首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Priola SA  Chabry J  Chan K 《Journal of virology》2001,75(10):4673-4680
In the transmissible spongiform encephalopathies, disease is closely associated with the conversion of the normal proteinase K-sensitive host prion protein (PrP-sen) to the abnormal proteinase K-resistant form (PrP-res). Amino acid sequence homology between PrP-res and PrP-sen is important in the formation of new PrP-res and thus in the efficient transmission of infectivity across species barriers. It was previously shown that the generation of mouse PrP-res was strongly influenced by homology between PrP-sen and PrP-res at amino acid residue 138, a residue located in a region of loop structure common to PrP molecules from many different species. In order to determine if homology at residue 138 also affected the formation of PrP-res in a different animal species, we assayed the ability of hamster PrP-res to convert a panel of recombinant PrP-sen molecules to protease-resistant PrP in a cell-free conversion system. Homology at amino acid residue 138 was not critical for the formation of protease-resistant hamster PrP. Rather, homology between PrP-sen and hamster PrP-res at amino acid residue 155 determined the efficiency of formation of a protease-resistant product induced by hamster PrP-res. Structurally, residue 155 resides in a turn at the end of the first alpha helix in hamster PrP-sen; this feature is not present in mouse PrP-sen. Thus, our data suggest that PrP-res molecules isolated from scrapie-infected brains of different animal species have different PrP-sen structural requirements for the efficient formation of protease-resistant PrP.  相似文献   

2.
Transmissible spongiform encephalopathy diseases are characterized by conversion of the normal protease-sensitive host prion protein, PrP-sen, to an abnormal protease-resistant form, PrP-res. In the current study, deletions were introduced into the flexible tail of PrP-sen (23) to determine if this region was required for formation of PrP-res in a cell-free assay. PrP-res formation was significantly reduced by deletion of residues 34-94 relative to full-length hamster PrP. Deletion of another nineteen amino acids to residue 113 further reduced the amount of PrP-res formed. Furthermore, the presence of additional proteinase K cleavage sites indicated that deletion to residue 113 generated a protease-resistant product with an altered conformation. Conversion of PrP deletion mutants was also affected by post-translational modifications to PrP-sen. Conversion of unglycosylated PrP-sen appeared to alter both the amount and the conformation of protease-resistant PrP-res produced from N-terminally truncated PrP-sen. The N-terminal region also affected the ability of hamster PrP to block mouse PrP-res formation in scrapie-infected mouse neuroblastoma cells. Thus, regions within the flexible N-terminal tail of PrP influenced interactions required for both generating and disrupting PrP-res formation.  相似文献   

3.
Neurodegeneration caused by the transmissible spongiform encephalopathies is associated with the conversion of a normal host protein, PrP-sen, into an abnormal aggregated protease-resistant form, PrP-res. In scrapie-infected mouse neuroblastoma cells, mouse PrP-sen is converted into PrP-res but recombinant hamster PrP-sen expressed in these cells is not. In the present studies, recombinant hamster/mouse PrP-sen molecules were expressed in these scrapie-infected cells to define specific PrP amino acid residues critical for the conversion to PrP-res. The results showed that homology to the region of mouse PrP-sen from amino acid residues 112 to 138 was required for conversion of recombinant PrP-sen to PrP-res in scrapie-infected mouse cells. Furthermore, a single hamster-specific PrP amino acid at residue 138 could inhibit the conversion of the recombinant PrP-sen into PrP-res. The data are consistent with studies in humans which show that specific amino acid residue changes within PrP can influence disease pathogenesis and transmission of transmissible spongiform encephalopathies across species barriers.  相似文献   

4.
《朊病毒》2013,7(3):134-138
In transmissible spongiform encephalopathies (TSE or prion diseases) such as sheep scrapie, bovine spongiform encephalopathy and human Creutzfeldt-Jakob disease, normally soluble and protease-sensitive prion protein (PrP-sen or PrPC) is converted to an abnormal, insoluble and protease-resistant form termed PrP-res or PrPSc. PrP-res/PrPSc is believed to be the main component of the prion, the infectious agent of the TSE/prion diseases. Its precursor, PrP-sen, is anchored to the cell surface at the C-terminus by a co-translationally added glycophosphatidyl-inositol (GPI) membrane anchor which can be cleaved by the enzyme phosphatidyl-inositol specific phospholipase (PIPLC). The GPI anchor is also present in PrP-res, but is inaccessible to PIPLC digestion suggesting that conformational changes in PrP associated with PrP-res formation have blocked the PIPLC cleavage site. Although the GPI anchor is present in both PrP-sen and PrP-res, its precise role in TSE diseases remains unclear primarily because there are data to suggest that it both is and is not necessary for PrP-res formation and prion infection.  相似文献   

