首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cardiovascular abnormalities are the leading cause of neonatal death among patients with congenital rubella syndrome (CRS). Although persistence of rubella virus (RV) in fetal endothelium has been repeatedly suggested as a possible cause of cardiovascular birth defects, evidence of the permissiveness of fetal endothelial cells to RV is lacking. In this study we evaluated the ability of RV to infect and persist in primary fetal endothelial cells derived from human umbilical vein (HUVEC). We found that wild type (wt) low passage clinical RV productively infected HUVEC cultures without producing cytopathology or ultrastructural changes. RV did not inhibit host cell protein synthesis, cell proliferation, or interfere with the cell cycle. Persistently infected cultures were easily established at low and high multiplicities of infection (MOI) with both laboratory and wt clinical RV strains. However, synchronous infections of entire HUVEC monolayers were only observed with clinical RV strains. The release of infectious virions into media remained at consistently high levels for several subcultures of infected HUVEC. The results indicate that macrovascular fetal endothelial cells are highly permissive to RV and allow slow persistent RV replication. The findings provide more evidence for the suggestion that vascular pathologies in CRS are triggered by persistent rubella virus infection of the endothelium.  相似文献   

2.
Tang Y  Luo J  Zhang W  Gu W 《Molecular cell》2006,24(6):827-839
Upon DNA damage and other types of stress, p53 induces either cell-cycle arrest or apoptosis depending on the cellular context. However, the molecular mechanisms that govern the choice between cell-cycle arrest and apoptosis are not well understood. Here, we show that Tip60 is required for both cell growth arrest and apoptosis mediated by p53 and also induces its acetylation specifically at lysine 120 (K120) within the DNA-binding domain. Interestingly, this modification is crucial for p53-dependent apoptosis but is dispensable for its mediated growth arrest. K120 is a recurrent site for p53 mutation in human cancer, and the corresponding acetylation-defective tumor mutant (K120R) abrogates p53-mediated apoptosis, but not growth arrest. Thus, our study demonstrates that Tip60-dependent acetylation of p53 at K120 modulates the decision between cell-cycle arrest and apoptosis, and it reveals that the DNA-binding core domain is an important target for p53 regulation by posttranslational modifications.  相似文献   

3.
Protein-protein interactions forming dominant signalling events are providing ever-growing platforms for the development of novel Biologic tools for controlling cell growth. Casein Kinase 1 α (CK1α) forms a genetic and physical interaction with the murine double minute chromosome 2 (MDM2) oncoprotein resulting in degradation of the p53 tumour suppressor. Pharmacological inhibition of CK1 increases p53 protein level and induces cell death, whilst small interfering RNA-mediated depletion of CK1α stabilizes p53 and induces growth arrest. We mapped the dominant protein-protein interface that stabilizes the MDM2 and CK1α complex in order to determine whether a peptide derived from the core CK1α-MDM2 interface form novel Biologics that can be used to probe the contribution of the CK1-MDM2 protein-protein interaction to p53 activation and cell viability. Overlapping peptides derived from CK1α were screened for dominant MDM2 binding sites using (i) ELISA with recombinant MDM2; (ii) cell lysate pull-down towards endogenous MDM2; (iii) MDM2-CK1α complex-based competition ELISA; and (iv) MDM2-mediated ubiquitination. One dominant peptide, peptide 35 was bioactive in all four assays and its transfection induced cell death/growth arrest in a p53-independent manner. Ectopic expression of flag-tagged peptide 35 induced a novel ubiquitin and NEDD8 modification of CK1α, providing one of the first examples whereby NEDDylation of a protein kinase can be induced. These data identify an MDM2 binding motif in CK1α which when isolated as a small peptide can (i) function as a dominant negative inhibitor of the CK1α-MDM2 interface, (ii) be used as a tool to study NEDDylation of CK1α, and (iii) reduce cell growth. Further, this approach provides a technological blueprint, complementing siRNA and chemical biology approaches, by exploiting protein-protein interactions in order to develop Biologics to manipulate novel types of signalling pathways such as cross-talk between NEDDylation, protein kinase signalling, and cell survival.  相似文献   

