首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of exogenous NH4+ on the induction of nitrate reductase activity (NRA; EC 1.6.6.1) and nitrite reductase activity (NiRA; EC 1.7.7.1) in roots of 8-day-old intact barley (Hordeum vulgare L.) seedlings was studied. Enzyme activities were induced with 0.1, 1 or 10 mM NO3+ in the presence of 0, 1 or 10 mM NH4+, Exogenous NH4+ partially inhibited the induction of NRA when roots were exposed to 0.1 mM, but not to 1 or 10 mM NO3+, In contrast, the induction of NiRA was inhibited by NH4+ at all NO3+ levels. Maximum inhibition of the enzyme activities occurred at 1.0 mM NH4+ Pre-treatment with NH4+ had no effect on the subsequent induction of NRA in the absence of additional NH4+ whereas the induction of NiRA in NH4+-pretreated roots was inhibited in the absence of NH4+ At 10 mM NO3+ L-methionine sulfoximine stimulated the induction of NRA whether or not exogenous NH4+ was present. In contrast, the induction of NiRA was inhibited by L-methionine sulfoximine irrespective of NH4+ supply. During the postinduction phase, exogenous NH4+ decreased NRA in roots supplied with 0.1 mM but not with 1mM NH3+ whereas, NiRA was unaffected by NH4+ at either substrate concentration. The results indicate that exogenous NH4+ regulates the induction of NRA in roots by limiting the availability of NO3+. Conversely, it has a direct effect, independent of the availability of NO3+, on the induction of NiRA. The lack of an NH4+ effect on NiRA during the postinduction phase is apparently due to a slower turnover rate of that enzyme.  相似文献   

2.
Barley (Hordeum vulgare L. cv. Golf) was cultured using the relative addition rate technique, where nitrogen is added in a fixed relation to the nitrogen already bound in biomass. The relative rate of total nitrogen addition was 0.09 day?1 (growth limiting by 35%), while the nitrate addition was varied by means of different nitrate: ammonium ratios. In 3- to 4-week-old plants, these ratios of nitrate to ammonium supported nitrate fluxes ranging from 0 to 22 μmol g?1 root dry weight h?1, whereas the total N flux was 21.8 ± 0.25 μmol g?1 root dry weight h?1 for all treatments. The external nitrate concentrations varied between 0.18 and 1.5 μM. The relative growth rate, root to total biomass dry weight ratios, as well as Kjeldahl nitrogen in roots and shoots were unaffected by the nitrate:ammonium ratio. Tissue nitrate concentration in roots were comparable in all treatments. Shoot nitrate concentration increased with increasing nitrate supply, indicating increased translocation of nitrate to the shoot. The apparent Vmax for net nitrate uptake increased with increased nitrate fluxes. Uptake activity was recorded also after growth at zero nitrate addition. This activity may have been induced by the small, but detectable, nitrate concentration in the medium under these conditions. In contrast, nitrate reductase (NR) activity in roots was unaffected by different nitrate fluxes, whereas NR activity in the shoot increased with increased nitrate supply. NR-mRNA was detected in roots from all cultures and showed no significant response to the nitrate flux, corroborating the data for NR activity. The data show that an extremely low amount of nitrate is required to elicit expression of NR and uptake activity. However, the uptake system and root NR respond differentially to increased nitrate flux at constant total N nutrition. It appears that root NR expression under these conditions is additionally controlled by factors related to the total N flux or the internal N status of the root and/or plant. The method used in this study may facilitate separation of nitrate-specific responses from the nutritional effect of nitrate.  相似文献   

3.
Protein breakdown and mobilization are some of the major metabolic features associated with abiotic stresses, essential for nutrient recycling and plant survival. Genetic manipulation of protease and/or protease inhibitors may contribute to modulate proteolytic processes and plant responses. The expression analysis of the whole cystatin family, inhibitors of C1A cysteine proteases, after water deprivation in barley leaves highlighted the involvement of Icy‐2 and Icy‐4 cystatin genes. Artificial microRNA lines independently silencing the two drought‐induced cystatins were generated to assess their function in planta. Phenotype alterations at the final stages of the plant life cycle are represented by the stay‐green phenotype of silenced cystatin 2 lines. Besides, the enhanced tolerance to drought and differential responses to water deprivation at the initial growing stages are observed. The mutual compensating expression of Icy‐2 and Icy‐4 genes in the silencing lines pointed to their cooperative role. Proteolytic patterns by silencing these cystatins were concomitant with modifications in the expression of potential target proteases, in particular, HvPap‐1, HvPap‐12, and HvPap‐16 C1A proteases. Metabolomics analysis lines also revealed specific modifications in the accumulation of several metabolites. These findings support the use of plants with altered proteolytic regulation in crop improvement in the face of climate change.  相似文献   