5.
The conversion of protease-sensitive prion protein (PrP-sen) to a high beta-sheet, protease-resistant and often fibrillar form (PrP-res) is a central event in transmissible spongiform encephalopathies (TSE) or prion diseases. This conversion can be induced by PrP-res itself in cell-free conversion reactions. The detergent sodium N-lauroyl sarkosinate (sarkosyl) is a detergent that is widely used in PrP-res purifications and is known to stimulate the PrP-res-induced conversion reaction. Here we report effects of sarkosyl and other detergents on recombinant hamster PrP-sen purified from mammalian cells under oxidizing conditions that maintain the single native disulfide bond. Low concentrations of sarkosyl (0.001-0.1%) induced aggregation of PrP-sen molecules, increased light scattering, altered fluorescence excitation and emission spectra, and enhanced the proportion of beta-sheet secondary structure according to circular dichroism and infrared spectroscopies. An enhancement of beta-sheet content was also seen with 0.001% sodium dodecyl sulfate (SDS) but not several other types of detergents. Electron microscopy revealed that sarkosyl induced the formation of both amorphous and fibrillar aggregates. The fibrils appeared to be constructed from spherical bead-like protofibrils. Neither TSE infectivity nor the characteristic partial proteinase K resistance of PrP-res was detected in the sarkosyl-induced PrP aggregates. We conclude that certain anionic detergents can disrupt the conformation of PrP-sen and induce high beta-sheet aggregates that are distinct from scrapie-associated PrP-res in terms of protease-resistance, infrared spectrum and infectivity. These results reinforce the idea that not all high-beta aggregates of PrP are equivalent to the pathologic form, PrP-res.  相似文献   

6.
The formation of protease-resistant prion protein (PrP-res or PrP(Sc)) involves selective interactions between PrP-res and its normal protease-sensitive counterpart, PrP-sen or PrP(C). Previous studies have shown that synthetic peptide fragments of the PrP sequence corresponding to residues 119-136 of hamster PrP (Ha119-136) can selectively block PrP-res formation in cell-free systems and scrapie-infected tissue culture cells. Here we show that two other peptides corresponding to residues 166-179 (Ha166-179) and 200-223 (Ha200-223) also potently inhibit the PrP-res induced cell-free conversion of PrP-sen to the protease-resistant state. In contrast, Ha121-141, Ha180-199, and Ha218-232 were much less effective as inhibitors. Mechanistic analyses indicated that Ha166-179, Ha200-223, and peptides containing residues 119-136 inhibit primarily by binding to PrP-sen and blocking its binding to PrP-res. Circular dichroism analyses indicated that Ha117-141 and Ha200-223, but not non-inhibitory peptides, readily formed high beta-sheet structures when placed under the conditions of the conversion reaction. We conclude that these inhibitory peptides may mimic contact surfaces between PrP-res and PrP-sen and thereby serve as models of potential therapeutic agents for transmissible spongiform encephalopathies.  相似文献   

7.
The human prion protein (PrP) has five copies of an octapeptide repeat (OR). The mutant PrP with 6-14 OR causes the genetic form of Creutzfeldt-Jakob disease (CJD). To determine the influence of OR on the conversion of PrP, we examined the conversion efficiency of mouse mutant PrP molecules with 1-16 OR in scrapie-infected cells. The expression level of mutant PrP and the glycoform ratio of the abnormal isoform of PrP (PrPSc) were affected by the number of OR. The conversion efficiency was almost equivalent among mutant PrP molecules with 5-16 OR, whereas that of mutant PrP with 1-4 OR was decreased. The present study suggests that CJD patients with the longer extra OR, who usually show only a trace of PrPSc in the brain, can produce the authentic triplet PrPSc if secondary prion infection occurs.  相似文献   