4.
Cong H  Jiang Y  Tien P 《Journal of virology》2011,85(21):11038-11047
Rubella virus (RV) is a highly transmissible pathogenic agent that causes the disease rubella. Maternal RV infection during early pregnancy causes the death of the fetus or congenital rubella syndrome in infants. However, the cellular receptor for RV has not yet been identified. In this study, we found that the myelin oligodendrocyte glycoprotein (MOG) specifically bound to the E1 envelope glycoprotein of RV, and an antibody against MOG could block RV infection. Most importantly, we also showed that ectopic expression of MOG on the cell surface of 293T cells rendered this nonpermissive cell line permissive for RV entry and replication. Thus, this study has identified a cellular receptor for RV and suggests that blocking the MOG attachment site of RV may be a strategy for molecular intervention of RV infection.  相似文献   

5.
p27(Kip1) (p27) blocks cell proliferation through the inhibition of cyclin-dependent kinase-2 (Cdk2). Despite its robust expression in the heart, little is known about both the function and regulation of p27 in this and other nonproliferative tissues, in which the expression of its main target, cyclin E-Cdk2, is known to be very low. Here we show that angiotensin II, a major cardiac growth factor, induces the proteasomal degradation of p27 through protein kinase CK2-alpha'-dependent phosphorylation. Conversely, unphosphorylated p27 potently inhibits CK2-alpha'. Thus, the p27-CK2-alpha' interaction is regulated by hypertrophic signaling events and represents a regulatory feedback loop in differentiated cardiomyocytes analogous to, but distinct from, the feedback loop arising from the interaction of p27 with Cdk2 that controls cell proliferation. Our data show that extracellular growth factor signaling regulates p27 stability in postmitotic cells, and that inactivation of p27 by CK2-alpha' is crucial for agonist- and stress-induced cardiac hypertrophic growth.  相似文献   

6.
Patients with pancreatic cancer have little hope for cure because no effective therapies are available. Sansalvamide A is a cyclic depsipeptide produced by a marine fungus. We investigated the effect of a novel sansalvamide A analogue on growth, cell-cycle phases, and induction of apoptosis in human pancreatic cancer cells in vitro. The sansalvamide analogue caused marked time- and concentration-dependent inhibition of DNA synthesis and cell proliferation of two human pancreatic cancer cell lines (AsPC-1 and S2-013). The analogue induced G0/G1 phase cell-cycle arrest and morphological changes suggesting induction of apoptosis. Apoptosis was confirmed by annexin V binding. This novel sansalvamide analogue inhibits growth of pancreatic cancer cells through G0/G1 arrest and induces apoptosis. Sansalvamide analogues may be valuable for the treatment of pancreatic cancer.  相似文献   

7.
Synovial cell lines were established from patients with rheumatoid arthritis (RA) and from normal human embryos. High levels of hyaluronic acid (HA) were produced by some RA cell lines, some of which were partially or completely resistant to infection with Newcastle disease virus (NDV), vesicular stomatitis virus (VSV), and rubella virus (RV). Normal fetal synovial cells lines were susceptible to NDV, VSV, and RV. Infection with virus became possible after treatment of RA cells with hyaluronidase to depolymerize HA, and HA prevented infection of normal synovial cells with VSV. These results provide evidence that HA and not chronic or latent viral infection is responsible for the lack of susceptibility of RA synovial cells to certain viruses.  相似文献   

8.

Background

Despite a safe and effective vaccine, rubella vaccination programs with inadequate coverage can raise the average age of rubella infection; thereby increasing rubella cases among pregnant women and the resulting congenital rubella syndrome (CRS) in their newborns. The vaccination coverage necessary to reduce CRS depends on the birthrate in a country and the reproductive number, R0, a measure of how efficiently a disease transmits. While the birthrate within a country can be known with some accuracy, R0 varies between settings and can be difficult to measure. Here we aim to provide guidance on the safe introduction of rubella vaccine into countries in the face of substantial uncertainty in R0.

