首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(Z)-3-Chlorophosphoenolpyruvate has been synthesized by the reaction of 3,3-dichloropyruvic acid with trimethylphosphite, followed by deesterification. This compound is a competitive inhibitor of pyruvate kinase and phosphoenolpyruvate carboxylase. Pyruvate kinase is not inactivated upon prolonged incubation with the compound, but phosphoenolpyruvate carboxylase is slowly inactivated (t1/2 = 5 h). The compound is a substrate for both enzymes, being acted upon by pyruvate kinase approximately 0.1% as rapidly as phosphoenolpyruvate itself. In the case of phosphoenolpyruvate carboxylase, the compound is converted into a 3:1 mixture of chloropyruvate and chlorooxalacetate, at an overall rate that is about 25% the carboxylation rate for phosphoenolpyruvate.  相似文献   

2.
The synthesis of 10 new phosphoenolpyruvate (PEP) analogues with modifications in the phosphate and the carboxylate function is described. Included are two potential irreversible inhibitors of PEP-utilizing enzymes. One incorporates a reactive chloromethylphosphonate function replacing the phosphate group of PEP. The second contains a chloromethyl group substituting for the carboxylate function of PEP. An improved procedure for the preparation of the known (Z)- and (E)-3-chloro-PEP is also given. The isomers were obtained as a 4 : 1 mixture, resolved by anion-exchange chromatography after the last reaction step. The stereochemistry of the two isomers was unequivocally assigned from the (3)J(H-C) coupling constants between the carboxylate carbons and the vinyl protons. All of these and other known PEP-analogues were tested as reversible and irreversible inhibitors of Mg2+- and Mn2+- activated PEP-utilizing enzymes: enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system (PTS), pyruvate kinase, PEP carboxylase and enolase. Without exception, the most potent inhibitors were those with substitution of a vinyl proton. Modification of the phosphate and the carboxylate groups resulted in less effective compounds. Enzyme I was the least tolerant to such modifications. Among the carboxylate-modified analogues, only those replaced by a negatively charged group inhibited pyruvate kinase and enolase. Remarkably, the activity of PEP carboxylase was stimulated by derivatives with neutral groups at this position in the presence of Mg2+, but not with Mn2+. For the irreversible inhibition of these enzymes, (Z)-3-Cl-PEP was found to be a very fast-acting and efficient suicide inhibitor of enzyme I (t(1/2) = 0.7 min).  相似文献   

3.
S L Ausenhus  M H O'Leary 《Biochemistry》1992,31(28):6427-6431
In addition to the normal carboxylation reaction, phosphoenolpyruvate carboxylase from Zea mays catalyzes a HCO3(-)-dependent hydrolysis of phosphoenolpyruvate to pyruvate and Pi. Two independent methods were used to establish this reaction. First, the formation of pyruvate was coupled to lactate dehydrogenase in assay solutions containing high concentrations of L-glutamate and aspartate aminotransferase. Under these conditions, oxalacetic acid produced in the carboxylation reaction was efficiently transaminated, and decarboxylation to form spurious pyruvate was negligible. Second, sequential reduction of oxalacetate and pyruvate was achieved by initially running the reaction in the presence of malate dehydrogenase with NADH in excess over phosphoenolpyruvate. After the reaction was complete, lactate dehydrogenase was added, thus giving a measure of pyruvate concentration. At pH 8.0 in the presence of Mg2+, the rate of phosphoenolpyruvate hydrolysis was 3-7% of the total reaction rate. The hydrolysis reaction catalyzed by phosphoenolpyruvate carboxylase was strongly metal dependent, with rates decreasing in the order Ni2+ greater than Co2+ greater than Mn2+ greater than Mg2+ greater than Ca2+. These results suggest that the active site metal ion binds to the enolate oxygen, thus stabilizing the proposed enolate intermediate. The more stable the enolate, the less reactive it is toward carboxylation and the greater the opportunity for hydrolysis.  相似文献   

