteins in response to changes in cellular iron needs. We have shown previously that HFE-expressing fWTHFE/tTA HeLa cells have slightly increased transferrin receptor levels and dramatically reduced ferritin levels when compared to the same clonal cell line without HFE (Gross et al., 1998, J Biol Chem 273:22068-22074). While HFE does not alter transferrin receptor trafficking or non-transferrin mediated iron uptake, it does specifically reduce (55)Fe uptake from transferrin (Roy et al., 1999, J Biol Chem 274:9022-9028). In this report, we show that IRP RNA binding activity is increased by up to 5-fold in HFE-expressing cells through the activation of both IRP isoforms. Calcein measurements show a 45% decrease in the intracellular labile iron pool in HFE-expressing cells, which is in keeping with the IRP activation. These results all point to the direct effect of the interaction of HFE with transferrin receptor in lowering the intracellular labile iron pool and establishing a new set point for iron regulation within the cell.  相似文献   

13.
This paper is a continuation of our study of various animal pancreatic enzymes which are related to human pancreatic elastase 1 (Sziegoleit, A. & Linder, D. (1986) Biol. Chem. Hoppe-Seyler, 367, 527-531). The isolation and immunological analysis of the related protein from bovine pancreas disclosed that the third subunit of the procarboxypeptidase A complex is the antibody-binding component. The similarity of this subunit to elastase 1 is affirmed by comparison of their primary structures. While the complete amino-acid sequence of bovine subunit III recently has been published (Venot, N., Sciaky, M., Puigserver, A., Desnuelle, P. & Laurent, G. (1986) Eur. J. Biochem. 157, 91-99), we here present the amino-acid sequence of the carboxy-terminal tryptic peptide of human pancreatic elastase 1 showing a high degree of homology.  相似文献   

14.
Human neutrophil cathepsin G was found to be unable to significantly stimulate the degradation of either bovine or human elastin by neutrophil elastase, using four different procedures to monitor digestion. A range of stimulations from 1.1 to 2.9-fold was found, with a 2.0-fold stimulation being the average found with the assays tested. These results contrast with those reported by Boudier et al. [(1981) J. Biol. Chem. 256, 10256-10258] who reported a five- to seven-fold stimulation of elastolysis of human lung elastin by cathepsin G, when present at a 2:1 molar ratio relative to elastase. Significantly, we found little stimulation of elastolysis with either human or bovine lung elastin as substrate while Boudier et al. found stimulation only with the human elastin. Thus, it would appear that cathepsin G does not play a predominant role as an elastolytic enzyme; rather, its role in this case may be one of binding to non-productive sites on the elastin surface.  相似文献   

15.
When U1 and U2 small nuclear ribonucleoproteins (snRNPs) purified by a procedure which preserves their immunoprecipitability by autoimmune antibodies (Hinterberger et al., J. Biol. Chem. 258:2604-2613, 1983), were submitted to extensive digestion with micrococcal nuclease, we found that their degradation pattern was sharply dependent upon magnesium concentration, indicating that they undergo a profound structural modification. At low Mg2+ (less than or equal to 5 mM), both particles only exhibit a core-resistant structure previously identified as being common to all but U6 snRNAs (Liautard et al., J. Mol. Biol. 162: 623-643, 1982). At high Mg2+ (greater than or equal to 7 mM), U1 and U2 snRNPs behave differently from one another. In U1 snRNP, most U1 snRNA sequence is protected, except for the 10 5'-terminal nucleotides presumably involved in splicing and a short sequence between nucleotides 102 and 108. Another region spanning nucleotides 60 to 79 is only weakly protected. This structural modification was demonstrated to be reversible. In U2 snRNP, the U2 snRNA sequence remains exposed in its 5' part up to nucleotide 92, and the 3'-terminal hairpin located outside the core structure becomes protected.  相似文献   

16.
Characterization of human C4a anaphylatoxin   总被引:2,自引:0,他引:2  
Human C4a anaphylatoxin was isolated from a Cls digest of the fourth component of complement. Isolation required a two-step procedure involving ion-exchange chromatography on CM-Sephadex C-50 and gel filtration on Sephadex G-50. Characterization of C4a indicated it is a highly cationic polypeptide (pI = 9.0-9.5) containing 77 residues with Mr = 8,759. C4a is devoid of tryptophan, histidine, and carbohydrate. Judged by the shape and magnitude of its circular dichroism spectrum, 54% of the polypeptide backbone of C4a assumes an alpha-helical conformation. Partial NH2-terminal sequence determination of C4a revealed a sequence identical with that published by Bolotin et al. (Bolotin, C., Morris, S., Tack, B., and Prahl, J. (1977) Biochemistry 16, 2008-2015) for the NH2 terminus of the alpha-subunit of human C4. Comparison of the NH2-terminal sequence of C4a with the sequences of complement activation fragments C3a (Hugli, T.E. (1975) J. Biol. Chem. 250, 8293-8301) and C5a (Fernandez, H.N., and Hugli, T.E. (1978) J. Biol. Chem, 253-6955-6962) showed that of the first 24 NH2-terminal residues of C4a, 6 were identical with those of C3a (25% homology) and 8 were identical with those of C5a (33% homology). These data represent the first chemical evidence for the existence of an evolutionary relationship among anaphylatoxins C3a, C4a, and C5a, and imply that a similar relationship exists among their precursor proteins.  相似文献   

