首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The effect of opiate receptors blocker naloxone on ACTH and corticosterone secretion in normal, dexamethasone-treated and hypophysectomized rats was studied. A dose-related increase in plasma corticosterone level was found at 45 min after s.c. injection of naloxone in a dose range of 0.25-2.0 mg kg-1. The rise in plasma corticosterone was preceded by a slight increase in plasma ACTH. Acute morphine administration in a relatively low dose (6 mg kg-1 s.c.) induced a significant rise in both plasma ACTH and corticosterone levels. Dexamethasone treatment was followed by low basal corticosterone level, by total inhibition of the stress response and response to morphine injection, while the response to ACTH administration was normal. Under these circumstances as well as in rats 6 days after hypophysectomy, naloxone failed to increase plasma corticosterone levels. It is concluded that a direct stimulation of corticosteroid biosynthesis in adrenal cortex is not involved in the mechanism of naloxone-induced activation of pituitary-adrenocortical function.  相似文献   

2.
Significant elevation in plasma corticosterone of rats achieved by intraperitoneal (i.p.) administration of corticosterone (2.4 mg/kg) was associated with a rapid (2.5 min) and significant increase in hypothalamic histamine (HA) levels which persisted for 60 min. Midbrain and cortical HA concentrations were not affected. Significant and prolonged elevation of hypothalamic, midbrain and cortical HA levels was achieved by L-histidine administration (500 mg/kg i.p.). The most significant increase was noted in the hypothalamus and persisted for 10 hours. The elevated brain HA levels were associated with significant increase in plasma corticosterone levels which lasted for 120 mins. Present data supports the involvement of central HA in endocrine function.  相似文献   

3.
Dynamics of changes of and plasma corticosterone was studied in both male and female rats after intraperitoneal injections of adrenaline at a dose of 20 micrograms per 100 g body weight. The control rats were injected with saline. Animals were decapitated 10, 30, 60, 120, 180 and 240 min after the injections. The specific effect of adrenaline was revealed in the first 10 min of adrenaline injection. This effect was significantly increased to 30-60 min after termination of saline--induced activation of the pituitary-adrenal axis. Both saline and adrenaline caused more significant increases in corticosterone levels in female rats than in male ones. There was a significant delay in the return of corticosterone to resting levels in males compared to that in females. It is supposed that the almost two-fold difference in peak plasma corticosterone concentrations observed after stressors may be associated with increased responsiveness of the female hypothalamus with respect to adrenaline secretion.  相似文献   

4.
《Life sciences》1994,55(19):PL379-PL382
Laboratory rats injected daily with a moderate dose of cocaine hydrochloride (30 mg/kg, i.p.) showed increased fatalities when cocaine injections were followed by 30 min of restraint stress. The 5-day mortality rate was 58% for the cocaine-plus-stress group, while 17% of the animals receiving cocaine without restraint stress died. This finding suggests that stress can augment the toxic effect of cocaine and that minimizing stress may be an important consideration in the clinical management of cocaine overdose.  相似文献   

5.
This study was designed to determine the role of endogenous nitric oxide (NO) in the corticotropin-releasing hormone (CRH)-induced ACTH and corticosterone secretion, as well as possible involvement of hypothalamic dopamine and noradrenaline in that secretion in conscious rats. CRH given i.p. stimulated dose-dependently the pituitary-adrenocortical activity measured 1 h later. Dexamethasone (0.2 mg/kg i.p.) injected 1 h before CRH (1 microg/kg i.p.) totally abolished the CRH-elicited ACTH and corticosterone secretion, indicating a predominantly pituitary site of CRH-evoked stimulation. L-arginine (120 mg/kg i.p.) and N(omega)-nitro-L-arginine methyl ester (L-NAME 5-10 mg/kg i.p.) did not markedly affect the basal plasma ACTH and corticosterone levels. L-NAME given 15 min before CRH markedly, but not significantly, augmented the CRH-induced ACTH response, and enhanced more potently and significantly the corticosterone response. Pretreatment with L-arginine, a substrate for NOS, slightly diminished the CRH-induced ACTH response and considerably reduced the corticosterone response. L-arginine also significantly reversed the L-NAME-evoked increase in the CRH-induced ACTH and corticosterone secretion. L-NAME did not markedly alter the CRH-induced hypothalamic dopamine and noradrenaline levels, while L-arginine significantly increased noradrenaline level. However, those alterations were not directly correlated with the observed changes in ACTH and corticosterone secretion. These results indicate that in conscious rats NO plays a marked inhibitory role in the CRH-induced ACTH secretion and inhibits more potently corticosterone secretion. Hypothalamic dopamine and noradrenaline do not seem to be directly involved in the observed alterations in ACTH and corticosterone secretion.  相似文献   