4.
A new reactive fluorescent ADP analog has been synthesized: 2-[(4-bromo-2,3-dioxobutyl)thio]-1,N6-ethenoadenosine 5'-diphosphate (2-BDB-T epsilon A-5'-DP). Rabbit muscle pyruvate kinase is inactivated by 200 microM 2-BDB-T epsilon A-5'-DP in a biphasic manner, with an initial loss of 75% activity followed by a slow total inactivation. The rate constants for both phases exhibit nonlinear dependence on reagent concentration, consistent with reversible formation of an enzyme-reagent complex (KI = 133 microM) prior to irreversible reaction. Loss of activity is prevented by substrates. The best protection against inactivation is provided by phosphoenolpyruvate (PEP), KCl, and MnSO4, suggesting that the reaction occurs in the region of the PEP binding site. Incorporation of 1.7 mol/mol enzyme subunit accompanies 90% inactivation by 200 microM 2-BDB-T epsilon A-5'-DP in 80 min. However, in the presence of PEP, KCl, and MnSO4, 1.0 mol of reagent is incorporated when the enzyme is only 14% inactivated. These results indicate that 2-BDB-T epsilon A-5'-DP reacts with two groups on the enzyme, one of which is at or near the PEP binding site. Incubation of pyruvate kinase with related nucleotide analogs lacking a 5'-diphosphate or a diketo group suggests that the diketo group, but not the diphosphate, is essential for inactivation. The enolized form of the bromodioxobutyl group resembles phosphoenolpyruvate and probably directs the reagent to the PEP binding site. Modified enzyme, prepared by incubating pyruvate kinase with 200 microM 2-BDB-T epsilon A-5'-DP in the absence and presence of phosphoenolpyruvate, KCl, and MnSO4, was reduced with [3H]NaBH4, carboxymethylated, and digested with trypsin. Nucleotidyl peptides were isolated by chromatography on phenylboronateagarose followed by reverse phase high pressure liquid chromatography. Two radioactive peptides were identified: Asn162-Ile-Cys-Lys165 and Ile141-Thr-Leu-Asp-Asn-Ala-Tyr-Met-Glu-Lys150. Only the tetrapeptide was modified in the presence of PEP, KCl, and Mn+ when the enzyme retained most of its activity. Cys164 is thus designated the nonessential modified residue, while modification of Tyr147 near the active site of pyruvate kinase is responsible for loss of enzymatic activity. The observed biphasic kinetics of inactivation are due to the negatively cooperative reaction of 2-BDB-T epsilon A-5'-DP with Tyr147 in the tetramer. The new compound, 2-BDB-T epsilon A-5'-DP, may have general application as an affinity label of ADP and PEP sites in other proteins.  相似文献   

5.
This is the first report on a bacterial verterbrate-type GTP-dependent phosphoenolpyruvate carboxykinase (PCK). The pck gene of Mycobacterium smegmatis was cloned. The recombinant PCK was overexpressed in Escherichia coli in a soluble form and with high activity. The purified enzyme was found to be monomeric (72 kDa), thermophilic (optimum temperature, 70 degrees C), very stable upon storage at 4 degrees C, stimulated by thiol-containing reducing agents, and inhibited by oxalate and by alpha-ketoglutarate. The requirement for a divalent cation for activity was fulfilled best by Mn(2+) and Co(2+) and poorly by Mg(2+). At 37 degrees C, the highest V(m) value (32.5 units/mg) was recorded with Mn(2+) and in the presence of 37 mm dithiothreitol (DTT). The presence of Mg(2+) (2 mm) greatly lowered the apparent K(m) values for Mn(2+) (by 144-fold in the presence of DTT and by 9.4-fold in the absence of DTT) and Co(2+) (by 230-fold). In the absence of DTT but in the presence of Mg(2+) (2 mm) as the co-divalent cation, Co(2+) was 21-fold more efficient than Mn(2+). For producing oxaloacetate, the enzyme utilized both GDP and IDP; ADP served very poorly. The apparent K(m) values for phosphoenolpyruvate, GDP, and bicarbonate were >100, 66, and 8300 micrometer, respectively, whereas those for GTP and oxaloacetate (for the phosphoenolpyruvate formation activity) were 13 and 12 microm, respectively. Thus, this enzyme preferred the gluconeogenesis/glycerogenesis direction. This property fits the suggestion that in M. smegmatis, pyruvate carboxylase is not anaplerotic but rather gluconeogenic (Mukhopadhyay, B., and Purwantini, E. (2000) Biochim. Biophys. Acta. 1475, 191-206). Both in primary structure and kinetic properties, the mycobacterial PCK was very similar to its vertebrate-liver counterparts and thus could serve as a model for these enzymes; examples for several immediate targets are presented.  相似文献   