4.
Nine species from the tribe Triticeae – three crop, three pasture and three ‘wild’ wetland species – were evaluated for tolerance to growth in stagnant deoxygenated nutrient solution and also for traits that enhance longitudinal O2 movement within the roots. Critesion marinum (syn. Hordeum marinum) was the only species evaluated that had a strong barrier to radial O2 loss (ROL) in the basal regions of its adventitious roots. Barriers to ROL have previously been documented in roots of several wetland species, although not in any close relatives of dryland crop species. Moreover, the porosity in adventitious roots of C. marinum was relatively high: 14% and 25% in plants grown in aerated and stagnant solutions, respectively. The porosity of C. marinum roots in the aerated solution was 1·8–5·4‐fold greater, and in the stagnant solution 1·2–2·8‐fold greater, than in the eight other species when grown under the same conditions. These traits presumably contributed to C. marinum having a 1·4–3 times greater adventitious root length than the other species when grown in deoxygenated stagnant nutrient solution or in waterlogged soil. The length of the adventitious roots and ROL profiles of C. marinum grown in waterlogged soil were comparable to those of the extremely waterlogging‐tolerant species Echinochloa crus‐galli L. (P. Beauv.). The superior tolerance of C. marinum, as compared to Hordeum vulgare (the closest cultivated relative), was confirmed in pots of soil waterlogged for 21 d; H. vulgare suffered severe reductions in shoot and adventitious root dry mass (81% and 67%, respectively), whereas C. marinum shoot mass was only reduced by 38% and adventitious root mass was not affected.  相似文献   

5.
The responses of nitrate reductase (NR) activity and levels of NR-mRNA to environmental nitrate and exogenous cytokinins are characterised in roots and shoots of barley ( Hordeum vulgare L., cv. Golf), using a chemostate-like culture system for controlling nitrate nutrition. Experiments were mainly performed with split root cultures where nitrate-N was supplied at a constant relative addition rate of 0.09 day−1, and distributed between the subroots in a ratio of 20%:80%. The subroot NR-mRNA level and NR activity, as well as the endogenous level of zeatin riboside (ZR), increased when the local nitrate supply to one of the subroots was increased 4-fold by reversing the nitrate addition ratio (i.e. from 20%:80% to 80%:20%). Also shoot levels of ZR, NR-mRNA and NR activity increased in response to this treatment, even though the total nitrate supply remained unaltered. External supply of ZR at 0.1 μ M caused an approximately 3-fold increase in root ZR levels within 6 h. which is comparable to the nitrate-induced increase in root ZR. External application of ZR. zeatin. isopentenyl adenine or isopentenyl adenosine at 0.1 μ M caused from insignificant to 25% increases in NR-mRNA and activity in roots and up to 100% stimulation in shoots, whereas adenine or adenosine had no effect. No synergistic effects of perturbed nitrate supply and cytokinin application were detected in either roots or shoots. The translocation of nitrate from the root to the shoot was unaffected by application of ZR or switching the nitrate distribution ratio between subroots. The data give arguments for a physiological role of cytokinins in the response of root and shoot NR to environmental nitrate availability. The nature and limitations of the physiological role of cytokinins are discussed.  相似文献   

6.
The in vitro and various modifications of the in vivo assay for nitrate reductase have been compared in order to elucidate their usefulness in studies of diurnal variations of enzyme activity in barley leaves ( Hordeum vulgare L. cv. Herta). Generally, activity was low in the morning and increased rapidly during the first hours of the photoperiod. In the in vivo assay the leaf tissue was vacuum-infiltrated, whereafter either N2 was bubbled through the assay buffer (anaerobic assay), or no N2 was used (aerobic assay). Activity was 2–25 times higher in the anaerobic than in the aerobic assay. Anaerobiosis enhanced activity most during the dark period when the nitrate reductase level was low. Aerobic in vivo activity usually showed a more rapid decrease towards the end of the light period than did anaerobic activity. Addition of glucose and/or nitrate to the in vivo assay buffer usually stimulated activity more in the aerobic than in the anaerobic assay. In the morning, at the end of the dark period, these additives stimulated activity by 20–400% depending on growth and assay conditions. Later in the day stimulation was usually less, and even a slight inhibition was observed when only nitrate (0.1 M ) was added. The effect of these additives on the activity patterns determined was to dampen the oscillations. The additives were therefore not advantageous when testing diurnal variations. However, when the plants were grown under relatively poor light conditions it was necessary to add nitrate and glucose to the aerobic in vivo assay buffer since activity was otherwise too low to be measured. The in vitro assay gave about 5 times higher activity than the anaerobic in vivo assay. During the last part of the dark period in vivo activity (without glucose and KNO3 in the assay buffer) decreased while in vitro activity remained constant.  相似文献   