6.
Oxytocin has been suggested to have glucoregulatory functions in rats, man and other mammals. The hyperglycemic actions of oxytocin are believed to be mediated indirectly through changes in pancreatic function. The present study examined the interaction between glucose and oxytocin in normal and streptozotocin (STZ)-induced diabetic rats, under basal conditions and after injections of oxytocin. Plasma glucose and endogenous oxytocin levels were significantly correlated in cannulated lactating rats (r = 0.44, P less than 0.01). To test the hypothesis that oxytocin was acting to elevate plasma glucose, adult male rats were injected with 10 micrograms/kg oxytocin and killed 60 min later. Oxytocin increased plasma glucose from 6.1 +/- 0.1 to 6.8 +/- 0.2 mM (P less than 0.05), and glucagon from 179 +/- 12 to 259 +/- 32 pg/ml (P less than 0.01, n = 18). There was no significant effect of oxytocin on plasma insulin, although the levels were increased by 30%. A lower dose (1 microgram/kg) of oxytocin had no significant effect on plasma glucose or glucagon. To eliminate putative local inhibitory effects of insulin on glucagon secretion, male rats were made diabetic by i.p. injection of 100 mg/kg STZ, which increased glucose to greater than 18 mM and glucagon to 249 +/- 25 pg/ml (P less than 0.05). In these rats, 10 micrograms/kg oxytocin failed to further increase plasma glucose, but caused a much greater increase in glucagon (to 828 +/- 248 pg/ml) and also increased plasma ACTH. A specific oxytocin analog, Thr4,Gly7-oxytocin, mimicked the effect of oxytocin on glucagon secretion in diabetic rats. The lower dose of oxytocin also increased glucagon levels (to 1300 +/- 250 pg/ml), but the effect was not significant. A 3 h i.v. infusion of 1 nmol/kg per h oxytocin in conscious male rats significantly increased glucagon levels by 30 min in normal and STZ-rats; levels returned to baseline by 30 min after stopping the infusion. Plasma glucose increased in the normal, but not STZ-rats. The relative magnitude of the increase in glucagon was identical for normal and diabetic rats, but the absolute levels of glucagon during the infusion were twice as high in the diabetics. To test whether hypoglycemia could elevate plasma levels of oxytocin, male rats were injected i.p. with insulin and killed from 15-180 min later. Plasma glucose levels dropped to less than 2.5 mM by 15 min. Oxytocin levels increased by 150-200% at 30 min; however, the effect was not statistically significant.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Administration of a single dose (200 mg/kg, p.o.) of carbaryl to rats produced a significant rise in adrenal and plasma corticosterone levels and an increase of tyrosine alpha-ketoglutarate transaminase activity in the liver cytosol. Synaptosomal acetylcholinesterase activity of the hypothalamic and the striatal regions of rat brain was decreased by carbaryl treatment under similar conditions. Pretreatment (0.5 h) with atropine sulphate (10 mg/kg, i.p.) failed to counteract the carbaryl-induced elevation of adrenal and plasma corticosterone levels and hence the liver tyrosine alpha-ketoglutarate transaminase activity. Present results suggest that the carbaryl-induced rise in the corticosterone level in the adrenal gland and plasma is not due to a cholinergic mechanism.  相似文献   