6.
Synthesis and study of phosphoenolthiopyruvate   总被引:1,自引:0,他引:1  
K D Sikkema  M H O'Leary 《Biochemistry》1988,27(4):1342-1347
Phosphoenolthiopyruvate, the analogue of phosphoenolpyruvate in which the bridging oxygen of the phosphate ester is replaced by sulfur, has been synthesized from methyl acrylate and dimethyl (chlorothio)phosphonate. The compound is a substrate for alkaline phosphatase, pyruvate kinase, enolase, and phosphoenolpyruvate carboxylase. Both pyruvate kinase and phosphoenolpyruvate carboxylase convert the compound to thiopyruvate, which is a substrate for lactate dehydrogenase. Phosphoenolpyruvate carboxylase is slowly inactivated by phosphoenolthiopyruvate.  相似文献   

7.
1. The carboxylation of pyruvate to oxaloacetate by pyruvate carboxylase in guinea-pig liver mitochondria was determined by measuring the amount of (14)C from H(14)CO(3) (-) fixed into organic acids in the presence of pyruvate, ATP, Mg(2+) and P(i). The main products of pyruvate carboxylation were malate, fumarate and citrate. Pyruvate utilization, metabolite formation and incorporation of (14)C from H(14)CO(3) (-) into these metabolites in the presence and the absence of ATP were examined. The synthesis of phosphoenolpyruvate from pyruvate and bicarbonate is minimal during continued oxidation of pyruvate. Larger amounts of phosphoenolpyruvate are formed from alpha-oxoglutarate than from pyruvate. Addition of glutamate, alpha-oxoglutarate or fumarate did not appreciably increase formation of phosphoenolpyruvate when pyruvate was used as substrate. With alpha-oxoglutarate as substrate addition of fumarate resulted in increased formation of phosphoenolpyruvate, whereas addition of succinate inhibited phosphoenolpyruvate formation. In the presence of added oxaloacetate guinea-pig liver mitochondria synthesized phosphoenolpyruvate in amount sufficiently high to play an appreciable role in gluconeogenesis. 2. Addition of fatty acids of increasing carbon chain length caused a strong inhibition of pyruvate oxidation and phosphoenolpyruvate formation, and greatly promoted carbon dioxide fixation and malate, citrate and acetoacetate accumulation. The incorporation of (14)C from H(14)CO(3) (-), [1-(14)C]pyruvate and [2-(14)C]pyruvate into organic acids formed was examined. 3. It is concluded that guinea-pig liver pyruvate carboxylase contributes significantly to gluconeogenesis and that fatty acids and metabolites play an important role in its regulation.  相似文献   