7.
8.
Circadian rhythmicity of nitrate reductase activity in barley leaves   总被引:2,自引:0,他引:2  
Nitrate reductase (EC 1.6.6.1) activity showed circadian rhythmicity in the first leaf of 8–11 days old barley ( Hordeum vulgare L. cv. Herta) plants. Circadian rhythms were found using both the in vitro and in vivo method for testing the enzyme activity. When the light intensity was reduced from 65 to 20 W m−2, the amplitude was smaller and the oscillations were damped sooner. In continuous darkness nitrate reductase activity decreased in a two step process. Three different light qualities were tested which all gave the same results.  相似文献   

9.
10.
Abstract. A Cartesian-diver microrespirometer system is described which can be used to measure respiratory fluxes of oxygen accurately for cells of higher plants in a liquid phase. This microrespirometry technique has been adapted from protozoological and microfaunal studies to plant physiology. The Cartesian-diver has considerable scope for investigation of oxygen flux in plant cells and has several advantages compared to the oxygen electrode in terms of sensitivity to changing oxygen levels in respiring material. Because the volumes of liquid are small in the Cartesian-divers, diffusional distances arc measured in micrometres and there is no need for stirring to overcome diffusional problems, thus minimizing the risk of mechanical damage to the experimental material. In addition, only very small quantities of experimental material are required for the Cartesian-diver which is invaluable where only limited amounts of tissue or numbers of cells can be obtained. Examples of respiratory oxygen consumption by protoplasts from intercalary meristematic regions of light-grown barley ( Hordeum vulgare L.c.v. Patty) seedlings, in response to abscisic and gibberellic acids, are presented. The advantages and disadvantages of Cartesian-diver microrespirometry compared to oxygen electrodes are also discussed.  相似文献   

11.
The gradients in photosynthetic and carbohydrate metabolism which persist within the fully expanded second leaf of barley ( Hordeum vulgare ) were examined. Although all regions of the leaf blade were green and photosynthetically active, the basal 5 cm, representing approximately 20% of the leaf area, retained some characteristics of sink tissue. The leaf blade distal from the leaf sheath exhibited characteristics typical of source tissue; the activities of sucrolytic enzymes (invertase and sucrose synthase) were relatively low, whilst that of sucrose phosphate synthase was high. These regions of the leaf accumulated sucrose throughout the photoperiod and starch only in the second half of the photoperiod whilst hexose sugars remained low. By contrast the leaf blade proximal to the leaf sheath retained relatively high activities of sucrolytic enzymes (especially soluble, acid invertase) whilst sucrose phosphate synthase activity was low. Glucose, as well as sucrose, accumulated throughout the photoperiod. Although starch accumulated in the second half of the photoperiod, a basal level of starch was present throughout the photoperiod, by contrast with the rest of the leaf. The 14CO2 feeding experiments indicated that a constant amount of photosynthate was partitioned towards starch in this region of the leaf irrespective of irradiance. These findings are interpreted as the base of the leaf blade acting as a localized sink for carbohydrate as a result of sucrose hydrolysis by acid invertase.  相似文献   