8.
Interactions between normal, protease-sensitive prion protein (PrP-sen or PrP(C)) and its protease-resistant isoform (PrP-res or PrP(Sc)) are critical in transmissible spongiform encephalopathy (TSE) diseases. To investigate the propagation of PrP-res between cells we tested whether PrP-res in scrapie brain microsomes can induce the conversion of PrP-sen to PrP-res if the PrP-sen is bound to uninfected raft membranes. Surprisingly, no conversion was observed unless the microsomal and raft membranes were fused or PrP-sen was released from raft membranes. These results suggest that the propagation of infection between cells requires transfer of PrP-res into the membranes of the recipient cell. To assess potential cofactors in PrP conversion, we used cell-free PrP conversion assays to show that heparan sulphate can stimulate PrP-res formation, supporting the idea that endogenous sulphated glycosaminoglycans can act as important cofactors or modulators of PrP-res formation in vivo. In an effort to develop therapeutics, the antimalarial drug quinacrine was identified as an inhibitor of PrP-res formation in scrapie-infected cell cultures. Confirmation of the latter result by others has led to the initiation of human clinical trials as a treatment for Creutzfeldt-Jakob disease. PrP-res formation can also be inhibited using a variety of other types of small molecule, specific synthetic PrP peptides, and an antiserum directed at the C-terminus of PrP-sen. The latter results help to localize the sites of interaction between PrP-sen and PrP-res. Disruption of those interactions with antibodies or peptidomimetic drugs may be an attractive therapeutic strategy. The likelihood that PrP-res inhibitors can rid TSE-infected tissues of PrP-res would presumably be enhanced if PrP-res formation were reversible. However, our attempts to measure dissociation of PrP-sen from PrP-res have failed under non-denaturing conditions. Finally, we have attempted to induce the spontaneous conversion of PrP-sen into PrP-res using low concentrations of detergents. A conformational conversion from alpha-helical monomers into high-beta-sheet aggregates and fibrils was induced by low concentrations of the detergent sarkosyl; however, the aggregates had neither infectivity nor the characteristic protease-resistance ofPrP-res.  相似文献   

9.
M Horiuchi  B Caughey 《The EMBO journal》1999,18(12):3193-3203
In the transmissible spongiform encephalopathies, normal prion protein (PrP-sen) is converted to a protease-resistant isoform, PrP-res, by an apparent self-propagating activity of the latter. Here we describe new, more physiological cell-free systems for analyzing the initial binding and subsequent conversion reactions between PrP-sen and PrP-res. These systems allowed the use of antibodies to map the sites of interaction between PrP-sen and PrP-res. Binding of antibodies (alpha219-232) to hamster PrP-sen residues 219-232 inhibited the binding of PrP-sen to PrP-res and the subsequent generation of PK-resistant PrP. However, antibodies to several other parts of PrP-sen did not inhibit. The alpha219-232 epitope itself was not required for PrP-res binding; thus, inhibition by alpha219-232 was likely due to steric blocking of a binding site that is close to, but does not include the epitope in the folded PrP-sen structure. The selectivity of the binding reaction was tested by incubating PrP-res with cell lysates or culture supernatants. Only PrP-sen was observed to bind PrP-res. This highly selective binding to PrP-res and the localized nature of the binding site on PrP-sen support the idea that PrP-sen serves as a critical ligand and/or receptor for PrP-res in the course of PrP-res propagation and pathogenesis in vivo.  相似文献   

10.
Transmissible spongiform encephalopathies (TSE) or prion diseases result in aberrant metabolism of prion protein (PrP) and the accumulation of a protease-resistant, insoluble, and possibly infectious form of PrP, PrP-res. Studies of PrP biosynthesis, intracellular trafficking, and degradation has been studied in a variety of tissue culture cells. Pulse-chase metabolic labeling studies in scrapie-infected cells indicated that PrP-res is made posttranslationally from an apparently normal protease sensitive precursor, PrP-sen, after the latter reaches the cell surface. Cell-free reactions have provided evidence that PrP-res itself can induce the conversion of PrP-sen to PrP-res in a highly species- and strain-specific manner. These studies have shed light on the mechanism of PrP-res formation and suggest molecular bases for TSE species barrier effects and agent strain propagation.  相似文献   