8.
The pyruvate kinase (ATP: pyruvate 2-O-phosphotransferase, EC 2.7.1.40) from Streptococcus lactis C10 had an obligatory requirement for both a monovalent cation and divalent cation. NH+4 and K+ activated the enzyme in a sigmoidal manner (nH =1.55) at similar concentrations, whereas Na+ and Li+ could only weakly activate the enzyme. Of eight divalent cations studied, only three (Co2+, Mg2+ and Mn2+) activated the enzyme. The remaining five divalent cations (Cu2+, Zn2+, Ca2+, Ni2+ and Ba2+) inhibited the Mg2+ activated enzyme to varying degrees. (Cu2+ completely inhibited activity at 0.1 mM while Ba2+, the least potent inhibitor, caused 50% inhibition at 3.2 mM). In the presence of 1 mM fructose 1,6-diphosphate (Fru-1,6-P2) the enzyme showed a different kinetic response to each of the three activating divalent cations. For Co2+, Mn2+ and Mg2+ the Hill interaction coefficients (nH) were 1.6, 1.7 and 2.3 respectively and the respective divalent cation concentrations required for 50% maximum activity were 0.9, 0.46 and 0.9 mM. Only with Mn2+ as the divalent cation was there significatn activity in the absence of Fru-1,6-P2. When Mn2+ replaced Mg2+, the Fru-1,6-P2 activation changed from sigmoidal (nH = 2.0) to hyperbolic (nH = 1.0) kinetics and the Fru-1,6-P2 concentration required for 50% maximum activity decreased from 0.35 to 0.015 mM. The cooperativity of phosphoenolpyruvate binding increased (nH 1.2 to 1.8) and the value of the phosphoenolpyruvate concentration giving half maximal velocity decreased (0.18 to 0.015 mM phosphoenolyruvate) when Mg2+ was replaced by Mn2+ in the presence of 1 mM Fru-1,6-P2. The kinetic response to ADP was not altered significantly when Mn2+ was substituted for Mg2+. The effects of pH on the binding of phosphoenolpyruvate and Fru-1,6-P2 were different depending on whether Mg2+ or Mn2+ was the divalent cation.  相似文献   

9.
The ability for various ligands to modulate the binding of fructose 1,6-bisphosphate (Fru-1,6-P2) with purified rat liver pyruvate kinase was examined. Binding of Fru-1,6-P2 with pyruvate kinase exhibits positive cooperativity, with maximum binding of 4 mol Fru-1,6-P2 per enzyme tetramer. The Hill coefficient (nH), and the concentration of Fru-1,6-P2 giving half-maximal binding [FBP]1/2, are influenced by several factors. In 150 mM Tris-HCl, 70 mM KCl, 11 mM MgSO4 at pH 7.4, [FBP]1/2 is 2.6 microM and nH is 2.7. Phosphoenolpyruvate and pyruvate enhance the binding of Fru-1,6-P2 by decreasing [FBP]1/2. ADP and ATP alone had little influence on Fru-1,6-P2 binding. However, the nucleotides antagonize the response elicited by pyruvate or phosphoenolpyruvate, suggesting that the competent enzyme substrate complex does not favor Fru-1,6-P2 binding. Phosphorylation of pyruvate kinase or the inclusion of alanine in the medium, two actions which inhibit the enzyme activity, result in diminished binding of low concentrations of Fru-1,6-P2 with the enzyme. These effectors do not alter the maximum binding capacity of the enzyme but rather they raise the concentrations of Fru-1,6-P2 needed for maximum binding. Phosphorylation also decreased the nH for Fru-1,6-P2 binding from 2.7 to 1.7. Pyruvate kinase activity is dependent on a divalent metal ion. Substituting Mn2+ for Mg2+ results in a 60% decrease in the maximum catalytic activity for the enzyme and decreases the concentration of phosphoenolpyruvate needed for half-maximal activity from 1 to 0.1 mM. As a consequence, Mn2+ stimulates activity at subsaturating concentrations of phosphoenolpyruvate, but inhibits at saturating concentrations of the substrate or in the presence of Fru-1,6-P2. Both Mg2+ and Mn2+ diminish binding of low concentrations of Fru-1,6-P2; however, the concentrations of the metal ions needed to influence Fru-1,6-P2 binding exceed those needed to support catalytic activity.  相似文献   

