首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
D Yin  H Sun  R F Weaver  T C Squier 《Biochemistry》1999,38(41):13654-13660
To investigate the role of hydrophobic interactions involving methionine side chains in facilitating the productive association between calmodulin (CaM) and the plasma membrane (PM) Ca-ATPase, we have substituted the polar amino acid Gln for Met at multiple positions in both the amino- and carboxyl-terminal domains of CaM. Conformationally sensitive fluorescence signals indicate that these mutations have little effect on the backbone fold of the carboxyl-terminal domain of CaM. The insertion of multiple Gln in either globular domain results in a decrease in the apparent affinity of CaM for the PM-Ca-ATPase. However, despite the multiple substitution of Gln for four methionines at positions 36, 51, 71, and 72 in the amino-terminal domain or for three methionines at positions 124, 144, and 145 in the carboxyl-terminal domain, these mutant CaMs are able to fully activate the PM-Ca-ATPase. Thus, although these CaM mutants have a decreased affinity for the CaM-binding site on the Ca-ATPase, they retain the ability to fully activate the Ca-ATPase at saturating concentrations of CaM. The role of individual methionines in modulating the affinity between the carboxyl terminus and the PM-Ca-ATPase was further investigated through the substitution of individual Met with Gln. Upon substitution of Met(124) and Met(144) with Gln, there is a 5- and 10-fold increase in the amount of CaM necessary to obtain half-maximal activation of the PM-Ca-ATPase, indicating that these methionine side chains participate in the high-affinity association between CaM and the PM-Ca-ATPase. However, substitution of Gln for Met(145) results in no change in the apparent affinity between CaM and the PM-Ca-ATPase, indicating that in contrast to all other known CaM targets, Met(145) does not participate in the interaction between CaM and the PM-Ca-ATPase. These results emphasize differences in the binding interactions between individual methionines in CaM and different target enzymes, and suggest that hydrophobic interactions between methionines in CaM and the binding site on the PM-Ca-ATPase are not necessary for enzyme activation. Calculation of the binding affinities of individual CaM domains associated with activation of the PM-Ca-ATPase suggests that mutations of methionines located in either domain of CaM can decrease the initial high-affinity association between CaM and the PM-Ca-ATPase, but have little effect upon the subsequent binding of the opposing globular domain. These results suggest that the initial associations between CaM and the CaM-binding sequence in the PM-Ca-ATPase are guided by nonspecific hydrophobic interactions involving both domains of CaM.  相似文献   

2.
Chen B  Mayer MU  Squier TC 《Biochemistry》2005,44(12):4737-4747
Stabilization of the plasma membrane Ca-ATPase (PMCA) in an inactive conformation upon oxidation of multiple methionines in the calcium regulatory protein calmodulin (CaM) is part of an adaptive cellular response to minimize ATP utilization and the generation of reactive oxygen species (ROS) under conditions of oxidative stress. To differentiate oxidant-induced structural changes that selectively modify the amino-terminal domain of CaM from those that modulate the conformational coupling between the opposing domains, we have engineered a tetracysteine binding motif within helix A in the amino-terminal domain of calmodulin (CaM) that permits the selective and rigid attachment of the conformationally sensitive fluorescent probe 4',5'-bis(1,3,2-dithioarsolan-2-yl)fluorescein-(1,2-ethanedithiol)(2) (FlAsH-EDT(2)). The position of the FlAsH label in the amino-terminal domain provides a signal for monitoring its binding to the CaM-binding sequence of the PMCA. Following methionine oxidation, there is an enhanced binding affinity between the amino-terminal domain and the CaM-binding sequence of the PMCA. To identify oxidant-induced structural changes, we used frequency domain fluorescence anisotropy measurements to assess the structural coupling between helix A and the amino- and carboxyl-terminal domains of CaM. Helix A undergoes large amplitude motions in apo-CaM; following calcium activation, helix A is immobilized as part of a conformational switch that couples the opposing domains of CaM to stabilize the high-affinity binding cleft associated with target protein binding. Methionine oxidation disrupts the structural coupling between opposing globular domains of CaM, without affecting the calcium-dependent immobilization of helix A associated with activation of the amino-terminal domain to promote high-affinity binding to target proteins. We suggest that this selective disruption of the structural linkage between the opposing globular domains of CaM relieves steric constraints associated with high-affinity target binding, permitting the formation of new contact interactions between the amino-terminal domain and the CaM-binding sequence that stabilizes the PMCA in an inhibited conformation.  相似文献   