17.
The murine gene for the glucuronyl C5-epimerase involved in heparan sulfate biosynthesis was cloned, using a previously isolated bovine lung cDNA fragment (Li, J.-P., Hagner-McWhirter, A., Kjellén, L., Palgi, J., Jalkanen, M., and Lindahl, U. (1997) J. Biol. Chem. 272, 28158-28163) as probe. The approximately 11-kilobase pair mouse gene contains 3 exons from the first ATG to stop codon and is localized to chromosome 9. Southern analysis of the genomic DNA and chromosome mapping suggested the occurrence of a single epimerase gene. Based on the genomic sequence, a mouse liver cDNA was isolated that encodes a 618-amino acid residue protein, thus extending by 174 N-terminal residues the sequence deduced from the (incomplete) bovine cDNA. Comparison of murine, bovine, and human epimerase cDNA structures indicated 96-99% identity at the amino acid level. A cDNA identical to the mouse liver species was demonstrated in mouse mast cells committed to heparin biosynthesis. These findings suggest that the iduronic acid residues in heparin and heparan sulfate, despite different structural contexts, are generated by the same C5-epimerase enzyme. The catalytic activity of the recombinant full-length mouse liver epimerase, expressed in insect cells, was found to be >2 orders of magnitude higher than that of the previously cloned, smaller bovine recombinant protein. The approximately 52-kDa, similarly highly active, enzyme originally purified from bovine liver (Campbell, P., Hannesson, H. H., Sandb?ck, D., Rodén, L., Lindahl, U., and Li, J.-P. (1994) J. Biol. Chem. 269, 26953-26958) was found to be associated with an approximately 22-kDa peptide generated by a single proteolytic cleavage of the full-sized protein.  相似文献   

18.
We have previously reported that amyloid Abeta, the major component of senile plaques in Alzheimer's disease (AD), binds Cu with high affinity via histidine and tyrosine residues [Atwood, C. S., et al. (1998) J. Biol. Chem. 273, 12817-12826; Atwood, C. S., et al. (2000) J. Neurochem. 75, 1219-1233] and produces H(2)O(2) by catalyzing the reduction of Cu(II) or Fe(III) [Huang, X., et al. (1999) Biochemistry 38, 7609-7616; Huang, X., et al. (1999) J. Biol. Chem. 274, 37111-37116]. Incubation with Cu induces the SDS-resistant oligomerization of Abeta [Atwood, C. S., et al. (2000) J. Neurochem. 75, 1219-1233], a feature characteristic of neurotoxic soluble Abeta extracted from the AD brain. Since residues coordinating Cu are most vulnerable to oxidation, we investigated whether modifications of these residues were responsible for Abeta cross-linking. SDS-resistant oligomerization of Abeta caused by incubation with Cu was found to induce a fluorescence signal characteristic of tyrosine cross-linking. Using ESI-MS and a dityrosine specific antibody, we confirmed that Cu(II) (at concentrations lower than that associated with amyloid plaques) induces the generation of dityrosine-cross-linked, SDS-resistant oligomers of human, but not rat, Abeta peptides. The addition of H2O2 strongly promoted Cu-induced dityrosine cross-linking of Abeta1-28, Abeta1-40, and Abeta1-42, suggesting that the oxidative coupling is initiated by interaction of H2O2 with a Cu(II) tyrosinate. The dityrosine modification is significant since it is highly resistant to proteolysis and is known to play a role in increasing structural strength. Given the elevated concentration of Cu in senile plaques, our results suggest that Cu interactions with Abeta could be responsible for causing the covalent cross-linking of Abeta in these structures.  相似文献   

19.
20.
A structurally novel, tryptophan-rich antimicrobial tridecapeptide amide, named indolicidin, has recently been purified from bovine neutrophils (Selsted et al. (1992) J. Biol. Chem. 267, 4292-4295). Here we describe the molecular cloning of this endoantibiotic, which is synthesised in bone marrow cells as a 144 amino acid residue precursor. The encoded protein has a predicted mass of 16479 Da and a pI of 6.51. A putative signal peptide of 29 amino acids precedes a 101 residue pro-region. The mature peptide is at the 3' end of the open reading frame. A glycine, not found in purified indolicidin, is present at the carboxyl terminus of the deduced sequence and is very likely involved in post-translational peptide amidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号