11.
Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) of deer and elk, and little is known about its transmissibility to other species. An important factor controlling interspecies TSE susceptibility is prion protein (PrP) homology between the source and recipient species/genotypes. Furthermore, the efficiency with which the protease-resistant PrP (PrP-res) of one species induces the in vitro conversion of the normal PrP (PrP-sen) of another species to the protease-resistant state correlates with the cross-species transmissibility of TSE agents. Here we show that the CWD-associated PrP-res (PrP(CWD)) of cervids readily induces the conversion of recombinant cervid PrP-sen molecules to the protease-resistant state in accordance with the known transmissibility of CWD between cervids. In contrast, PrP(CWD)-induced conversions of human and bovine PrP-sen were much less efficient, and conversion of ovine PrP-sen was intermediate. These results demonstrate a barrier at the molecular level that should limit the susceptibility of these non-cervid species to CWD.  相似文献   

12.
A conformational conversion of the normal, protease- sensitive prion protein (PrP-sen or PrP(C)) to a protease-resistant form (PrP-res or PrP(Sc)) is commonly thought to be required in transmissible spongiform encephalopathies (TSEs). Endogenous sulfated glycosaminoglycans are associated with PrP-res deposits in vivo, suggesting that they may facilitate PrP-res formation. On the other hand, certain exogenous sulfated glycans can profoundly inhibit PrP-res accumulation and serve as prophylactic anti-TSE compounds in vivo. To investigate the seemingly paradoxical effects of sulfated glycans on PrP-res formation, we have assayed their direct effects on PrP conversion under physiologically compatible cell-free conditions. Heparan sulfate and pentosan polysulfate stimulated PrP-res formation. Conversion was stimulated further by increased temperature. Both elevated temperature and pentosan polysulfate promoted interspecies PrP conversion. Circular dichroism spectropolarimetry measurements showed that pentosan polysulfate induced a conformational change in PrP-sen that may potentiate its PrP-res-induced conversion. These results show that certain sulfated glycosaminoglycans can directly affect the PrP conversion reaction. Therefore, depending upon the circumstances, sulfated glycans may be either cofactors or inhibitors of this apparently pathogenic process.  相似文献   

13.
Transmissible spongiform encephalopathies are accompanied by the accumulation of a pathologic isoform of a host-encoded protein, termed prion protein (PrP). Despite the widespread distribution of the cellular isoform of PrP (protease-sensitive PrP; PrP-sen), the disease-associated isoform (protease-resistant PrP; PrP-res) appears to be primarily restricted to cells of the nervous and lymphoreticular systems. In order to study why scrapie infection appears to be restricted to certain cells, we followed acute and persistent PrP-res formation upon exposure of cells to different scrapie agents. We found that, independent of the cell type and scrapie strain, initial PrP-res formation occurred rapidly in cells. However, sustained generation of PrP-res and persistent infection did not necessarily follow acute PrP-res formation. Persistent PrP-res formation and scrapie infection was restricted to one cell line inoculated with the mouse scrapie strain 22L. In contrast to cells that did not become scrapie-infected, the level of PrP-res in the 22L-infected cells rapidly increased in the absence of a concomitant increase in the number of PrP-res-producing cells. Furthermore, the protein banding pattern of PrP-res in these cells changed over time as the cells became chronically infected. Thus, our results suggest that the events leading to the initial formation of PrP-res may differ from those required for sustained PrP-res formation and infection. This may, at least in part, explain the observation that not all PrP-sen-expressing cells appear to support transmissible spongiform encephalopathy agent replication.  相似文献   