3.
Gao J  Yao Y  Squier TC 《Biophysical journal》2001,80(4):1791-1801
Oxidation of either Met(145) or Met(146) in wheat germ calmodulin (CaM) to methionine sulfoxide prevents the CaM-dependent activation of the plasma membrane (PM) Ca-ATPase (D. Yin, K. Kuczera, and T. C. Squier, 2000, Chem. Res. Toxicol. 13:103-110). To investigate the structural basis for the inhibition of the PM-Ca-ATPase by oxidized CaM (CaM(ox)), we have used circular dichroism (CD) and fluorescence spectroscopy to resolve conformational differences within the complex between CaM and the PM-Ca-ATPase. The similar excited-state lifetime and solvent accessibility of the fluorophore N-1-pyrenyl-maleimide covalently bound to Cys(26) in unoxidized CaM and CaM(ox) indicates that the globular domains within CaM(ox) assume a native-like structure following association with the PM-Ca-ATPase. However, in comparison with oxidized CaM there are increases in the 1) molar ellipticity in the CD spectrum and 2) conformational heterogeneity between the opposing globular domains for CaM(ox) bound to the CaM-binding sequence of the PM-Ca-ATPase. Furthermore, CaM(ox) binds to the PM-Ca-ATPase with high affinity at a distinct, but overlapping, site to that normally occupied by unoxidized CaM. These results suggest that alterations in binding interactions between CaM(ox) and the PM-Ca-ATPase block important structural transitions within the CaM-binding sequence of the PM-Ca-ATPase that are normally associated with enzyme activation.  相似文献   

4.
Chen B  Lowry DF  Mayer MU  Squier TC 《Biochemistry》2008,47(35):9220-9226
The structural coupling between opposing domains of CaM was investigated using the conformationally sensitive biarsenical probe 4,5-bis(1,3,2-dithioarsolan-2-yl)resorufin (ReAsH), which upon binding to an engineered tetracysteine motif near the end of helix A (Thr-5 to Phe-19) becomes highly fluorescent. Changes in conformation and dynamics are reflective of the native CaM structure, as there is no change in the (1)H- (15)N HSQC NMR spectrum in comparison to wild-type CaM. We find evidence of a conformational intermediate associated with CaM activation, where calcium occupancy of sites in the amino-terminal and carboxyl-terminal lobes of CaM differentially affect the fluorescence intensity of bound ReAsH. Insight into the structure of the conformational intermediate is possible from a consideration of calcium-dependent changes in rates of ReAsH binding and helix A mobility, which respectively distinguish secondary structural changes associated with helix A stabilization from the tertiary structural reorganization of the amino-terminal lobe of CaM necessary for high-affinity binding to target proteins. Helix A stabilization is associated with calcium occupancy of sites in the carboxyl-terminal lobe ( K d = 0.36 +/- 0.04 microM), which results in a reduction in the rate of ReAsH binding from 4900 M (-1) s (-1) to 370 M (-1) s (-1). In comparison, tertiary structural changes involving helix A and other structural elements in the amino-terminal lobe require calcium occupancy of amino-terminal sites (K d = 18 +/- 3 microM). Observed secondary and tertiary structural changes involving helix A in response to the sequential calcium occupancy of carboxyl- and amino-terminal lobe calcium binding sites suggest an important involvement of helix A in mediating the structural coupling between the opposing domains of CaM. These results are discussed in terms of a model in which carboxyl-terminal lobe calcium activation induces secondary structural changes within the interdomain linker that release helix A, thereby facilitating the formation of calcium binding sites in the amino-terminal lobe and linked tertiary structural rearrangements to form a high-affinity binding cleft that can associate with target proteins.  相似文献   