8.
Acetylcholine potently stimulates the hypothalamic-pituitary-adrenal (HPA) axis. Cholinergic receptor agonist carbachol, given intraperitoneally (i.p.) or into the lateral cerebral ventricle (i.c.v.) to non-anesthetized rats acts via multiple pathways to stimulate the HPA axis. The present study sought to determine 1) the functional selectivity of carbachol for cholinergic muscarinic and/or nicotinic receptors involved in the stimulation of HPA axis; 2) the involvement of prostaglandins (PGs) generated by constitutive and inducible cyclooxygenase (COX-1 and COX-2) in the carbachol-induced ACTH and corticosterone secretion in non-stressed rats and animals exposed to social crowding stress for 7 days (24 per a cage for 6). Carbachol was given i.c.v. or i.p. and cholinergic receptor antagonists or cyclooxygenase isoenzyme antagonists were given by the same routes 15 min earlier. One hour after the last injection trunk blood was taken for ACTH and corticosterone determinations. Atropine (0.1 microg i.c.v.), a cholinergic receptor antagonist, totally abolished the carbachol (2 microg i.c.v.)-induced ACTH and corticosterone secretion and mecamylamine (20 microg i.c.v.), a selective nicotinic receptor antagonist, did not affect this secretion. This finding indicates that carbachol functions as a selective central cholinergic muscarinic receptor agonist for the HPA axis stimulation. Crowding stress significantly diminished the carbachol (0.2 mg/kg i.p.)-induced plasma ACTH and corticosterone levels measured 1 hr after administration. Pretreatment with indomethacin (2 mg/kg i.p.), a non-selective cyclooxygenase inhibitor, significantly diminished the ACTH and corticosterone responses to carbachol (0.2 mg/kg i.p.) in control rats and moderately decreased these responses in stressed rats. Piroxicam (0.2 and 2.0 mg/kg i.p.), a COX-1 inhibitor, considerably impaired the carbachol-induced ACTH and corticosterone responses in control rats and markedly diminished these responses in stressed rats. A selective COX-2 blocker, compound NS-398 (0.2 and 2.0 mg/kg i.p.), substantially decreased the carbachol-induced hormones secretion in control rats but did not markedly alter this secretion in stressed rats. These results indicate that in the carbachol-induced HPA axis activation PGs generated by COX-1 are considerably and to a much greater extent involved than PGs generated by COX-2. Social stress markedly diminishes the mediation of PGs generated by COX-1 but PGs synthesized by COX-2 do not substantially participate in the carbachol-induced HPA response.  相似文献   

9.
Naloxone HCl (NX) has long been considered to be a pure narcotic antagonist, having an effect only subsequent to pretreatment with a narcotic. Characteristically, low doses of NX have been used to antagonize the effects of analgesic doses of narcotics and to precipitate withdrawal in chronically treated animals. In this study, the effects of high doses of NX (2.0–20.0 mg/kg) on changes in plasma corticosterone were examined in the opiate-naive animal. Using male rats with chronic intravenous catheters and one-way vision boxes, injections were made and serial blood samples were obtained in the conscious, unrestrained animal. The acute administration of NX to the opiate-naive animal produced a dose-related increase in plasma corticosterone with respect to both amplitude and duration. NX (10.0 mg/kg i.v.) produced a significant elevation in hormone level at 15 and 30 minutes. With NX (20.0 mg/kg i.v.) the duration of the response was extended to 60 minutes. To examine whether short-term tolerance to this effect could be produced, animals were given a single pretreatment with either NX (10.0 mg/kg) or saline i.v. Two hours later NX produced a similar elevation in hormone level in both groups. The effect of chronic injection of NX was also studied. Animals pretreated with either NX (10.0 mg/kg) or saline s.c. once daily for 7 days did not show a significant difference following the subsequent administration of NX. In both cases, a significant elevation of plasma corticosterone resulted. The results suggest that NX may have a direct effect on opiate receptors resulting in an elevation of plasma hormone levels or NX may be disrupting an endogenous opiate-receptor interaction producing a stress response.  相似文献   

