首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
NO synthase 2 (NOS2) is induced in airway epithelium by influenza virus infection. NOS2 induction late in the course of viral infection may occur in response to IFN-gamma, but early in infection gene expression may be induced by the viral replicative intermediate dsRNA through the dsRNA-activated protein kinase (PKR). Since PKR activates signaling pathways important in NOS2 gene induction, we determined whether PKR is a component in the signal transduction pathway leading to NOS2 gene expression after viral infection of airway epithelium. We show that NOS2 gene expression in human airway epithelial cells occurs in response to influenza A virus or synthetic dsRNA. Furthermore, dsRNA leads to rapid activation of PKR, followed by activation of signaling components including NF-kappaB and IFN regulatory factor 1. NOS2 expression is markedly diminished and IFN regulatory factor 1 and NF-kappaB activation are substantially impaired in PKR null cells. Strikingly, NOS2 induction in response to LPS is abolished in PKR null cells, confirming a central role for PKR in the general signaling pathway to NOS2.  相似文献   

4.
5.
6.
7.
Double-stranded RNA (dsRNA) produced during viral infection activates several cellular antiviral responses. Among the best characterized is the shutoff of protein synthesis mediated by the dsRNA-dependent protein kinase (PKR) and the oligoadenylate synthetase (OAS)/RNase L system. As viral replication depends on protein synthesis, many viruses have evolved mechanisms for counteracting the PKR and OAS/RNase L pathways. The murine cytomegalovirus (MCMV) proteins m142 and m143 have been characterized as dsRNA binding proteins that inhibit PKR activation, phosphorylation of the translation initiation factor eIF2α, and a subsequent protein synthesis shutoff. In the present study we analyzed the contribution of the PKR- and the OAS-dependent pathways to the control of MCMV replication in the absence or presence of m142 and m143. We show that the induction of eIF2α phosphorylation during infection with an m142- and m143-deficient MCMV is specifically mediated by PKR, not by the related eIF2α kinases PERK or GCN2. PKR antagonists of vaccinia virus (E3L) or herpes simplex virus (γ34.5) rescued the replication defect of an MCMV strain with deletions of both m142 and m143. Moreover, m142 and m143 bound to each other and interacted with PKR. By contrast, an activation of the OAS/RNase L pathway by MCMV was not detected in the presence or absence of m142 and m143, suggesting that these viral proteins have little or no influence on this pathway. Consistently, an m142- and m143-deficient MCMV strain replicated to high titers in fibroblasts lacking PKR but did not replicate in cells lacking RNase L. Hence, the PKR-mediated antiviral response is responsible for the essentiality of m142 and m143.  相似文献   

8.
The dsRNA protein kinase PKR: virus and cell control   总被引:12,自引:0,他引:12  
García MA  Meurs EF  Esteban M 《Biochimie》2007,89(6-7):799-811
  相似文献   

9.
Double-stranded RNA (dsRNA) is a by-product of viral RNA polymerase activity, and its recognition is one mechanism by which the innate immune system is activated. Cellular responses to dsRNA include induction of alpha/beta interferon (IFN) synthesis and activation of the enzyme PKR, which exerts its antiviral effect by phosphorylating the eukaryotic initiation factor eIF-2 alpha, thereby inhibiting translation. We have recently identified the nonstructural protein NSs of Bunyamwera virus (BUNV), the prototype of the family Bunyaviridae, as a virulence factor that blocks the induction of IFN by dsRNA. Here, we investigated the potential of NSs to inhibit PKR. We show that wild-type (wt) BUNV that expresses NSs triggered PKR-dependent phosphorylation of eIF-2 alpha to levels similar to those of a recombinant virus that does not express NSs (BUNdelNSs virus). Furthermore, the sensitivity of viruses in cell culture to IFN was independent of PKR and was not determined by NSs. PKR knockout mice, however, succumbed to infection approximately 1 day earlier than wt mice or mice deficient in expression of RNase L, another dsRNA-activated antiviral enzyme. Our data indicate that (i) bunyaviruses activate PKR, but are only marginally sensitive to its antiviral effect, and (ii) NSs is different from other IFN antagonists, since it inhibits dsRNA-dependent IFN induction but has no effect on the dsRNA-activated PKR and RNase L systems.  相似文献   