14.
Vorberg I  Chan K  Priola SA 《Journal of virology》2001,75(21):10024-10032
A fundamental event in the pathogenesis of transmissible spongiform encephalopathies (TSE) is the conversion of a normal, proteinase K-sensitive, host-encoded protein, PrP-sen, into its protease-resistant isoform, PrP-res. During the formation of PrP-res, PrP-sen undergoes conformational changes that involve an increase of beta-sheet secondary structure. While previous studies in which PrP-sen deletion mutants were expressed in transgenic mice or scrapie-infected cell cultures have identified regions in PrP-sen that are important in the formation of PrP-res, the exact role of PrP-sen secondary structures in the conformational transition of PrP-sen to PrP-res has not yet been defined. We constructed PrP-sen mutants with deletions of the first beta-strand, the second beta-strand, or the first alpha-helix and tested whether these mutants could be converted to PrP-res in both scrapie-infected neuroblastoma cells (Sc(+)-MNB cells) and a cell-free conversion assay. Removal of the second beta-strand or the first alpha-helix significantly altered both processing and the cellular localization of PrP-sen, while deletion of the first beta-strand had no effect on these events. However, all of the mutants significantly inhibited the formation of PrP-res in Sc(+)-MNB cells and had a greatly reduced ability to form protease-resistant PrP in a cell-free assay system. Thus, our results demonstrate that deletion of the beta-strands and the first alpha-helix of PrP-sen can fundamentally affect PrP-res formation and/or PrP-sen processing.  相似文献   

15.
Conversion of the normal membrane-bound prion protein (PrP-sen) to its pathological isoform (PrP-res) is a key event in the pathogenesis of transmissible spongiform encephalopathies. Although the subcellular sites of conversion are poorly characterized, several lines of evidence have suggested the involvement of membrane lipid rafts in the conversion process. Here we report that copper stimulates the endocytosis of PrP-sen via a caveolin-dependent pathway in both microglia and neuroblastoma cells. We show that the polyene antibiotic filipin both limits endocytosis of PrP-sen and dramatically reduces the amount of membrane-bound PrP-sen. This reduction results from a rapid and massive release of full matured PrP-sen into the culture medium. Finally, we demonstrate that filipin is a potent inhibitor of PrP-res formation into chronically infected neuroblastoma cells. Our results reinforce the role of rafts in PrP trafficking and raise the possibility that the release of PrP-sen from the plasma membrane decreases the amount of available substrate PrP-sen at the conversion sites.  相似文献   

16.
Previous studies have indicated that scrapie infection results in the accumulation of a proteinase K-resistant form of an endogenous brain protein generally referred to as prion protein (PrP). The molecular nature of the scrapie-associated modification of PrP accounting for proteinase K resistance is not known. As an approach to understanding the cellular events associated with the PrP modification in brain tissue, we sought to identify proteinase K-resistant PrP (PrP-res) in scrapie-infected neuroblastoma cells in vitro and to compare properties of PrP-res with those of its normal proteinase K-sensitive homolog, PrP-sen. PrP-res was detected by immunoblot in scrapie-infected but not uninfected neuroblastoma clones. Densitometry of immunoblots indicated that there was two- to threefold more PrP-res than PrP-sen in one infected clone. Metabolic labeling and membrane immunofluorescence experiments indicated that PrP-sen was located on the cell surface and could be removed from intact cells by phosphatidylinositol-specific phospholipase C and proteases. In contrast, PrP-res was not removed after reaction with these enzymes. Thus, either the scrapie-associated PrP-res was not on the cell surface or it was there in a form that is resistant to these hydrolytic enzymes. Attempts to detect intracellular PrP-res by immunofluorescent staining of fixed and permeabilized cells revealed that PrP was present in discrete perinuclear Golgi-like structures. However, the staining pattern was similar in both scrapie-infected and uninfected clones, and thus the intracellular staining may have represented only PrP-sen. Analysis of scrapie infectivity in cells treated with extracellular phospholipase, proteinase K, and trypsin indicated that, like PrP-res, the scrapie agent was not removed from the infected cells by any of these enzymes.  相似文献   

17.
Prion protein (PrP) is usually bound to membranes by a glycosylphosphatidylinositol (GPI) anchor that associates with detergent-resistant membranes, or rafts. To examine the effect of membrane association on the interaction between the normal protease-sensitive PrP isoform (PrP-sen) and the protease-resistant isoform (PrP-res), a model system was employed using PrP-sen reconstituted into sphingolipid-cholesterol-rich raft-like liposomes (SCRLs). Both full-length (GPI(+)) and GPI anchor-deficient (GPI(-)) PrP-sen produced in fibroblasts stably associated with SCRLs. The latter, alternative mode of membrane association was not detectably altered by glycosylation and was markedly reduced by deletion of residues 34-94. The SCRL-associated PrP molecules were not removed by treatments with either high salt or carbonate buffer. However, only GPI(+) PrP-sen resisted extraction with cold Triton X-100. PrP-sen association with SCRLs was pH-independent. PrP-sen was also one of a small subset of phosphatidylinositol-specific phospholipase C (PI-PLC)-released proteins from fibroblast cells found to bind SCRLs. A cell-free conversion assay was used to measure the interaction of SCRL-bound PrP-sen with exogenous PrP-res as contained in microsomes. SCRL-bound GPI(+) PrP-sen was not converted to PrP-res until PI-PLC was added to the reaction or the combined membrane fractions were treated with the membrane-fusing agent polyethylene glycol (PEG). In contrast, SCRL-bound GPI(-) PrP-sen was converted to PrP-res without PI-PLC or PEG treatment. Thus, of the two forms of raft membrane association by PrP-sen, only the GPI anchor-directed form resists conversion induced by exogenous PrP-res.  相似文献   