10.
O Serri  E Rasio 《Hormone research》1989,31(4):180-183
In order to elucidate the mechanism of development of tolerance to the anorectic effect during chronic treatment with d-fenfluramine (d-F), we examined the temporal changes induced by d-F in food intake and prolactin (PRL) and corticosterone secretion. Male Sprague-Dawley rats were treated for 14 days with d-F (2.5 mg/kg i.p.) or saline twice daily and were given free access to food and water. Groups of 8 rats were sacrificed 30 min after d-F or saline injection at days 1, 4 and 14 for measurements of serum PRL and corticosterone. Food intake and weight gain were reduced significantly by d-F during the first 2-3 days of treatment but not thereafter. Compared with saline, d-F initially increased PRL (57 +/- 9 vs. 7 +/- 0.7 ng/ml) and corticosterone (42 +/- 2 vs. 14 +/- 3 micrograms/dl) serum concentrations. At 4 days, PRL was still significantly increased (43 +/- 5 vs. 10 +/- 4 ng/ml) but corticosterone returned to basal levels. At 14 days, PRL and corticosterone concentrations in the d-F group were not different from corresponding values in the saline group. To verify whether the loss of corticosterone and PRL responses to d-F was not due to a depletion of hormone stores, direct stimulation of corticosterone with corticotrophin and of PRL with metoclopramide were made at days 4 and 14, respectively. Corticotrophin (0.25 mg/kg i.p.) increased corticosterone concentrations similarly in d-F-treated (45 +/- 8 micrograms/dl) and in saline-treated rats (51 +/- 7 micrograms/dl).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Nicotine (4 × 2 mg/kg, i.p.) was given every 30 min for 2 h to male rats. Some rats were pretreated with the D1 dopamine (DA) receptor antagonist SCH 23390 (1 mg/kg, i.p.) or with the D2 DA receptor antagonist raclopride (1 mg/kg, i.p.), 5 min before nicotine treatment. Hypothalamic and preoptic catecholamine levels were measured by quantitative histofluorimetry in discrete DA and noradrenaline nerve terminal systems.Nicotine treatment produced a depletion of catecholamine stores in noradrenaline and DA nerve terminals of the hypothalamus, the preoptic area and the median eminence, an action which was counteracted by SCH 23390 but not by raclopride.The results indicate that hypothalamic D1 DA receptors may regulate the sensitivity of the nicotinic cholinoceptors and increase their ability to release hypothalamic noradrenaline. A possible role of D1 DA receptor antagonists to reduce the ability of nicotine treatment to produce rapid increases in LH, prolactin and corticosterone secretion and tonic arousal is implicated.  相似文献   

12.
A role for circadian neuroendocrine rhythms in the age-related development of obesity and insulin resistance was investigated in the male Sprague-Dawley rat. The phases and amplitudes of the plasma rhythms of several metabolic hormones (i.e. corticosterone, prolactin, insulin, and triiodothyronine) differed in lean, insulin-sensitive (3-week-old rats). insulin-resistant (8-week-old rats) and obese, insulin-resistant (44-week-old rats) animals. Simulation of the daily rhythms of endogenous corticosterone and prolactin by daily injections of the hormones at times corresponding to the peak levels found in 3-week-old rats reversed age-related increases in insulin resistance and body fat in older (5-6-month-old) rats. Ten such daily injections of corticosterone and prolactin in 12-14-week-old rats produced long-term reductions in body fat stores (30%). plasma insulin concentration (40%'). and insulin resistance (60%) (determined by a glucose tolerance test) measured 11-14 weeks after the treatment. Alterations in circadian neuroendocrine rhythms may account for age-related changes in carbohydrate and lipid metabolism in the male Sprague-Dawley rat, and resetting of these rhythms by appropriately timed daily injections of corticosterone and prolactin may help maintain metabolism characteristic of younger animals.  相似文献   