12.
Novel techniques were devised to explore the mechanisms mediating the adverse effects of compacted soil on plants. These included growing plants in: (i) profiles containing horizons differing in their degree of compaction and; (ii) split-pots in which the roots were divided between compartments containing moderately (1·4 g cm ? 3) and severely compacted (1·7 g cm ? 3) soil. Wild-type and ABA-deficient genotypes of barley were used to examine the role of abscisic acid (ABA) as a root-to-shoot signal. Shoot dry weight and leaf area were reduced and root : shoot ratio was increased relative to 1·4 g cm ? 3 control plants whenever plants of both genotypes encountered severely compacted horizons. In bartey cultivar Steptoe, stomatal conductance decreased within 4 d of the first roots encountering 1·7 g cm ? 3 soil and increased over a similar period when roots penetrated from 1·7 g cm ? 3 into 1·4 g cm ? 3 soil. Conductance was again reduced by a second 1·7 g cm ? 3 horizon. These responses were inversely correlated with xylem sap ABA concentration. No equivalent stomatal responses occurred in Az34 (ABA deficient genotype), in which the changes in xylem sap ABA were much smaller. When plants were grown in 1·7 : 1·4 g cm ? 3 split-pots, shoot growth was unaffected relative to 1·4 g cm ? 3 control plants in Steptoe, but was significantly reduced in Az34. Excision of the roots in compacted soil restored growth to the 1·4 g cm ? 3 control level in Az34. Stomatal conductance was reduced in the split-pot treatment of Steptoe, but returned to the 1·4 g cm ? 3 control level when the roots in compacted soil were excised. Xylem sap ABA concentration was initially higher than in 1·4 g cm ? 3 control plants but subsequently returned to the control level; no recovery occurred if the roots in compacted soil were left intact. Xylem sap ABA concentration in the split-pot treatment of Az34 was initially similar to plants grown in uniform 1·7 g cm ? 3 soil, but returned to the 1·4 g cm ? 3 control level when the roots in the compacted compartment were excised. These results clearly demonstrate the involvement of a root-sourced signal in mediating responses to compacted soil; the role of ABA in providing this signal and future applications of the compaction procedures reported here are discussed.  相似文献   

13.
汞对外生菌根真菌氮素利用酶活性的影响   总被引:1,自引:0,他引:1  
彭剑涛  袁玲  黄建国 《菌物学报》2010,29(3):414-420
在含有0、5、50和150μmol/L Hg2+的液体培养基中培养土生空团菌Cenococcum geophilum Fr.菌株Cg SIV、彩色豆马勃Pisolithus tinctorius(Pers.)Coker et Couch菌株Pt715、松乳菇Lactarius sp.菌株Ld-1和Ld-3,研究汞对外生菌根真菌生长和氮素利用酶活性的影响。结果表明,汞对外生菌根真菌生长有不同程度的抑制作用,其中Cg SIV生物量降幅最小,在高汞浓度的培养基中生物量仅比对照减少9.7%,具有较高的耐汞性。供试菌株均能合成蛋白酶、几丁质酶、脲酶和硝酸还原酶,但不同菌株之间酶活性差异显著。说明外生菌根真菌既有益于寄主植物利用氮源的多样性,又具有对不同氮源的偏嗜性。汞对外生菌根真菌氮素利用酶活性的影响因菌株、酶类和汞浓度的不同而异,原因可能是不同菌株遗传特性的差异,使其在汞胁迫条件下产酶量不同,并表达对汞敏感性不同的等位酶。此外,低浓度(5μmol Hg2+/L)~中浓度(50μmol Hg2+/L)的汞提高或不影响氮素利用酶的活性,对外生菌根真菌氮素利用能力应无抑制作用。在正常和汞胁迫条件下,Pt715和Ld-3的蛋白酶、脲酶、硝酸还原酶和几丁质酶的活性均最高,表现出较强的氮素利用能力。推断在汞污染的土壤上种植桉树和松树,接种Pt715和Ld-3可能改善寄主植物的氮素营养。  相似文献   

14.
大麦籽粒及花药愈伤组织的游离氨基酸含量分析   总被引:1,自引:0,他引:1  
对同一基因型大麦花药愈伤组织与籽粒中的游离氨基酸含量尤其是赖氨酸含量之间的关系进行分析,结果表明,对同一基因型而言,愈伤组织及籽粒中的同一氨基酸含量高低具有相同趋势。同时着重分析了愈伤组织中游离脯氨酸的含量与绿苗分化的关系,结果表明游离脯氨酸含量高的愈伤组织,其绿苗分化率较高,说明脯氨酸对绿苗分化具有重要作用。966259的花药愈伤组织及籽粒中的游离氨基酸总含量及游离赖氨酸含量均最高。  相似文献   

