首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
2.
Zhang Y  Mao F  Lu Y  Wu W  Zhang L  Zhao Y 《Cell research》2011,21(10):1436-1451
The Hedgehog (Hh) family of secreted proteins is essential for development in both vertebrates and invertebrates. As one of main morphogens during metazoan development, the graded Hh signal is transduced across the plasma membrane by Smoothened (Smo) through the differential phosphorylation of its cytoplasmic tail, leading to pathway activation and the differential expression of target genes. However, how Smo transduces the graded Hh signal via the Costal2 (Cos2)/Fused (Fu) complex remains poorly understood. Here we present a model of the cell response to a Hh gradient by translating Smo phosphorylation information to Fu dimerization and Cubitus interruptus (Ci) nuclear localization information. Our findings suggest that the phosphorylated C-terminus of Smo recruits the Cos2/Fu complex to the membrane through the interaction between Smo and Cos2, which further induces Fu dimerization. Dimerized Fu is phosphorylated and transduces the Hh signal by phosphorylating Cos2 and Suppressor of Fu (Su(fu)). We further show that this process promotes the dissociation of the full-length Ci (Ci155) and Cos2 or Su(fu), and results in the translocation of Ci155 into the nucleus, activating the expression of target genes.  相似文献   

3.
The Hedgehog (Hh) family of secreted proteins governs many developmental processes in both vertebrates and invertebrates. In Drosophila, Hh acts by blocking the formation of a truncated repressor form of Cubitus interruptus (Ci) and by stimulating the nuclear translocation and activity of full-length Ci (Ci155). In the absence of Hh, Ci155 is sequestered in the cytoplasm by forming protein complexes with Costal2 (Cos2), Fused (Fu) and Suppressor of Fused [Su(fu)]. How complex formation regulates Ci155 subcellular localization is not clear. We find that Cos2 interacts with two distinct domains of Ci155, an amino (N)-terminal domain (CDN) and a carboxyl (C)-terminal domain (CORD), and Cos2 competes with Su(fu) for binding to the N-terminal region of Ci155. We provide evidence that both N- and C-terminal Cos2 binding domains are involved in the cytoplasmic retention of Ci155 in imaginal discs. Treating imaginal discs with microtubule-destabilizing reagent nocodazole promotes nuclear translocation of Ci155, suggesting that the microtubule network plays an important role in the cytoplasmic retention of Ci155. In addition, we find that adding a nuclear localization signal (NLS) to exposed regions of Ci155 greatly facilitates its nuclear translocation, suggesting that the cytoplasmic retention of Ci155 may also depend on NLS masking.  相似文献   

4.
5.
6.
7.
8.
The Suppressor of fused (Su(fu)) protein is known to be a negative regulator of Hedgehog (Hh) signal transduction in Drosophila imaginal discs and embryonic development. It is antagonized by the kinase Fused (Fu) since Su(fu) null mutations fully suppress the lack of Fu kinase activity. In this study, we overexpressed the Su(fu) gene in imaginal discs and observed opposing effects depending on the position of the cells, namely a repression of Hh target genes in cells receiving Hh and their ectopic expression in cells not receiving Hh. These effects were all enhanced in a fu mutant context and were suppressed by cubitus interruptus (Ci) overexpression. We also show that the Su(fu) protein is poly-phosphorylated during embryonic development and these phosphorylation events are altered in fu mutants. This study thus reveals an unexpected role for Su(fu) as an activator of Hh target gene expression in absence of Hh signal. Both negative and positive roles of Su(fu) are antagonized by Fused. Based on these results, we propose a model in which Su(fu) protein levels and isoforms are crucial for the modulation of the different Ci states that control Hh target gene expression.  相似文献   

9.
The Hedgehog (Hh) signaling molecule is required for the development of numerous tissues in Drosophila. Within the cell, Hh signal transduction utilizes a large protein complex consisting of the Fused (Fu), Costal2 (Cos2), and Cubitis interruptus (Ci) proteins, but the functional interactions between these proteins are still largely uncharacterized. Using a baculovirus system, we demonstrate that the serine/threonine kinase Fu phosphorylates the kinesin-like protein Cos2 when coexpressed with Cos2. Coexpression of Cos2 and a kinase-inactive version of Fu eliminates the majority of Cos2 phosphorylation. We then show that the primary Fu-induced phosphorylation site of Cos2 is serine 572, whereas serine 931 is phosphorylated to a lesser extent. Mutation of serine 572 to alanine eliminates most, but not all, specific phosphopeptides of Cos2 when coexpressed with Fu. We also demonstrate that the phosphorylation pattern of Cos2 produced by baculovirus coexpression with kinase-dead Fu is almost identical to the phosphorylation pattern of Cos2 isolated from unstimulated S2 cells. Finally, the phosphorylation pattern of Cos2 produced by baculovirus coinfection with wild-type Fu is almost identical to that of Cos2 isolated from S2 cells stimulated by Hh, indicating that phosphorylation of serines 572 and 931 is a genuine Hh signaling event. This study clarifies the unique functions of Fu and Cos2 in Hh signal transduction and identifies only the second known phosphorylation site of a kinesin-like molecule.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
The protein kinase Fused (Fu) is an integral member of the Hedgehog (Hh) signaling pathway. Although genetic studies demonstrate that Fu is required for the regulation of the Hh pathway, the mechanistic role that it plays remains largely unknown. Given our difficulty in developing an in vitro kinase assay for Fu, we reasoned that the catalytic activity of Fu might be highly regulated. Several mechanisms are known to regulate protein kinases, including self-association in either an intra- or an intermolecular fashion. Here, we provide evidence that Hh regulates Fu through intramolecular association between its kinase domain (DeltaFu) and its carboxyl-terminal domain (Fu-tail). We show that DeltaFu and Fu-tail can interact in trans, with or without the kinesin-related protein Costal 2 (Cos2). However, since the majority of Fu is found associated with Cos2 in vivo, we hypothesized that Fu-tail, which binds Cos2 directly, would be able to tether DeltaFu to Cos2. We demonstrate that DeltaFu colocalizes with Cos2 in the presence of Fu-tail and that this colocalization occurs on a subset of membrane vesicles previously characterized to be important for Hh signal transduction. Additionally, expression of Fu-tail in fu mutant flies that normally express only the kinase domain rescues the fu wing phenotype. Therefore, reestablishing the association between these two domains of Fu in trans is sufficient to restore Hh signal transduction in vivo. In such a manner we validate our hypothesis, demonstrating that Fu self-associates and is functional in an Hh-dependent manner. Our results here enhance our understanding of one of the least characterized, yet critical, components of Hh signal transduction.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号