18.
S A Priola  V A Lawson 《The EMBO journal》2001,20(23):6692-6699
A key event in the transmissible spongiform encephalopathies (TSEs) is the formation of aggregated and protease-resistant prion protein, PrP-res, from a normally soluble, protease-sensitive and glycosylated precursor, PrP-sen. While amino acid sequence similarity between PrP-sen and PrP-res influences both PrP-res formation and cross-species transmission of infectivity, the influence of co- or post-translational modifications to PrP-sen is unknown. Here we report that, if PrP-sen and PrP-res are derived from different species, PrP-sen glycosylation can significantly affect PrP-res formation. Glycosylation affected PrP-res formation by influencing the amount of PrP-sen bound to PrP-res, while the amino acid sequence of PrP-sen influenced the amount of PrP-res generated in the post-binding conversion step. Our results show that in addition to amino acid sequence, co- or post-translational modifications to PrP-sen influence PrP-res formation in vitro. In vivo, these modifications might contribute to the resistance to infection associated with transmission of TSE infectivity across species barriers.  相似文献   

19.
人类朊病毒病中约10%~15%具有家族遗传特性,其中插入或缺失突变多发生于PrP蛋白N末端的八肽重复区域。运用PCR成功地构建并表达了含不同八肽重复数目的PrP蛋白,并观察八肽重复数目的增加对PrP与Cu^2+等二价离子以及tau蛋白的相互作用的影响。实验结果显示:各种纯化后的PrP蛋白对常规浓度PK消化是敏感的,而与Cu^2+共同孵育可使PrP蛋白的PK抗性增强;八肽重复序列的数目及Cu^2+的浓度决定了PK抗性的出现和强弱。另外,MnH可诱导产生与CuH相似的结果,但其诱导效应似乎低于CuH,而Zn^2+对PrP蛋白的PK抗性无影响。GST—tau包被的ELISA检测证实,重组的PrP呈现出明显的tau蛋白结合能力,并且与八肽重复序列的数量相关,重复序列数量越多,结合能力越强。这些结果提示,CuH诱导产生的PrP蛋白PK抗性是通过八肽重复序列区域产生的,并且直接与重复序列的数量相关。另外,PrP蛋白八肽重复序列的存在和数量直接影响PrP与tau蛋白的结合效应。除了八肽区域外,PrP蛋白其它区域似乎也具有一定的tau蛋白结合能力。  相似文献   

20.
Molecular basis of scrapie strain glycoform variation   总被引:10,自引:0,他引:10  
Transmissible spongiform encephalopathies (TSE) are characterized by the conversion of a protease-sensitive host glycoprotein, prion protein or PrP-sen, to a protease-resistant form (PrP-res). PrP-res molecules that accumulate in the brain and lymphoreticular system of the host consist of three differentially glycosylated forms. Analysis of the relative amounts of the PrP-res glycoforms has been used to discriminate TSE strains and has become increasingly important in the differential diagnosis of human TSEs. However, the molecular basis of PrP-res glycoform variation between different TSE agents is unknown. Here we report that PrP-res itself can dictate strain-specific PrP-res glycoforms. The final PrP-res glycoform pattern, however, can be influenced by the cell and significantly altered by subtle changes in the glycosylation state of PrP-sen. Thus, strain-specific PrP-res glycosylation profiles are likely the consequence of a complex interaction between PrP-res, PrP-sen, and the cell and may indicate the cellular compartment in which the strain-specific formation of PrP-res occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号