Methods

We estimated the distribution of R0 in African countries based on the age distribution of rubella infection using Bayesian hierarchical models. We developed an age specific model of rubella transmission to predict the level of R0 that would result in an increase in CRS burden for specific birth rates and coverage levels. Combining these results, we summarize the safety of introducing rubella vaccine across demographic and coverage contexts.

Findings

The median R0 of rubella in the African region is 5.2, with 90% of countries expected to have an R0 between 4.0 and 6.7. Overall, we predict that countries maintaining routine vaccination coverage of 80% or higher are can be confident in seeing a reduction in CRS over a 30 year time horizon.

Conclusions

Under realistic assumptions about human contact, our results suggest that even in low birth rate settings high vaccine coverage must be maintained to avoid an increase in CRS. These results lend further support to the WHO recommendation that countries reach 80% coverage for measles vaccine before introducing rubella vaccination, and highlight the importance of maintaining high levels of vaccination coverage once the vaccine is introduced.  相似文献   

9.
The interaction of the rubella virus (RV) capsid (C) protein and the mitochondrial p32 protein is believed to participate in virus replication. In this study, the physiological significance of the association of RV with mitochondria was investigated by silencing p32 through RNA interference. It was demonstrated that downregulation of p32 interferes with microtubule-directed redistribution of mitochondria in RV-infected cells. However, the association of the viral C protein with mitochondria was not affected. When cell lines either pretreated with respiratory chain inhibitors or cultivated under (mild) hypoxic conditions were infected with RV, viral replication was reduced in a time-dependent fashion. Additionally, RV infection induces increased activity of mitochondrial electron transport chain complex III, which was associated with an increase in the mitochondrial membrane potential. These effects are outstanding among the examples of mitochondrial alterations caused by viruses. In contrast to the preferential localization of p32 to the mitochondrial matrix in most cell lines, RV-permissive cell lines were characterized by an almost exclusive membrane association of p32. Conceivably, this contributes to p32 function(s) during RV replication. The data presented suggest that p32 fulfills an essential function for RV replication in directing trafficking of mitochondria near sites of viral replication to meet the energy demands of the virus.  相似文献   

10.
Many infants whose mothers have rubella infections during their first trimester of pregnancy have birth defects called congenital rubella syndrome (CRS). China does not routinely vaccinate against rubella in the public sector, but may need to start as its 'one child per couple' policy changes the population age distribution and the dynamics of rubella epidemiology, so that the incidence of rubella in pregnant women increases. Computer simulations with demographic transitions and rubella transmission dynamics predict that, with no or limited rubella vaccination, CRS incidence in China in the 30 years after 2020 will be more than twice the level in 2005. Comparisons of rubella vaccination strategies using computer simulations show that routine vaccination of over 80% of 1-year-old children would be effective in reducing total CRS cases in 2005-2051 and eliminating rubella in China by 2051. Routine immunizations at higher levels and the addition of early mass vaccinations of 2-14-year-old children and women of childbearing ages would further reduce total CRS cases and speed up the elimination of rubella.  相似文献   