13.
1. The aim of this study was to compare the effects of acute amphetamine (AMPH) treatment and restraint stress on plasma level of prolactin (PRL) and PRL mRNA expression in the adenohypophysis in Sprague–Dawley and Lewis male rats, the latter known to have a deficient hypothalamo–pituitary-adrenal (HPA) axis.2. Both restraint stress and AMPH treatment (i.p. in a dose of 8 mg/kg of b.w.) were applied 15 or 30 min before termination of the experiment. Plasma PRL and corticosterone (CORT) were determined by radioimmunoassay. PRL mRNA expression was estimated by a dot-blot hybridization.3. Restraint stress and AMPH treatment induced a significant increase in theCORT plasma level, as an indicator of stress response. Compared to Sprague–Dawley rats, the magnitude of CORT increase after both stimuli was significantly lower in Lewis rats.4. Although restraint stress significantly increased the PRL plasma levels in both rat strains, AMPH treatment reduced the PRL levels in both rat strains. However, the changes of PRL plasma levels had another pattern in Lewis rats than in Sprague–Dawley rats. Control plasma PRL levels were significantly higher in Lewis rats, and in this rat strain AMPH treatment for 30 min increased the PRL levels as compared to the values obtained after AMPH treatment for 15 min.5. Expression of PRL mRNA in adenohypophysis by restraint stress and AMPH treatment had a similar pattern. After a 15-min lasting restraint stress, the expression of PRL mRNA was decreased insignificantly in both rat strains. AMPH treatment induced in Sprague–Dawley rats a significant decrease of PRL mRNA after a 15-min interval while after 30 min there was a significant increase. However, in Lewis rats AMPH failed to significantly change PRL mRNA.6. The results from the present study indicate that the mechanisms mediatingthe effects of acute restraint stress and acute AMPH treatment differ in PRL response in Sprague–Dawley and Lewis male rat strains. Differences in the observed responses in Lewis rats could be related to the deficient activity of HPA axis in this rat strain.  相似文献   

14.
In the present study the role of endogenous nitric oxide (NO) in the vasopressin-induced ACTH and corticosterone secretion was investigated in conscious rats. Vasopressin (AVP 5 microg/kg i.p.) considerably augmented ACTH and corticosterone secretion. L-arginine (120 and 300 mg/kg i.p.) did not significantly alter the AVP-induced secretion of those hormones. Nitric oxide synthase (NOS) blockers N(omega)-nitro-L-arginine (L-NNA) and its methyl ester (L-NAME) given i.p. 15 min before AVP markedly increased the AVP-induced ACTH secretion. L-NNA (2 mg/kg) more potently and significantly increased the AVP-induced ACTH secretion, whereas L-NAME elicited a weaker and not significant effect. Both those NOS antagonists intensified significantly and to a similar extent the AVP-induced corticosterone secretion. L-arginine (120 mg/kg i.p.) reversed the L-NNA-induced rise in the AVP-stimulated ACTH secretion and substantially diminished the accompanying corticosterone secretion. Neither vasopressin alone nor in combination with L-arginine and L-NAME evoked any significant alterations in the hypothalamic noradrenaline and dopamine levels. L-NNA (2 and 10 mg/kg i.p.) elicited a dose dependent and significant decrease in the hypothalamic noradrenaline level. The hypothalamic dopamine level was not significantly altered by any treatment. These results indicate that in conscious rats endogenous NO has an inhibitory influence on the AVP-induced increase in ACTH and corticosterone secretion. L-NNA is significantly more potent than L-NAME in increasing the AVP-induced ACTH secretion. This may be connected with a considerable increase by L-NNA of hypothalamic noradrenergic system activation which stimulates the pituitary-adrenal axis in addition to specific inhibition of NOS.  相似文献   