10.
Some aspects of the kinetics of rat liver pyruvate carboxylase   总被引:9,自引:9,他引:0  
1. The kinetics of rat liver pyruvate carboxylase were examined and the effect of various agents as activators or inhibitors determined. 2. Essentially similar results were obtained in comparisons of kinetics determined by a radioactivity method involving extracts of acetone-dried powders from whole livers and with a spectrophotometric assay using partially purified enzyme from the mitochondrial fraction. Activity per g of liver from fed or starved rats assayed under optimum substrate and activator conditions was 3 or 6 mumol of oxaloacetate formed/min at 30 degrees C, respectively. 3. The enzyme exhibited cold-lability and lost activity on standing, even in 1.5m-sucrose. 4. The K(m) towards pyruvate was about 0.33mm and towards bicarbonate 4.2mm. K(m) towards MgATP(2-) was 0.14mm. Mg(2+) ions activated the enzyme, in addition to their role in MgATP(2-) formation. From calculations of likely concentrations of free Mg(2+) in the assay medium a K(a) towards Mg(2+) of about 0.25mm was deduced. Mn(2+) also activated the enzyme as well as Mg(2+), but at much lower concentrations. It appeared to be inhibitory when concentrations of free Mn(2+) as low as 0.1mm were present. 5. Excess of ATP is inhibitory, and this appears at least in part independent of the trapping of Mg(2+). 6. Both Co(2+) and Zn(2+) were inhibitory; 2mol of the latter appeared to be bound even in the presence of excess of Mg(2+) and the inhibition was time-dependent. 7. Ca(2+) inhibited by competition with Mg(2+) (K(i) about 0.38mm). The inhibition due to Ca(2+) was less pronounced when activation was with Mn(2+). Inhibition by Ca(2+) and ATP appeared to be additive. 8. Hill plots suggested that no interactions occurred between ATP-binding sites. Although similar plots for total Mg(2+) gave n=3.6, no conclusions could be drawn due to the chelation of the cation with other components of the assay. Similar difficulties arose in assessing the values for Ca(2+). 9. The enzyme was inactive in the absence of acetyl-CoA and showed a sigmoidal response in its presence. K(a) was about 0.1mm with possibly up to four binding sites. Malonyl-CoA was a competitive inhibitor, with K(i) 0.01mm. 10. There was no apparent inhibition by glucose, glucose 6-phosphate, fructose 6-phosphate, fructose 1,6-diphosphate, acetoacetate, beta-hydroxybutyrate, malate, aspartate, pyruvate, palmitoylcarnitine, octanoate, glutathione, butacaine, triethyltin or potassium chloride under the conditions used. Inhibition was found with citrate (possibly by chelation) and adenosine, and also by phosphoenolpyruvate, AMP, ADP and cyclic AMP, K(i) towards the last four being 0.55, 0.76, 0.25 and 1.4mm respectively.  相似文献   

11.
1. Extracts of Acetobacter xylinum were found to contain the glycolytic enzymes involved in the conversion of triose phosphate into pyruvate. Pyruvate kinase had the lowest relative activity. Phosphofructokinase activity was not detected in the extracts. 2. Only slight differences in the activity of pyruvate kinase were observed between cells grown on glucose and those grown on intermediates of the tricarboxylic acid cycle. 3. Pyruvate kinase, partially purified from ultrasonic extracts by ammonium sulphate fractionation, required Mg(2+) ions for activity. It was not activated by K(+) or NH(4) (+) ions. 4. The plots representing the relationship between initial velocity and phosphoenolpyruvate concentration were sigmoidal, suggesting a co-operative effect for phosphoenolpyruvate. The Hill coefficient (n) for phosphoenolpyruvate was 2. The rate of the reaction changed with increasing ADP concentrations according to normal Michaelis-Menten kinetics. 5. The enzyme was inhibited by ATP (K(i)0.9x10(-3)m). The inhibition was competitive with regard to ADP but not with regard to phosphoenolpyruvate. It was not relieved by excess of Mg(2+) ions. 6. The possible relationship of the properties of pyruvate kinase to regulatory mechanisms for controlling gluconeogenesis and carbohydrate oxidation in A. xylinum is discussed.  相似文献   