15.
Redox enzymes in the plant plasma membrane and their possible roles   总被引:1,自引:0,他引:1  
Purified plasma membrane (PM) vesicles from higher plants contain redox proteins with low‐molecular‐mass prosthetic groups such as flavins (both FMN and FAD), hemes, metals (Cu, Fe and Mn), thiol groups and possibly naphthoquinone (vitamin K1), all of which are likely to participate in redox processes. A few enzymes have already been identified: Monodehydroascorbate reductase (EC 1.6.5.4) is firmly bound to the cytosolic surface of the PM where it might be involved in keeping both cytosolic and, together with a b‐type cytochrome, apoplastic ascorbate reduced. A malate dehydrogenase (EC 1.1.1.37) is localized on the inner side of the PM. Several NAD(P)H‐quinone oxidoreductases have been purified from the cytocolic surface of the PM, but their function is still unknown. Different forms of nitrate reductase (EC 1.6.6.1–3) are found attached to, as well as anchored in, the PM where they may act as a nitrate sensor and/or contribute to blue‐light perception, although both functions are speculative. Ferric‐chelate‐reducing enzymes (EC 1.6.99.13) are localized and partially characterized on the inner surface of the PM but they may participate only in the reduction of ferric‐chelates in the cytosol. Very recently a ferric‐chelate‐reducing enzyme containing binding sites for FAD, NADPH and hemes has been identified and suggested to be a trans‐PM protein. This enzyme is involved in the reduction of apoplastic iron prior to uptake of Fe2+ and is induced by iron deficiency. The presence of an NADPH oxidase, similar to the so‐called respiratory burst oxidase in mammals, is still an open question. An auxin‐stimulated and cyanide‐insensitive NADH oxidase (possibly a protein disulphide reductase) has been characterized but its identity is still awaiting independent confirmation. Finally, the only trans‐PM redox protein which has been partially purified from plant PM so far is a high‐potential and ascorbate‐reducible b‐type cytochrome. In co‐operation with vitamin K1 and an NAD(P)H‐quinone oxidoreductase, it may participate in trans‐PM electron transport.  相似文献   

16.
17.
Spring barley ( Hordeum vulgare L. cv. Golf) was grown at different nitrate supply rates, controlled by using the relative addition rate technique, in order to elucidate the relationship between nitrate-N supply and root and shoot levels of abscisic acid (ABA). The plants were maintained as (1) standard cultures where nitrate was supplied at relative addition rates (RAs) of 0.03, 0.09 and 0.18 day−1, and (2) split-root cultures at RA 0.09 day−1 but with the nitrate distributed between the two root parts in ratios of 100:0, 80:20 and 60:40. Time-dependent changes in root and shoot concentrations of ABA (determined by radioimmunoassay using a monoclonal antibody) were observed in both standard and split-root cultures during 12 days of acclimation to the different nitrate regimes. However, the ABA responses were similar at all nitrate supply rates. Further experiments were performed with split-root cultures where the distribution of nitrate between the two root parts was reversed from 80:20 to 20:80 so that short-term effects to local perturbations of nitrate supply could be studied without altering whole-plant N absorption. Transient increases in ABA concentrations (maximum of 25 to 40% after 3 to 4 h) were observed in both subroot parts, as well as in xylem sap and shoot tissue. By pruning the root system it was demonstrated that the change in ABA had its origin in the subroot part receiving the increased nitrate supply (i.e. switched from 20 to 80% of the total nitrate supply). The data indicate that ABA responses are easily transmitted between different organs, including transmission from one set of seminal roots to another via the shoot. The data do not provide any indication that long-term nitrate supplies or general nitrogen status of barley plants affect, or are otherwise related to, the average tissue ABA concentrations of roots and shoots.  相似文献   

18.
Effects of atmospheric carbon dioxide enrichment on nitrogen metabolism were studied in barley primary leaves (Hordeum vulgare L. cv. Brant). Seedlings were grown in chambers under ambient (36 Pa) and elevated (100 Pa) carbon dioxide and were fertilized daily with complete nutrient solution providing 12 millimolar nitrate and 2.5 millimolar ammonium. Foliar nitrate and ammonium were 27% and 42% lower (P ≤ 0.01) in the elevated compared to ambient carbon dioxide treatments, respectively. Enhanced carbon dioxide affected leaf ammonium levels by inhibiting photorespiration. Diurnal variations of total nitrate were not observed in either treatment. Total and Mg2+inhibited nitrate reductase activities per gram fresh weight were slightly lower (P ≤ 0.01) in enhanced compared to ambient carbon dioxide between 8 and 15 DAS. Diurnal variations of total nitrate reductase activity in barley primary leaves were similar in either treatment except between 7 and 10 h of the photoperiod when enzyme activities were decreased (P ≤ 0.05) by carbon dioxide enrichment. Glutamate was similar and glutamine levels were increased by carbon dioxide enrichment between 8 and 13 DAS. However, both glutamate and glutamine were negatively impacted by elevated carbon dioxide when leaf yellowing was observed 15 and 17 DAS. The above findings showed that carbon dioxide enrichment produced only slight modifications in leaf nitrogen metabolism and that the chlorosis of barley primary leaves observed under enhanced carbon dioxide was probably not attributable to a nutritionally induced nitrogen limitation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号