15.
A role for circadian neuroendocrine rhythms in the age-related development of obesity and insulin resistance was investigated in the male Sprague-Dawley rat. The phases and amplitudes of the plasma rhythms of several metabolic hormones (i.e. corticosterone, prolactin, insulin, and triiodothyronine) differed in lean, insulin-sensitive (3-week-old rats). insulin-resistant (8-week-old rats) and obese, insulin-resistant (44-week-old rats) animals. Simulation of the daily rhythms of endogenous corticosterone and prolactin by daily injections of the hormones at times corresponding to the peak levels found in 3-week-old rats reversed age-related increases in insulin resistance and body fat in older (5-6-month-old) rats. Ten such daily injections of corticosterone and prolactin in 12-14-week-old rats produced long-term reductions in body fat stores (30%). plasma insulin concentration (40%″). and insulin resistance (60%) (determined by a glucose tolerance test) measured 11-14 weeks after the treatment. Alterations in circadian neuroendocrine rhythms may account for age-related changes in carbohydrate and lipid metabolism in the male Sprague-Dawley rat, and resetting of these rhythms by appropriately timed daily injections of corticosterone and prolactin may help maintain metabolism characteristic of younger animals.  相似文献   

16.
D Jezová 《Life sciences》1985,37(11):1007-1013
The concentration of ACTH and corticosterone in plasma were measured following peripheral administration of naloxone and naloxone methylbromide (quaternary derivative of opiate antagonist naloxone which is thought not to cross the blood brain barrier) in male rats. Subcutaneous administration of naloxone methylbromide in the dose range of 0.625 - 5.0 mg kg-1 resulted in a small but significant increase in plasma corticosterone levels. Both naloxone and its quaternary derivative injected via permanent intraperitoneal catheters to freely moving rats induced a highly significant increase in plasma ACTH levels measured in blood obtained via permanent tail artery catheters 30 min following injection. These results indicate that loci outside the blood brain barrier are, at least partially, involved in the naloxone-induced stimulation of ACTH release.  相似文献   

17.
5,7-Dihydroxytryptamine (5,7-DHT) is a neurotoxin which causes the depletion of serotonin. Moreover, the serotonergic system is the regulator of the blood glucose level. However, the role of centrally located serotonergic system in blood glucose regulation after D-glucose feed and immobilization (IMO) stress was not clearly characterized yet. Thus the present study was designed to examine the effect of 5,7-DHT administered intracerebroventricularly (i.c.v.) or intrathecally (i.t.) on the blood glucose level in D-glucose-fed and immobilization stress models. Mice were pretreated once i.c.v. or i.t. with 5,7-DHT (from 10 to 40?µg) for 3 days and D-glucose (2?g/kg) was fed orally. The blood glucose level was measured at 0, 30, 60 and 120?min after D-glucose feeding and immobilization stress initiation. We found that i.c.v. or i.t. pretreatment with 5,7-DHT attenuated the blood glucose level in both animal models. D-glucose feeding causes an increase in plasma insulin level, whereas the plasma corticosterone level was downregulated in the D-glucose-fed model. The i.c.v. or i.t. pretreatment with 5,7-DHT alone slightly increased the plasma corticosterone level. In addition, the i.c.v. or i.t. pretreatment with 5,7-DHT caused a reversal of the downregulation of plasma corticosterone level induced by D-glucose feeding, whereas immobilization stress causes an increase in plasma corticosterone and insulin levels. The i.c.v or i.t. pretreatment with 5,7-DHT attenuated the immobilization stress-induced plasma corticosterone and plasma insulin levels. Our results suggest that supraspinal and spinal depletion of serotonin appears to be responsible for the downregulation of blood glucose level in both D-glucose-fed and immobilization stress models.  相似文献   