11.
Tetraploid (4N) cells are considered important in cancer because they can display increased tumorigenicity, resistance to conventional therapies, and are believed to be precursors to whole chromosome aneuploidy. It is therefore important to determine how tetraploid cancer cells arise, and how to target them. P53 is a tumor suppressor protein and key regulator of tetraploidy. As part of the “tetraploidy checkpoint”, p53 inhibits tetraploid cell proliferation by promoting a G1-arrest in incipient tetraploid cells (referred to as a tetraploid G1 arrest). Nutlin-3a is a preclinical drug that stabilizes p53 by blocking the interaction between p53 and MDM2. In the current study, Nutlin-3a promoted a p53-dependent tetraploid G1 arrest in two diploid clones of the HCT116 colon cancer cell line. Both clones underwent endoreduplication after Nutlin removal, giving rise to stable tetraploid clones that showed increased resistance to ionizing radiation (IR) and cisplatin (CP)-induced apoptosis compared to their diploid precursors. These findings demonstrate that transient p53 activation by Nutlin can promote tetraploid cell formation from diploid precursors, and the resulting tetraploid cells are therapy (IR/CP) resistant. Importantly, the tetraploid clones selected after Nutlin treatment expressed approximately twice as much P53 and MDM2 mRNA as diploid precursors, expressed approximately twice as many p53-MDM2 protein complexes (by co-immunoprecipitation), and were more susceptible to p53-dependent apoptosis and growth arrest induced by Nutlin. Based on these findings, we propose that p53 plays novel roles in both the formation and targeting of tetraploid cells. Specifically, we propose that 1) transient p53 activation can promote a tetraploid-G1 arrest and, as a result, may inadvertently promote formation of therapy-resistant tetraploid cells, and 2) therapy-resistant tetraploid cells, by virtue of having higher P53 gene copy number and expressing twice as many p53-MDM2 complexes, are more sensitive to apoptosis and/or growth arrest by anti-cancer MDM2 antagonists (e.g. Nutlin).  相似文献   

12.
CK beta-11 chemoattracts T cells, B cells, dendritic cells, macrophage progenitors, and NK cells and facilitates dendritic cell and T cell interactions in secondary lymphoid tissues. We hypothesized that expression of CK beta-11 in tumor cells may generate antitumor immunity through these interactions. After transduction with the retroviral vector L(CK beta 11)SN, the murine breast cancer cell line C3L5 (C3L5-CK beta 11) showed expression of retroviral mRNA by Northern analysis and production of functional CK beta-11 by chemotaxis of human NK cells to C3L5-CK beta 11 supernatant. Only 10% of mice injected with C3L5-CK beta 11 developed tumors, compared with 100% of mice injected with a transduced control C3L5 line (C3L5-G1N). Importantly, the in vitro growth characteristics of the CK beta-11-transduced cell line were unaffected, suggesting the difference in growth in vivo was a result of chemokine production. Vaccination with C3L5-CK beta 11 partially protected animals from parental C3L5 challenge. Immunodepletion with anti-asialo-GM1 or anti-CD4 during C3L5-CK beta 11 vaccination significantly reduced CK beta-11 antitumor activity compared with control and anti-CD8-treated groups. Splenocytes from NK-depleted animals transferred the acquired immunity generated with C3L5-CK beta 11 vaccination, while splenocytes from the CD4-depleted animals did not. These results indicate, for the first time, that expression of CK beta-11 in a breast cancer cell line mediates rejection of the transduced tumor through a mechanism involving NK and CD4+ cells. Furthermore, CK beta-11-transduced tumor cells generate long-term antitumor immunity that requires CD4+ cells. These studies demonstrate the potential role of CK beta-11 as an adjuvant in stimulating antitumor responses.  相似文献   

13.
Compound K (20-O-β-D-glucopyranosyl-20(S)-protopanaxadiol, CK), an intestinal bacterial metabolite of panaxoside, has been shown to inhibit tumour growth in a variety of tumours. However, the mechanisms involved are largely unknown. We use human gastric carcinoma cell lines BGC823, SGC7901 and human gastric carcinoma xenograft in nude mice as models to study the mechanisms of CK in gastric cancers. We found that CK significantly inhibits the viabilities of BGC823 and SGC7901 cells in dose- and time-dependent manners. CK-induced BGC823 and SGC7901 cells apoptosis and cell cycle arrest in G2 phase by up-regulation of p21 and down-regulation of cdc2 and cyclin B1. Further studies show that CK induces apoptosis in BGC823 and SGC7901 cells mainly through mitochondria-mediated internal pathway, and that CK induces the translocation of nuclear Bid to mitochondria. Finally, we found that CK effectively inhibited the tumour formation of SGC7901 cells in nude mice. Our studies show that CK can inhibit the viabilities and induce apoptosis of human gastric carcinoma cells via Bid-mediated mitochondrial pathway.  相似文献   