5.
Calcium-dependent changes in the internal dynamics and average structures of the opposing globular domains of calmodulin (CaM), as well as their relative spatial arrangement, contribute to the productive association between CaM and a range of different target proteins, affecting their functional activation. To identify dynamic structural changes involving individual alpha-helical elements and their modulation by calcium activation, we have used site-directed mutagenesis to engineer a tetracysteine binding motif within helix A near the amino terminus of calmodulin (CaM), permitting the selective and rigid attachment of the fluorescent probe 4',5'-bis(1,3,2-dithioarsolan-2-yl)fluorescein (FlAsH) with full retention of function. The rigid tetracoordinate linkage of FlAsH to CaM, in conjunction with frequency domain fluorescence anisotropy measurements, allows assessment of dynamic changes associated with calcium activation without interference from independent probe motion. Taking advantage of the large fluorescence enhancement associated with binding of FlAsH to CaM, we determined rates of binding of FlAsH to apo-CaM and calcium-activated CaM to be 2800 +/- 80 and 310 +/- 10 M(-)(1) s(-)(1), respectively. There is no difference in the solvent accessibility of the bound FlAsH irrespective of calcium binding to CaM. Thus, given that FlAsH selectively labels disordered structures, the large difference in rates of FlAsH binding indicates that calcium binding stabilizes helix A. Frequency domain anisotropy measurements of bound FlAsH indicate that prior to calcium activation, helix A undergoes large amplitude nanosecond motions. Following calcium activation, helix A becomes immobile, and structurally coupled to the overall rotation of CaM. We discuss these results in the context of a model that suggests stabilization of helix A relative to other domain elements in the CaM structure is critical to defining high-affinity binding clefts, and in promoting specific and ordered binding of the opposing lobes of CaM to target proteins.  相似文献   

6.
Sun H  Yin D  Coffeen LA  Shea MA  Squier TC 《Biochemistry》2001,40(32):9605-9617
We have used circular dichroism and frequency-domain fluorescence spectroscopy to determine how the site-specific substitution of Tyr138 with either Phe138 or Gln138 affects the structural coupling between the opposing domains of calmodulin (CaM). A double mutant was constructed involving conservative substitution of Tyr99 --> Trp99 and Leu69 --> Cys69 to assess the structural coupling between the opposing domains, as previously described [Sun, H., Yin, D., and Squier, T. C. (1999) Biochemistry 38, 12266-12279]. Trp99 acts as a fluorescence resonance energy transfer (FRET) donor in distance measurements to probe the conformation of the central helix. Cys69 provides a reactive group for the covalent attachment of 5-((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid (IAEDANS), which functions as a FRET acceptor and permits the measurement of the rotational dynamics of the amino-terminal domain. These CaM mutants demonstrate normal calcium-dependent gel-mobility shifts and changes in their near-UV CD spectra, have similar secondary structures to wild-type CaM following calcium activation, and retain the ability to fully activate the plasma membrane Ca-ATPase. The global folds, therefore, of both the carboxyl- and amino-terminal domains in these CaM mutants are similar to that of wild-type CaM. However, in comparison to wild-type CaM, the substitution of Tyr138 with either Phe138 or Gln138 results in (i) alterations in the average spatial separation and increases in the conformational heterogeneity between the opposing globular domains and (ii) the independent rotational dynamics of the amino-terminal domain. These results indicate that alterations in either the hydrogen bond between Tyr138 and Glu82 or contact interactions between aromatic amino acid side chains have the potential to initiate the structural collapse of CaM normally associated with target protein binding and activation.  相似文献   

7.
The small bilobal calcium regulatory protein calmodulin (CaM) activates numerous target enzymes in response to transient changes in intracellular calcium concentrations. Binding of calcium to the two helix-loop-helix calcium-binding motifs in each of the globular domains induces conformational changes that expose a methionine-rich hydrophobic patch on the surface of each domain of the protein, which it uses to bind to peptide sequences in its target enzymes. Although these CaM-binding domains typically have little sequence identity, the positions of several bulky hydrophobic residues are often conserved, allowing for classification of CaM-binding domains into recognition motifs, such as the 1–14 and 1–10 motifs. For calcium-independent binding of CaM, a third motif known as the IQ motif is also common. Many CaM-peptide complexes have globular conformations, where CaM’s central linker connecting the two domains unwinds, allowing the protein to wrap around a single predominantly α-helical target peptide sequence. However, novel structures have recently been reported where the conformation of CaM is highly dissimilar to these globular complexes, in some instances with less than a full compliment of bound calcium ions, as well as novel stoichiometries. Furthermore, many divergent CaM isoforms from yeast and plant species have been discovered with unique calcium-binding and enzymatic activation characteristics compared to the single CaM isoform found in mammals.  相似文献   