12.
We have determined the crystal structure of Mn2+-bound Escherichia coli phosphoenolpyruvate carboxylase (PEPC) using X-ray diffraction at 2.6 A resolution, and specified the location of enzyme-bound Mn2+, which is essential for catalytic activity. The electron density map reveals that Mn2+ is bound to the side chain oxygens of Glu-506 and Asp-543, and located at the top of the alpha/beta barrel in PEPC. The coordination sphere of Mn2+ observed in E. coli PEPC is similar to that of Mn2+ found in the pyruvate kinase structure. The model study of Mn2+-bound PEPC complexed with phosphoenolpyruvate (PEP) reveals that the side chains of Arg-396, Arg-581 and Arg-713 could interact with PEP.  相似文献   

13.
A kinetic investigation of phosphoenolpyruvate carboxylase from Zea mays.   总被引:1,自引:0,他引:1  
J W Janc  M H O'Leary  W W Cleland 《Biochemistry》1992,31(28):6421-6426
The reaction catalyzed by phosphoenolpyruvate carboxylase from Zea mays has been studied kinetically. Results of initial velocity patterns and inhibition studies indicate that phosphoenolpyruvate carboxylase has a random sequential mechanism in which there is a high level of synergism in the binding of substrates. The preferred order of addition of reactants is Mg2+, phosphoenolpyruvate, and bicarbonate. The binding of Mg2+ is at equilibrium. Values for the various kinetic parameters are KiMg = 2.3 +/- 0.4 mM, KPEP = 3.6 +/- 0.6 mM, KiPEP = 0.2 +/- 0.07 mM, and Kbicarbonate = 0.18 +/- 0.04 mM. In addition, double inhibition experiments have been performed to examine the nature of the active site interactions with the putative intermediates, carboxy phosphate and the enolate of pyruvate. Highly synergistic inhibition of phosphoenolpyruvate carboxylase was observed in the presence of oxalate and carbamyl phosphate (alpha = 0.0013). However, an antisynergistic relationship exists between oxalate and phosphonoformate (alpha = 2.75).  相似文献   

14.
1. Pyruvate carboxylase from baker's yeast acts with either MgATP(2-) or MnATP(2-) as substrate. The optimum pH for the enzyme reaction is 8.0 with MgATP(2-) and 7.0 with MnATP(2-). 2. When the reaction velocity is plotted against MgATP(2-) (or MnATP(2-)) concentration slightly sigmoid curves are obtained, either in the presence or in the absence of acetyl-CoA (an allosteric activator). In the presence of excess of free Mg(2+) (or Mn(2+)) the curves turn into hyperbolae, whereas in the presence of excess of free ATP(4-) the apparent sigmoidicity of the curves increases. 3. The sigmoidicity of the plots of v against MgATP(2-) (or MnATP(2-)) concentration can be explained by the inhibitory effect of free ATP(4-), the concentration of which, in the experimental conditions employed, is significant and varies according to the total concentration of the ATP-magnesium chloride (or ATP-manganese chloride) mixture. Free ATP(4-) behaves as a negative modifier of yeast pyruvate carboxylase. 4. The effect of high concentrations of Mg(2+) (or Mn(2+)) on the kinetics of yeast pyruvate carboxylase can be explained as a deinhibition with respect to ATP(4-), instead of a direct enzyme activation. 5. At pH6.5 manganese chloride is more effective than magnesium chloride as enzyme activator even in the presence of a great excess (16-fold) of the latter. This is consistent with a significant contribution of the MnATP(2-) complex to the activity of yeast pyruvate carboxylase, in medium conditions resembling those existing inside the yeast cell (pH6.25-6.75; 12mm-magnesium chloride and 0.75mm-manganese chloride). 6. The physiological significance of the enzyme inhibition by free ATP(4-) is doubtful since the Mg(2+) and Mn(2+) concentrations reported to exist inside the yeast cell are sufficient to decrease ATP(4-) concentrations to ineffective values.  相似文献   