18.
To determine the effects of chronic hyperinsulinemia on glucagon release, rats were made hyperinsulinemic for 14 days by supplementation of drinking water with sucrose (10%; sucrose-fed) to increase endogenous release or by implantation of osmotic minipumps (subcutaneous, s.c.; or intraperitoneal, i.p.) to deliver exogenous insulin (6 U/day). Both s.c. and i.p. rats also had sucrose in the drinking water to prevent hypoglycemia. Plasma insulin levels were significantly elevated in sucrose-fed, s.c., and i.p. rats. However, glucose levels were significantly elevated in sucrose-fed rats only. Surprisingly, plasma glucagon concentrations were elevated in i.p. and s.c. rats and were not suppressed in sucrose-fed rats. Inverse relationships were found between the plasma levels of insulin and glucose (n = 65; r = -0.42, p less than 0.0001) and between glucose and glucagon (n = 73; r = -0.46, p less than 0.0001). However, unexpectedly, a positive correlation between insulin and glucagon (n = 65; r = 0.47, p less than 0.0001) was established. As suppression of plasma glucagon levels below basal was not observed in any of the hyperinsulinemic or hyperglycemic rats, we wished to establish further whether pancreatic glucagon release could be suppressed below basal levels in the rat by another means. Thus, high doses of somatostatin (50-100 micrograms.kg-1.min-1) were infused for 45 min into normal rats without or with a concomitant hyperinsulinemic, hyperglycemic glucose clamp. Somatostatin fully suppressed insulin, but although plasma glucagon levels were decreased by somatostatin infusion relative to saline-infused animals, there was still no suppression below basal levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The aim of the present study was to compare the effect of social stress on the corticotropin releasing hormone (CRH) and arginine vasopressin (AVP)-induced pituitary-adrenocortical activity. Also the significance of prostaglandins (PG) generated by constitutive and inducible cyclooxygenase (COX-1 and COX-2) in the stimulation of hypothalamic-pituitary-adrenal (HPA) axis by AVP under basal and crowding stress conditions was investigated. The control rats were housed 7 in a standard cage and stressed rats were crowded 24 in a cage of the same size during 7 days. The activity of HPA axis was determined by measuring plasma ACTH and serum corticosterone levels 1 h after i.p. AVP administration. Indomethacin (2.0 mg/kg i.p.), a non-selective COX inhibitor, piroxicam (0.2, 2.0, and 5.0 mg/kg), a more potent COX-1 than COX-2 inhibitor, and compound NS-398 (0.2 and 2.0 mg/kg) a selective COX-2 inhibitor, were administered i.p. 15 min prior to AVP (5.0 microg/kg i.p.) to control or crowded rats. The obtained results indicate that social stress for 7 days considerably inhibits the stimulatory action of AVP on ACTH secretion, while it intensifies the CRH-induced ACTH secretion. Indomethacin, piroxicam and NS-398 significantly diminished the AVP-elicited ACTH and corticosterone secretion in non-stressed rats. None of these COX antagonist induced any significant inhibition of the AVP-induced ACTH and corticosterone secretion in stressed rats. Therefore, PG generated by COX-1 or COX-2 do not participate to a significant extent in the HPA stimulation by AVP during crowding stress. These results suggest that social crowding stress desensitizes the PG stimulatory mechanism which considerably mediates the AVP-induced HPA stimulation under basal conditions. The results contrast with a lack of any involvement of PG in the CRH-induced stimulation of HPA response under basal or crowding stress conditions.  相似文献   

20.
Two distinct periods of sensitivity to elevated glucocorticoid hormone levels during postnatal development of the pituitary-adrenal axis were studied. Wistar rats were injected subcutaneously (s.c.) with cortisol (1 mg/kg) on postnatal days 1-5 or 14-18. The steroid treatment during the first postnatal week resulted in a decrease of the morning basal and stress-induced plasma corticosterone levels in 30 day-old male rats, as well as in rats that were injected with cortisol on the third postnatal week. Stress-induced corticosterone levels in 90-day old cortisol-treated rats were determined in blood samples drawn from the tail vein before the restraint stress, immediately after the 20-min long stress, then 60 and 180 min afterwards. Only the rats treated with cortisol during the third week showed a prolonged stress-induced corticosterone secretion, with the highest corticosterone level in 180 min after the restraint stress. The early neonatal cortisol treatment had no effect on (3)H-corticosterone binding in all studied brain areas of the 90-day old rats. The rats treated with cortisol at the 14-17th postnatal days showed a significantly lower (3)H-corticosterone binding in the frontal cortex, hippocampus, and hypothalamus. These findings suggest that the third week of life in rats is more sensitive to elevated levels of corticosterone than the first one. The high level of glucocorticoids at this period has long-term effects on the efficiency of the negative feedback mechanisms provided by hypothalamus-pituitary-adrenal axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号