14.
Oncogenic Ras induces cell-cycle arrest in mammalian cells and in fertilized Xenopus eggs. How oncogenic Ras induces cell-cycle arrest remains unclear. We previously showed that oncogenic Ras induces cell-cycle arrest in activated Xenopus egg extracts (cycling extracts) and that the induced cell-cycle arrest correlates with hyperphosphorylation of a 32 kDa protein. However, the identity of the 32 kDa protein was not known. By using a sucrose density-gradient centrifugation, Triton X-100-acetic acid-urea (TAU)-gel electrophoresis, composite agarose-polyacrylamide gel electrophoresis (CAPAGE), SDS-PAGE, and partial tryptic peptide sequence analysis, the 32 kDa protein has now been identified as S6, a 40S subunit ribosomal protein. Hence, our results indicate that the oncogenic Ras-induced cell-cycle arrest is correlated with hyperphosphorylation of S6, suggesting that phosphorylation of S6 plays an important role in the induced cell-cycle arrest. It has been shown that conditional deletion of gene encoding S6 in mammalian cells prevents proliferation, demonstrating the importance of S6 in cell proliferation. The exact role S6 plays in cell proliferation is unclear. However, phosphorylation of S6 has been implicated in the regulation of protein synthesis. Thus, our results are consistent with the concept that oncogenic Ras induces S6 phosphorylation to influence protein synthesis, thereby contributing to the cell-cycle arrest. In addition, our results also demonstrate that composite agarose-polyacrylamide gel electrophoresis is suitable for the separation of large molecular complexes.  相似文献   

15.
Our previous work and that of other investigators strongly suggest a relationship between the upregulation of metalloproteinase-9 (MMP-9) and urokinase-type plasminogen activator receptor (uPAR) in tumor angiogenesis and metastasis. In this study, we evaluated the role of MMP-9 and uPAR in medulloblastoma cancer cell resistance to ionizing irradiation (IR) and tested the antitumor efficacy of siRNA (short interfering RNA) against MMP-9 [plasmid siRNA vector for MMP-9 (pM)] and uPAR [plasmid vector for uPAR (pU)] either alone or in combination [plasmid siRNA vector for both uPAR and MMP-9 (pUM)]. Cell proliferation (BrdU assay), apoptosis (in situ TUNEL for DNA fragmentation), and cell-cycle (FACS) analyses were carried out to determine the effect of siRNA either alone or in combination with IR on G2/M cell-cycle arrest in medulloblastoma cells. IR upregulated MMP-9 and uPAR expression in medulloblastoma cells; pM, pU, and pUM in combination with IR effectively reduced both MMP-9 and uPAR expression, thereby leading to increased radiosensitivity of medulloblastoma cells. siRNA treatments (pM, pU, and pUM) also promoted IR-induced apoptosis and enhanced IR-induced G2/M arrest during cell-cycle progression. While IR induces G2/M cell-cycle arrest through inhibition of the pCdc2- and cyclin B-regulated signaling pathways involving p53, p21/WAF1, and Chk2 gene expression, siRNA (pM, pU, and pUM) alone or in combination with IR induced G2/M arrest mediated through inhibition of the pCdc2- and cyclin B1-regulated signaling pathways involving Chk1 and Cdc25A gene expression. Taken together, our data suggest that downregulation of MMP-9 and uPAR induces Chk1-mediated G2/M cell-cycle arrest, whereas the disruption caused by IR alone is dependent on p53- and Chk2-mediated G2/M cell-cycle arrest.  相似文献   