10.
Epithelial cells represent the initial site of respiratory viral entry and the first line of defense against such infections. This early antiviral response is characterized by an increase in the production of proinflammatory cytokines such as TNF-alpha and IL-1 beta. dsRNA, which is a common factor present during the life cycle of both DNA and RNA viruses, is known to induce TNF-alpha and IL-1 beta in a variety of cells. In this work we provide data showing that dsRNA treatment induces TNF-alpha and IL-1 beta in human lung epithelial cells via two different mechanisms. Our data show that dsRNA activation of dsRNA-activated protein kinase (PKR) is associated with induction of TNF-alpha but not IL-1 beta expression. An inhibitor of PKR activation blocked the dsRNA-induced elevations in TNF-alpha but not IL-1 beta mRNA in epithelial cells. Data obtained from infection of epithelial cells with a vaccinia virus lacking the PKR inhibitory polypeptide, E3L, revealed that PKR activation was essential for TNF-alpha but not for IL-1 beta expression. In this report, we provide experimental support for the differential regulation of proinflammatory cytokine expression by dsRNA and viral infections in human airway epithelial cells.  相似文献   

11.
The interferon (IFN)-inducible double-stranded-RNA (dsRNA)-activated serine-threonine protein kinase (PKR) is a major mediator of the antiviral and antiproliferative activities of IFNs. PKR has been implicated in different stress-induced signaling pathways including dsRNA signaling to nuclear factor kappa B (NF-kappaB). The mechanism by which PKR mediates activation of NF-kappaB is unknown. Here we show that in response to poly(rI). poly(rC) (pIC), PKR activates IkappaB kinase (IKK), leading to the degradation of the inhibitors IkappaBalpha and IkappaBbeta and the concomitant release of NF-kappaB. The results of kinetic studies revealed that pIC induced a slow and prolonged activation of IKK, which was preceded by PKR activation. In PKR null cell lines, pIC failed to stimulate IKK activity compared to cells from an isogenic background wild type for PKR in accord with the inability of PKR null cells to induce NF-kappaB in response to pIC. Moreover, PKR was required to establish a sustained response to tumor necrosis factor alpha (TNF-alpha) and to potentiate activation of NF-kappaB by cotreatment with TNF-alpha and IFN-gamma. By coimmunoprecipitation, PKR was shown to be physically associated with the IKK complex. Transient expression of a dominant negative mutant of IKKbeta or the NF-kappaB-inducing kinase (NIK) inhibited pIC-induced gene expression from an NF-kappaB-dependent reporter construct. Taken together, these results demonstrate that PKR-dependent dsRNA induction of NF-kappaB is mediated by NIK and IKK activation.  相似文献   

12.
The interferon-induced double-stranded RNA (dsRNA)-activated protein kinase (PKR) has been shown to activate NF-kappaB independently of its kinase function after interaction with the IKK complex. In order to investigate the mechanism of NF-kappaB activation by PKR, we identified the domain of PKR responsible for stimulating the NF-kappaB pathway in PKR-deficient fibroblasts using an NF-kappaB dependent reporter assay. The N-terminal 1-265 AA of PKR activates NF-kappaB, whereas the 1-180 AA N-terminus restricted to the two dsRNA Binding Domains (DRBD), the third basic domain alone (AA 181-265), or the C-terminus of PKR (AA 266-550) were unable to stimulate the expression of the NF-kappaB dependent reporter gene. Using confocal microscopy, we confirmed that PKR full length as well as PKR N-terminus colocalized with IKKbeta. By GST-pulldown analysis, using different PKR domains, we then revealed the specific ability of the PKR N-terminus 1-265 to bind to and activate IKK and showed that this activation requires the integrity of the IKK complex. This activation is not only due to DRBDs since the DRBD fragment 1-180 failed to inhibit PKR 1-265 induced NF-kappaB activation. Our results therefore demonstrate that the ability of PKR to mediate NF-kappaB activation resides in its full N-terminus, and requires both DRBDs and the third basic domain.  相似文献   

13.
14.
15.
Responding to viral infection, the interferon-induced, double-stranded RNA (dsRNA)–activated protein kinase PKR phosphorylates translation initiation factor eIF2α to inhibit cellular and viral protein synthesis. To overcome this host defense mechanism, many poxviruses express the protein E3L, containing an N-terminal Z-DNA binding (Zα) domain and a C-terminal dsRNA-binding domain (dsRBD). While E3L is thought to inhibit PKR activation by sequestering dsRNA activators and by directly binding the kinase, the role of the Zα domain in PKR inhibition remains unclear. Here, we show that the E3L Zα domain is required to suppress the growth-inhibitory properties associated with expression of human PKR in yeast, to inhibit PKR kinase activity in vitro, and to reverse the inhibitory effects of PKR on reporter gene expression in mammalian cells treated with dsRNA. Whereas previous studies revealed that the Z-DNA binding activity of E3L is critical for viral pathogenesis, we identified point mutations in E3L that functionally uncouple Z-DNA binding and PKR inhibition. Thus, our studies reveal a molecular distinction between the nucleic acid binding and PKR inhibitory functions of the E3L Zα domain, and they support the notion that E3L contributes to viral pathogenesis by targeting PKR and other components of the cellular anti-viral defense pathway.  相似文献   