8.
S H Seeholzer  A J Wand 《Biochemistry》1989,28(9):4011-4020
Calcium-containing calmodulin (CaM) and its complex with a peptide corresponding to the calmodulin-binding domain of skeletal muscle myosin light chain kinase [skMLCK(576-594)G] have been studied by one- and two-dimensional 1H NMR techniques. Resonances arising from the antiparallel beta-sheet structures associated with the calcium-binding domains of CaM and their counterparts in the CaM-skMLCK(576-594)G complex have been assigned. The assignments were initiated by application of the main chain directed assignment strategy. It is found that, despite significant changes in chemical shifts of resonances arising from amino acid residues in this region upon binding of the peptide, the beta-sheets have virtually the same structure in the complex as in CaM. Hydrogen exchange rates of amide NH within the beta-sheet structures are significantly slowed upon binding of peptide. These data, in conjunction with the observed nuclear Overhauser effect (NOE) patterns and relative intensities and the downfield shifts of associated amide and alpha resonances upon binding of peptide, show that the peptide stabilizes the Ca2+-bound state of calmodulin. The observed pattern of NOEs within the beta-sheets and their structural similarity correspond closely to those predicted by the crystal structure. These findings imply that the apparent inconsistency of the crystal structure with recently reported low-angle X-ray scattering profiles of CaM may lie within the putative central helix bridging the globular domains.  相似文献   

9.
H Sun  D Yin  T C Squier 《Biochemistry》1999,38(38):12266-12279
We have used fluorescence spectroscopy to investigate the average structure and extent of conformational heterogeneity associated with the central helix in calmodulin (CaM), a sequence that contributes to calcium binding sites 2 and 3 and connects the amino- and carboxyl-terminal globular domains. Using site-directed mutagenesis, a double mutant was constructed involving conservative substitution of Tyr(99) --> Trp(99) and Leu(69) --> Cys(69) with no significant effect on the secondary structure of CaM. These mutation sites are at opposite ends of the central helix. Trp(99) acts as a fluorescence resonance energy transfer (FRET) donor in distance measurements of the conformation of the central helix. Cys(69) provides a reactive group for the covalent attachment of the FRET acceptor 5-((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid (IAEDANS). AEDANS-modified CaM fully activates the plasma membrane (PM) Ca-ATPase, indicating that the native structure is retained following site-directed mutagenesis and chemical modification. We find that the average spatial separation between Trp(99) and AEDANS covalently bound to Cys(69) decreases by approximately 7 +/- 2 A upon calcium binding. However, irrespective of calcium binding, there is little change in the conformational heterogeneity associated with the central helix under physiologically relevant conditions (i.e., pH 7.5, 0.1 M KCl). These results indicate that calcium activation alters the spatial arrangement of the opposing globular domains between two defined conformations. In contrast, under conditions of low ionic strength or pH the structure of CaM is altered and the conformational heterogeneity of the central helix is decreased upon calcium activation. These results suggest the presence of important ionizable groups that affect the structure of the central helix, which may play an important role in mediating the ability of CaM to rapidly bind and activate target proteins.  相似文献   

10.
Calmodulin (CaM) is a 16.8-kDa calcium-binding protein involved in calcium-signal transduction. It is the canonical member of the EF-hand family of proteins, which are characterized by a helix-loop-helix calcium-binding motif. CaM is composed of N- and C-terminal globular domains (N-CaM and C-CaM), and within each domain there are two EF-hand motifs. Upon binding calcium, CaM undergoes a significant, global conformational change involving reorientation of the four helix bundles in each of its two domains. This conformational change upon ion binding is a key component of the signal transduction and regulatory roles of CaM, yet the precise nature of this transition is still unclear. Here, we present a 1.3-Å structure of zinc-bound N-terminal calmodulin (N-CaM) solved by single-wavelength anomalous diffraction phasing of a selenomethionyl N-CaM. Our zinc-bound N-CaM structure differs from previously reported CaM structures and resembles calcium-free apo-calmodulin (apo-CaM), despite the zinc binding to both EF-hand motifs. Structural comparison with calcium-free apo-CaM, calcium-loaded CaM, and a cross-linked calcium-loaded CaM suggests that our zinc-bound N-CaM reveals an intermediate step in the initiation of metal ion binding at the first EF-hand motif. Our data also suggest that metal ion coordination by two key residues in the first metal-binding site represents an initial step in the conformational transition induced by metal binding. This is followed by reordering of the N-terminal region of the helix exiting from this first binding loop. This conformational switch should be incorporated into models of either stepwise conformational transition or flexible, dynamic energetic state sampling-based transition.  相似文献   