15.
T J Bollenbach  T Nowak 《Biochemistry》2001,40(43):13088-13096
Yeast pyruvate kinase (YPK) is regulated by intermediates of the glycolytic pathway [e.g., phosphoenolpyruvate (PEP), fructose 1,6-bisphosphate (FBP), and citrate] and by the ATP charge of the cell. Recent kinetic and thermodynamic data with Mn(2+)-activated YPK show that Mn(2+) mediates the allosteric communication between the substrate, PEP, and the allosteric effector, FBP [Mesecar, A., and Nowak, T. (1997) Biochemistry 36, 6792, 6803]. These results indicate that divalent cations modulate multiligand interactions, and hence cooperativity with YPK. The nature of multiligand interactions on YPK was investigated in the presence of the physiological divalent activator Mg(2+). The binding interactions of PEP, Mg(2+), and FBP were monitored by fluorescence spectroscopy. The binding data were subject to thermodynamic linked-function analysis to determine the magnitudes of the multiligand interactions governing the allosteric activation of YPK. The two ligand coupling free energies between PEP and Mg(2+), PEP and FBP, and FBP and Mg(2+) are 0.88, -0.38, and -0.75 kcal/mol, respectively. The two-ligand coupling free energies between PEP and Mn(2+) and FBP and Mn(2+) are more negative than those with Mg(2+) as the cation. This indicates that the interactions between the divalent cation and PEP with YPK are different for Mg(2+) and Mn(2+) and that the interaction is not simply electrostatic in nature, as originally hypothesized. The magnitude of the heterotropic interaction between the metal and FBP is similar with Mg(2+) and Mn(2+). The simultaneous binding of Mg(2+), PEP, and FBP to YPK is favored by 3.21 kcal/mol compared to independent binding. This complex is destabilized by 3.30 kcal/mol relative to the analogous YPK-Mn(2+)-PEP-FDP complex. Interpretation of K(d) values when cooperative binding occurs must be done with care as these are not simple thermodynamic constants. These data demonstrate that the divalent metal, which activates phosphoryl transfer in YPK, plays a key role in modulating the various multiligand interactions that define the overall allosteric properties of the enzyme.  相似文献   

16.
T H Duffy  T Nowak 《Biochemistry》1984,23(4):661-670
The halogenated phosphoenolpyruvate analogues (Z)-phosphoenol-3-fluoropyruvate, (E)-phosphoenol-3-fluoropyruvate, and (Z)-phosphoenol-3-bromopyruvate were synthesized and purified. The analogues were characterized by 1H and by 19F NMR where applicable. Absolute stereoselectivity of the fluorophosphoenolpyruvate isomers as substrates with the enzymes phosphoenolpyruvate carboxykinase, enolase, and pyruvate phosphate dikinase was observed. The Z isomer exhibited substrate activity with these enzymes while no substrate activity was measured with the E isomer. Both isomers exhibited substrate activity with the enzyme pyruvate kinase, however, with a substantial decrease in the Vmax/Km ratio compared to phosphoenolpyruvate as the substrate. A metal ion dependent stereoselectivity of inhibition was measured for these analogues with the enzymes phosphoenolpyruvate carboxykinase, enolase, and pyruvate kinase. The cation activator appears to affect the specificity and thus the catalytic site of these enzymes. Proton longitudinal relaxation rate titrations demonstrate that the dissociation constants, K3, of the fluorophosphoenolpyruvate isomers from the enzyme-Mn complex agree, in most cases, with the measured KI values and analogue binding resembles phosphoenolpyruvate binding. With the enzyme phosphoenolpyruvate carboxykinase, the KI not equal to K3 for (E)-fluorophosphoenolpyruvate which suggests that the binding of the E isomer is affected by the presence of the other substrates. The halogenated derivatives apparently undergo an enzyme-Mn catalyzed Michael-type addition reaction with the bromo-substituted analogue decomposing much faster than the fluoro analogues.  相似文献   