16.
17.
Earlier studies have shown that active MEK blocks the activation of protein kinase R (PKR), a component of antiviral innate immune responses. In this report we show that the herpes simplex virus 1 virion host shutoff (VHS) RNase protein and MEK (mitogen-activated protein kinase kinase) act cooperatively in blocking the activation of PKR. This conclusion is based on the following. (i) In contrast to viral gene expression in the parental cell line or a cell line expressing a constitutively active MEK, the replication of a VHS mutant is particularly impaired in cells expressing dominant negative MEK. In this cell line PKR is activated by phosphorylation, and the accumulation of several viral proteins is delayed. (ii) In transfected cells, wild-type VHS blocked the activation of PKR, whereas PKR was activated in cells transfected with a mutant VHS or with plasmids encoding the VHS RNase and VP16 and VP22, the two viral proteins that neutralize the RNase activity of VHS. The results suggest that early in infection the VHS RNase degrades RNAs that activate PKR. Coupled with published data, the results suggest that inhibition of activation of PKR or its effect on viral replication is staged early in infection by VHS, postsynthesis of VP16 and VP22 by the γ134.5 protein, and very late in infection by the US11 protein.  相似文献   

18.
19.
The initial step in an immune response toward a viral infection is the induction of inflammatory cytokines. This innate immune response is mediated by expression of a variety of cytokines exemplified by TNF-alpha and IL-1beta. A key signal for the recognition of intracellular viral infections is the presence of dsRNA. Viral infections and dsRNA treatment can activate several signaling pathways including the protein kinase R pathway, mitogen-activated protein kinase (MAPK) pathways, and NF-kappaB, which are important in the expression of inflammatory cytokines. We previously reported that activation of protein kinase R was required for dsRNA induction of TNF-alpha, but not for IL-1beta. In this study, we report that activation of the p38 MAPK pathway by respiratory viral infections is necessary for induction of inflammatory cytokines in human bronchial epithelial cells. Inhibition of p38 MAPK by two different pharmacological inhibitors showed that expression of both TNF-alpha and IL-1beta required activation of this signaling pathway. Interestingly, inhibition of NF-kappaB did not significantly reduce viral induction of either cytokine. Our data show that, during the initial infections of epithelial cells with respiratory viruses, activation of the p38 MAPK pathway is associated with induction of inflammation, and NF-kappaB activation may be less important than previously suggested.  相似文献   

20.
The vaccinia virus (VV) E3L gene, which encodes a potent inhibitor of the interferon (IFN)-induced, double-stranded RNA (dsRNA)-dependent protein kinase, PKR, is thought to be involved in the IFN-resistant phenotype of VV. The E3L gene products, p25 and p20, act as inhibitors of PKR, presumably by binding and sequestering activator dsRNA from the kinase. In this study we demonstrate that VV with the E3L gene specifically deleted (vP1080) was sensitive to the antiviral effects of IFN and debilitated in its ability to rescue vesicular stomatitis virus from the antiviral effects of IFN. Infection of L929 cells with E3L-minus virus led to rRNA degradation typical of activation of the 2'-5'-oligoadenylate synthetase/RNase L system, and extracts of infected cells lacked the PKR-inhibitory activity characteristic of wild-type VV. The reovirus S4 gene, which encodes a dsRNA-binding protein (sigma 3) that can also inhibit PKR activation by binding and sequestering activator dsRNA, was inserted into vP1080. The resultant virus (vP1112) was partially resistant to the antiviral effects of IFN in comparison with vP1080. Further studies demonstrated that transient expression of the reovirus sigma 3 protein rescued E3L-minus VV replication in HeLa cells. In these studies, rescue by sigma 3 mutants correlated with their ability to bind dsRNA. Finally, vP112 was also able to rescue the replication of the IFN-sensitive virus vesicular stomatitis virus in a manner similar to that of wild-type VV. Together, these results suggest that the reovirus S4 gene can replace the VV E3L gene with respect to interference with the IFN-induced antiviral activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号