11.
Calmodulin (CaM) is a multifunctional calcium-binding protein, which regulates various biochemical processes. CaM acts via structural changes and complex forming with its target enzymes. CaM has two globular domains (N-lobe and C-lobe) connected by a long linker region. Upon calcium binding, the N-lobe and C-lobe undergo local conformational changes, after that, entire CaM wraps the target enzyme through a large conformational change. However, the regulation mechanism, such as allosteric interactions regulating the conformational changes, is still unclear. In order to clarify the allosteric interactions, in this study, experimentally obtained ‘real’ structures are compared to ‘model’ structures lacking the allosteric interactions. As the allosteric interactions would be absent in calcium-free CaM (apo-CaM), allostery-eliminated calcium-bound CaM (holo-CaM) models were constructed by combining the apo-CaM’s linker and the holo-CaM’s N- and C-lobe. Before the comparison, the ‘real’ and ‘model’ structures were clustered and cluster–cluster relationship was determined by a principal component analysis. The structures were compared based on the relationship, then, a distance map and a contact probability analysis clarified that the inter-domain motion is regulated by several groups of inter-domain contacting residue pairs. The analyses suggested that these residues cause inter-domain translation and rotation, and as a consequence, the motion encourage structural diversity. The resultant diversity would contribute to the functional versatility of CaM.  相似文献   

12.
Methionine oxidation in calmodulin (CaM) isolated from senescent brain results in an inability to fully activate the plasma membrane (PM) Ca-ATPase, which may contribute to observed increases in cytosolic calcium levels under conditions of oxidative stress and biological aging. To identify the functional importance of the oxidation of Met(144) and Met(145) near the carboxyl-terminus of CaM, we have used site-directed mutagenesis to substitute leucines for methionines at other positions in CaM, permitting the site-specific oxidation of Met(144) and Met(145). Prior to their oxidation, the CaM-dependent activation of the PM-Ca-ATPase by these CaM mutants is similar to that of wild-type CaM. Likewise, oxidation of individual methionines has a minimal effect on the CaM concentration necessary for half-maximal activation of the PM-Ca-ATPase. These results are consistent with previous suggestions that no single methionine within CaM is essential for activation of the PM-Ca-ATPase. Oxidation of either Met(144) and Met(145) or all nine methionines in CaM results in an equivalent inhibition of the PM-Ca-ATPase, resulting in a 50-60% reduction in the level of enzyme activation. Oxidation of Met(144) is largely responsible for the decreased extent of enzyme activation, suggesting that this site is critical in modulating the sensitivity of CaM to oxidant-induced loss-of-function. These results are discussed in terms of a possible functional role for Met(144) and Met(145) in CaM as redox sensors that function to modulate calcium homeostasis and energy metabolism in response to conditions of oxidative stress.  相似文献   

13.
The C-terminus of calmodulin (CaM) functions as a sensor of oxidative stress, with oxidation of methionine 144 and 145 inducing a nonproductive association of the oxidized CaM with the plasma membrane Ca(2+)-ATPase (PMCA) and other target proteins to downregulate cellular metabolism. To better understand the structural underpinnings and mechanism of this switch, we have engineered a CaM mutant (CaM-L7) that permits the site-specific oxidation of M144 and M145, and we have used NMR spectroscopy to identify structural changes in CaM and CaM-L7 and changes in the interactions between CaM-L7 and the CaM-binding sequence of the PMCA (C28W) due to methionine oxidation. In CaM and CaM-L7, methionine oxidation results in nominal secondary structural changes, but chemical shift changes and line broadening in NMR spectra indicate significant tertiary structural changes. For CaM-L7 bound to C28W, main chain and side chain chemical shift perturbations indicate that oxidation of M144 and M145 leads to large tertiary structural changes in the C-terminal hydrophobic pocket involving residues that comprise the interface with C28W. Smaller changes in the N-terminal domain also involving residues that interact with C28W are observed, as are changes in the central linker region. At the C-terminal helix, (1)H(alpha), (13)C(alpha), and (13)CO chemical shift changes indicate decreased helical character, with a complete loss of helicity for M144 and M145. Using (13)C-filtered, (13)C-edited NMR experiments, dramatic changes in intermolecular contacts between residues in the C-terminal domain of CaM-L7 and C28W accompany oxidation of M144 and M145, with an essentially complete loss of contacts between C28W and M144 and M145. We propose that the inability of CaM to fully activate the PMCA after methionine oxidation originates in a reduced helical propensity for M144 and M145, and results primarily from a global rearrangement of the tertiary structure of the C-terminal globular domain that substantially alters the interaction of this domain with the PMCA.  相似文献   