17.
The paper reports a study of the reaction between phosphoenolpyruvate, ADP and Mg(2+) catalysed by pig liver pyruvate kinase when activated by fructose diphosphate and K(+). The experimental results are consistent with two non-sequential mechanisms in which the substrates and products of the reaction are phosphoenolpyruvate, ADP, Mg(2+), pyruvate and MgATP. Pyruvate release occurs before ADP binding. Two Mg(2+) ions are involved, though the two Mg(2+)-binding sites cannot be occupied simultaneously. An isomerized enzyme complex forms before release of MgATP. Values were determined for the Michaelis constants of the reaction. Apparent MgATP inhibition constants are also given.  相似文献   

18.
1. The effect of some bivalent cations on gluconeogenesis by the rat liver-slice preparation has been investigated. 2. Ca(2+) and Mn(2+) stimulated glucose production from a range of substrates but not from glycerol. Mg(2+) had no effect on the rate of glucose production. 3. Ca(2+) were required to maintain phosphoenolpyruvate carboxylase activity in the slice preparation. 4. Ca(2+) and Mn(2+), but not Mg(2+), retarded the release of lysosomal enzymes from the slice into the incubation medium. 5. It is proposed that Ca(2+) and Mn(2+) stimulate glucose production by stabilizing the lysosome system in the liver-slice preparation. 6. The value of the liver-slice preparation as a means of measuring hepatic gluconeogenesis is discussed.  相似文献   

19.
A kinetic study of rabbit muscle pyruvate kinase   总被引:8,自引:8,他引:0       下载免费PDF全文
The paper reports a study of the kinetics of the reaction between phosphoenolpyruvate, ADP and Mg(2+) catalysed by rabbit muscle pyruvate kinase. The experimental results indicate that the reaction mechanism is equilibrium random-order in type, that the substrates and products are phosphoenolpyruvate, ADP, Mg(2+), pyruvate and MgATP, and that dead-end complexes, between pyruvate, ADP and Mg(2+), form randomly and exist in equilibrium with themselves and other substrate complexes. Values were determined for the Michaelis, dissociation and inhibition constants of the reaction and are compared with values ascertained by previous workers.  相似文献   

20.
Rabbit muscle pyruvate kinase was irreverisbly inactivated by 5-chloro-4-oxopentanoic acid with a pKa of 9.2. The inhibition was time-dependent and was related to the 5-chloro-4-oxopentanoic acid concentration. Analysis of the kinetics of inhibition showed that the binding of the inhibitor showed positive co-operativity (n = 1.5 +/- 0.2). Inhibition of pyruvate kinase by 5-chloro-4-oxopentanoic acid was prevented by ligands which bind to the active site. Their effectiveness was placed in the order Mg2+ greater than phosphoenolpyruvate greater than ATP greater than ADP greater than pyruvate. Inhibitor-modified pyruvate kinase was unable to catalyse the detritiation of [3-(3)H]pyruvate in the ATP-promoted reaction, but it did retain 5-10% of the activity with either phosphate or arsenate as promoters. 5-Chlor-4-oxo-[3,5-(3)H]pentanoic acid was covalently bound to pyruvate kinase and demonstrated a stoicheiometry of 1 mol of inhibitor bound per mol of pyruvate kinase protomer. The incorporation of the inhibitor and the loss of enzyme was proportional. These results are discussed in terms of 5-chloro-4-oxopentanoic acid alkylating a functional group in the phosphoryl overlap region of the active site, and a model is presented in which this compound alkylates an active-site thiol in a reaction that is controlled by a more basic group at the active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号