16.
The p53 family: same response, different signals?   总被引:12,自引:0,他引:12  
TP53, the gene that encodes p53, is a well-defined tumor suppressor gene that is frequently mutated in human cancers. Recently, two proteins homologous to p53, termed p73 and p63, were identified. Current data indicate that both p73 and p63, like p53, can induce cell-cycle arrest and apoptosis, suggesting that they might also be tumor suppressors. However, the physiological signals that can regulate p53, for example, DNA damage, have no effect on p73, as tested in several cell lines. Furthermore, the signaling pathways by which p73 (and possibly p63) induces cell-cycle arrest and apoptosis appear to be similar to those of p53, but also have important differences. Thus, the p53 family proteins are closely related but might have distinct physiological functions.  相似文献   

17.
Regulating the differentiation and persistence of encephalitogenic T cells is critical for the development of experimental autoimmune encephalomyelitis (EAE). We reported recently that CD5 has an engagement-dependent prosurvival activity in T cells that played a direct role in the induction and progression EAE. We predicted that CD5 regulates T cell apoptosis/survival through the activation of CK2, a prosurvival serine/threonine kinase that associates with the receptor. To test this hypothesis, we generated mice expressing CD5 with the inability to bind and activate CK2 and assessed their susceptibility to EAE. We found mice deficient in CD5-CK2 signaling pathway were mostly resistant to the development of EAE. Resistance to EAE was associated with a dramatic decrease in a population of effector infiltrating Th cells that coexpress IFN-gamma and IL-17 and, to a lesser extent, cells that express IFN-gamma or IL-17 in draining lymph nodes and spinal cords. We further show that T cells deficient in CD5-CK2 signaling hyperproliferate following primary stimulation; however, following restimulation, they rapidly develop nonresponsiveness and exhibit elevated activation-induced cell death. Our results provide a direct role for CD5-CK2 pathway in T cell activation and persistence of effector T cells in neuroinflammatory disease. This study predicts that targeting of IFN-gamma(+)/IL-17(+) infiltrating Th cells will be useful for the treatment of multiple sclerosis and other systemic autoimmune diseases.  相似文献   

18.
Scotin is a pro-apoptotic mammalian gene, which is induced upon DNA damage or cellular stress in a p53-dependent manner. In this report, we have used Drosophila as a model system to obtain a preliminary insight into the molecular mechanism of Scotin function, which was validated using the mammalian system. Targeted expression of Scotin in developing Drosophila induced apoptosis and developmental defects in wings and eyes. Co-expression of Scotin with the anti-apoptotic protein P35, while inhibited the apoptosis in both dividing and non-dividing cells, rescued adult wing or eye phenotypes only when Scotin was expressed in non-dividing cells. This suggests that mechanisms of Scotin-induced apoptosis in dividing and non-dividing cells may vary. Suppressor-enhancer screen using cell cycle regulators suggested that Scotin may mediate cell cycle arrest at both G1/S and G2/M phases. Over-expression of Scotin in mammalian cells resulted in mitotic arrest and subsequently apoptosis. Furthermore, a larger proportion of cells over-expressing Scotin showed sequestration of Cyclin B1 in the cytoplasm. These results suggest that one of the ways by which Scotin induces apoptosis is by causing cell-cycle arrest.  相似文献   

19.
20.
Regulation of DNA repair throughout the cell cycle   总被引:1,自引:0,他引:1  
The repair of DNA lesions that occur endogenously or in response to diverse genotoxic stresses is indispensable for genome integrity. DNA lesions activate checkpoint pathways that regulate specific DNA-repair mechanisms in the different phases of the cell cycle. Checkpoint-arrested cells resume cell-cycle progression once damage has been repaired, whereas cells with unrepairable DNA lesions undergo permanent cell-cycle arrest or apoptosis. Recent studies have provided insights into the mechanisms that contribute to DNA repair in specific cell-cycle phases and have highlighted the mechanisms that ensure cell-cycle progression or arrest in normal and cancerous cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号