14.
Calcium-saturated calmodulin (CaM) directly activates CaM-dependent protein kinase I (CaMKI) by binding to a region in the C-terminal regulatory sequence of the enzyme to relieve autoinhibition. The structure of CaM in a high-affinity complex with a 25-residue peptide of CaMKI (residues 294-318) has been determined by X-ray crystallography at 1.7 A resolution. Upon complex formation, the CaMKI peptide adopts an alpha-helical conformation, while changes in the CaM domain linker enable both its N- and C-domains to wrap around the peptide helix. Target peptide residues Trp-303 (interacting with the CaM C-domain) and Met-316 (with the CaM N-domain) define the mode of binding as 1-14. In addition, two basic patches on the peptide form complementary charge interactions with CaM. The CaM-peptide affinity is approximately 1 pM, compared with 30 nM for the CaM-kinase complex, indicating that activation of autoinhibited CaMKI by CaM requires a costly energetic disruption of the interactions between the CaM-binding sequence and the rest of the enzyme. We present biochemical and structural evidence indicating the involvement of both CaM domains in the activation process: while the C-domain exhibits tight binding toward the regulatory sequence, the N-domain is necessary for activation. Our crystal structure also enables us to identify the full CaM-binding sequence. Residues Lys-296 and Phe-298 from the target peptide interact directly with CaM, demonstrating overlap between the autoinhibitory and CaM-binding sequences. Thus, the kinase activation mechanism involves the binding of CaM to residues associated with the inhibitory pseudosubstrate sequence.  相似文献   

15.
Boschek CB  Squier TC  Bigelow DJ 《Biochemistry》2007,46(15):4580-4588
Binding of calcium to CaM exposes clefts in both N- and C-domains to promote their cooperative association with a diverse array of target proteins, functioning to relay the calcium signal regulating cellular metabolism. To clarify relationships between the calcium-dependent activation of individual domains and interdomain structural transitions associated with productive binding to target proteins, we have utilized three engineered CaM mutants that were covalently labeled with N-(1-pyrene) maleimide at introduced cysteines in the C- and N-domains, i.e., T110C (PyC-CaM), T34C (PyN-CaM), and T34C/T110C (Py2-CaM). These sites were designed to detect known conformers of CaM such that upon association with classical CaM-binding sequences, the pyrenes in Py2-CaM are brought close together, resulting in excimer formation. Complementary measurements of calcium-dependent enhancements of monomer fluorescence of PyC-CaM and PyN-CaM permit a determination of the calcium-dependent activation of individual domains and indicate the sequential calcium occupancy of the C- and N-terminal domains, with full saturation at 7.0 and 300 microM calcium, respectively. Substantial amounts of excimer formation are observed for apo-CaM prior to peptide association, indicating that interdomain interactions occur in solution. Calcium binding results in a large and highly cooperative reduction in the level of excimer formation; its calcium dependence coincides with the occupancy of C-terminal sites. These results indicate that interdomain interactions between the opposing domains of CaM occur in solution and that the occupancy of C-terminal calcium binding sites is necessary for the structural coupling between the opposing domains associated with the stabilization of the interdomain linker to enhance target protein binding.  相似文献   

16.
Calmodulin (CaM) is a remarkably flexible protein which can bind multiple targets in response to changes in intracellular calcium concentration. It contains four calcium-binding sites, arranged in two globular domains. The calcium affinity of CaM N-terminal domain (N-CaM) is dramatically reduced when the complex with the edema factor (EF) of Bacillus anthracis is formed. Here, an atomic explanation for this reduced affinity is proposed through molecular dynamics simulations and free energy perturbation calculations of the EF-CaM complex starting from different crystallographic models. The simulations show that electrostatic interactions between CaM and EF disfavor the opening of N-CaM domains usually induced by calcium binding. Relative calcium affinities of the N-CaM binding sites are probed by free energy perturbation, and dissociation probabilities are evaluated with locally enhanced sampling simulations. We show that EF impairs calcium binding on N-CaM through a direct conformational restraint on Site 1, by an indirect destabilization of Site 2, and by reducing the cooperativity between the two sites.  相似文献   

17.
Boschek CB  Jones TE  Squier TC  Bigelow DJ 《Biochemistry》2007,46(37):10621-10628
Calmodulin (CaM) regulates calcium release from intracellular stores in skeletal muscle through its association with the ryanodine receptor (RyR1) calcium release channel, where CaM association enhances channel opening at resting calcium levels and its closing at micromolar calcium levels associated with muscle contraction. A high-affinity CaM-binding sequence (RyRp) has been identified in RyR1, which corresponds to a 30-residue sequence (i.e., K3614-N3643) located within the central portion of the primary sequence. However, it is presently unclear whether the identified CaM-binding sequence in association with CaM (a) senses calcium over the physiological range of calcium concentrations associated with RyR1 regulation or alternatively, (b) plays a structural role unrelated to the calcium-dependent modulation of RyR1 function. Therefore, we have measured the calcium-dependent activation of the individual domains of CaM in association with RyRp and their relationship to the CaM-dependent regulation of RyR1. These measurements utilize an engineered CaM, permitting the site-specific incorporation of N-(1-pyrene)maleimide at either T34C (PyN-CaM) or T110C (PyC-CaM) in the N- and C-domains, respectively. Consistent with prior measurements, we observe a high-affinity association of both apo-CaM and calcium-activated CaM with RyRp. Upon association with RyRp, fluorescence changes in PyN-CaM or PyC-CaM permit the measurement of the calcium-dependent activation of these individual domains. Fluorescence changes upon calcium activation of PyC-CaM in association with RyRp are indicative of high-affinity calcium-dependent activation of the C-terminal domain of CaM at resting calcium levels; at calcium levels associated with muscle contraction, activation of the N-terminal domain occurs with concomitant increases in the fluorescence intensity of PyC-CaM that is associated with structural changes within the CaM-binding sequence of RyR1. Occupancy of calcium-binding sites in the N-domain of CaM mirrors the calcium dependence of RyR1 inhibition observed at activating calcium levels, where [Ca]1/2 = 4.3 +/- 0.4 microM, suggesting a direct regulation of RyR1 function upon the calcium-dependent activation of CaM. These results indicate that occupancy of the N-terminal domain calcium binding sites in CaM bound to the identified CaM-binding sequence K3614-N3643 induces conformational rearrangements within the complex between CaM and RyR1 responsible for the CaM-dependent modulation of the RyR1 calcium release channel.  相似文献   

18.
Qin Z  Squier TC 《Biophysical journal》2001,81(5):2908-2918
Spin-label electron paramagnetic resonance (EPR) provides optimal resolution of dynamic and conformational heterogeneity on the nanosecond time-scale and was used to assess the structure of the sequence between Met(76) and Ser(81) in vertebrate calmodulin (CaM). Previous fluorescence resonance energy transfer and anisotropy measurements indicate that the opposing domains of CaM are structurally coupled and the interconnecting central sequence adopts conformationally distinct structures in the apo-form and following calcium activation. In contrast, NMR data suggest that the opposing domains of CaM undergo independent rotational dynamics and that the sequence between Met(76) and Ser(81) in the central sequence functions as a flexible linker that connects two structurally independent domains. However, these latter measurements also resolve weak internuclear interactions that suggest the formation of transient helical structures that are stable on the nanosecond time-scale within the sequence between Met(76) and Asp(80) in apo-CaM (H. Kuboniwa, N. Tjandra, S. Grzekiek, H. Ren, C. B. Klee, and A. Bax, 1995, Nat. Struct. Biol. 2:768-776). This reported conformational heterogeneity was resolved using site-directed mutagenesis and spin-label EPR, which detects two component spectra for 1-oxyl-2,2,5,5-tetramethylpyrroline-3-methyl)-methanethiosulfonate spin labels (MTSSL) bound to CaM mutants T79C and S81C that include a motionally restricted component. In comparison to MTSSL bound within stable helical regions, the fractional contribution of the immobilized component at these positions is enhanced upon the addition of small amounts of the helicogenic solvent trifluoroethanol (TFE). These results suggest that the immobilized component reflects the formation of stable secondary structures. Similar spectral changes are observed upon calcium activation, suggesting a calcium-dependent stabilization of the secondary structure. No corresponding changes are observed in either the solvent accessibility to molecular oxygen or the maximal hyperfine splitting. In contrast, more complex spectral changes in the line-shape and maximal hyperfine splitting are observed for spin labels bound to sites that undergo tertiary contact interactions. These results suggest that spin labels at solvent-exposed positions within the central sequence are primarily sensitive to backbone fluctuations and that either TFE or calcium binding stabilizes the secondary structure of the sequence between Met(76) and Ser(81) and modulates the structural coupling between the opposing domains of CaM.  相似文献   

19.
Cooperative calcium binding to the two homologous domains of calmodulin (CaM) induces conformational changes that regulate its association with and activation of numerous cellular target proteins. Calcium binding to the pair of high-affinity sites (III and IV in the C-domain) can be monitored by observing calcium-dependent changes in intrinsic tyrosine fluorescence intensity (lambda(ex)/lambda(em) of 277/320 nm). However, calcium binding to the low-affinity sites (I and II in the N-domain) is more difficult to measure with optical spectroscopy because that domain of CaM does not contain tryptophan or tyrosine. We recently demonstrated that calcium-dependent changes in intrinsic phenylalanine fluorescence (lambda(ex)/lambda(em) of 250/280 nm) of an N-domain fragment of CaM reflect occupancy of sites I and II (VanScyoc, W. S., and M. A. Shea, 2001, Protein Sci. 10:1758-1768). Using steady-state and time-resolved fluorescence methods, we now show that these excitation and emission wavelength pairs for phenylalanine and tyrosine fluorescence can be used to monitor equilibrium calcium titrations of the individual domains in full-length CaM. Calcium-dependent changes in phenylalanine fluorescence specifically indicate ion occupancy of sites I and II in the N-domain because phenylalanine residues in the C-domain are nonemissive. Tyrosine emission from the C-domain does not interfere with phenylalanine fluorescence signals from the N-domain. This is the first demonstration that intrinsic fluorescence may be used to monitor calcium binding to each domain of CaM. In this way, we also evaluated how mutations of two residues (Arg74 and Arg90) located between sites II and III can alter the calcium-binding properties of each of the domains. The mutation R74A caused an increase in the calcium affinity of sites I and II in the N-domain. The mutation R90A caused an increase in calcium affinity of sites III and IV in the C-domain whereas R90G caused an increase in calcium affinity of sites in both domains. This approach holds promise for exploring the linked energetics of calcium binding and target recognition.  相似文献   

20.
Calmodulin (CaM) is a multifunctional Ca2+-binding protein that regulates the activity of many enzymes in response to changes in the intracellular Ca2+ concentration. There are two globular domains in CaM, each containing a pair of helix-loop-helix Ca2+-binding motifs called EF-hands. Ca2+-binding induces the opening of both domains thereby exposing hydrophobic pockets that provide binding sites for the target enzymes. Here, I present a 2.4 A resolution structure of a calmodulin mutant (CaM41/75) in which the N-terminal domain is locked in the closed conformation by a disulfide bond. CaM41/75 crystallized in a tetragonal lattice with the Ca2+ bound in all four EF-hands. In the closed N-terminal domain Ca ions are coordinated by the four protein ligands in positions 1, 3, 5 and 7 of the loop, and by two solvent ligands. The glutamate side-chain in the 12th position of the loop (Glu31 in site I and Glu67 in site II), which in the wild-type protein provides a bidentate Ca2+ ligand, remains in a distal position. Based on a comparison of CaM41/75 with other CaM and troponin C structures a detailed two-step mechanism of the Ca2+-binding process is proposed. Initially, the Ca2+ binds to the N-terminal part of the loop, thus generating a rigid link between the incoming helix (helix A, or helix C) and the central beta structure involving the residues in the sixth, seventh and eighth position of the loop. Then, the exiting helix (helix B or helix D) rotates causing the glutamate ligand in the 12th position to move into the vicinity of the immobilized Ca2+. An adjustment of the phi, psi backbone dihedral angles of the Ile residue in the eighth position is necessary and sufficient for the helix rotation and functions as a hinge. The model allows for a significant independence of the Ca2+-binding sites in a two-EF-hand domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号