首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The apparent extracellular space in incubated slices of rat renal cortex, medulla and papilla has been measured using three differently sized marker molecules, mannitol, sucrose and inulin. Cellular volumes have been estimated by following the efflux of 3-O-methyl-D-glucose from equilibrated slices. Sucrose appears to be the most accurate extracellular marker in each of the regions examined, in that the sum of its volume of distribution plus cellular volume approximates most closely to the total slice fluid volume. Inulin has the same volume of distribution as sucrose in cortical slices, but under-penetrates medullary and papillary tissue. Mannitol overestimates the extracellular space in all three regions, although its larger volume of distribution, relative to that of sucrose, was not statistically significant in papillary slices. When cell volume and composition are estimated (a) using sucrose as extracellular marker and (b) making appropriate allowance for the presence of bound tissue electrolytes, it is found that cells in each region have low Na+ and high K+ concentrations and contents. When papillary slices are incubated in medium of very high osmolality (NaCl plus urea, 2000 mosmol/kg H2O) there is a moderate (approx. 23%) decrease in cell volume and an increase in cell fluid Na+ and Cl- concentrations equal to approx. 50% of the increase in the extracellular concentrations. Cell K+ concentrations remain unchanged. The results show that cells in renal slices are able to maintain high K+-to-Na+ ratios when incubated in isosmotic (cortex) or moderately hyperosmotic media (medulla and papilla), and suggest that regulation of papillary cell volume following hyperosmotic shock can only partly be ascribed to uptake of extracellular electrolytes.  相似文献   

2.
Changes in cell water content resulting from sorbitol addition to the environment of L-929 cells were evaluated gravimetrically using14C-labeled polyethylene glycol as a probe of extracellular space. Reductions in cell water were proportional to sorbitol supplements up to 0.6 molal, above which no further measurable decrease occurred. No volume regulation occurred for at least 1 h but the percentage of cell water lost was quickly regained when physiological conditions were restored. The amount of cell water lost because of a given hyperosmotic exposure was found to exceed the loss of cell volume. That discrepancy could be the result of an overestimation of extracellular space and/or an underestimation of cell volume reduction as a result of infolding of the cell surface. Na+ and K+ were also measured in cells of variable water content and volume: no significant change occurred in the amounts of these ions per cell, but large increases in total cell concentration resulted from hyperosmotic exposure. The sum of Na+ and K+ concentrations exceeds the total osmotic pressure of the medium indicating that an appreciable fraction of Na+ and K+ must be bound to fixed charges within the cells. The results are evaluated in the context of intracellular organization.  相似文献   

3.
Studies on swelling and fluid compartmentation have been carried out in vitro on incubated slices of cerebral cortex from kittens 1.5-120 days post-natal age and on incubated sections of corpus callosum and slices of liver and kidney cortex from adult cats. The findings have been compared with analogous data for incubated slices of adult cat cerebral cortex, studied under identical conditions (Bourke and Tower , 1966a, b), in order to identify the probable morphological correlates of fluid and electrolyte distribution. Incubated cortical slices from neonatal (1.5-4-day-old) kittens exhibit none of the relevant characteristics of slices from adult cerebral cortex. By 1 month post-natal age, K+-dependent swelling of slices becomes demonstrable, and the K+ and Na+ contents of slices approximate adult levels. Both these developments coincide with the morphological and physiological maturation of cortical neurons. At 3 months post-natal age, slice swelling accessible to C1? but not to sucrose becomes observable and the dependence of sucrose space size on time, during incubation, of solute addition becomes demonstrable. Both these developments follow completion of axonal myelination in the cortex but coincide with the period of cortical glial cell proliferation. Incubated sections of corpus callosum from adult cats exhibit none of the relevant characteristics observed for cortical slices under identical conditions. Tissue swelling is minimal and uninfluenced by K+ concentrations of incubation media. Tissue fluid spaces accessible to sucrose are approximately twice the size of spaces accessible to inulin. In general, qualitatively similar results have been obtained for incubated slices of cat liver or kidney cortex or for incubated sections of rat diaphragm under the same conditions. A behaviour for glial cells (? astrocytes) in cerebral cortex under such in vitro conditions distinctly different from behaviour of subcortical glial cells is suggested.  相似文献   

4.
Abstract Changes in cell volume and solute content upon hyperosmotic shock have been studied for six unicellular blue-green algae (cyanobacteria): Synechococcus PCC 6301, PCC 6311; Synechocystis PCC 6702, PCC 6714, PCC 6803 and PCC 7008. The extent of change in volume was shown to be dependent upon the solute used to establish the osmotic gradient, with cells in NaCl showing a reduced shrinkage when compared to cells in media containing added sorbitol and sucrose. Uptake of extracellular solutes during hyperosmotic shock was observed in Synechocystis PCC 6714, with maximum accumulation of external solutes in NaCl and minimum solute uptake in sucrose solutions. Conversely, solute loss from the cells (K+ and amino acids) was greatest in sucrose-containing media and least in NaCl. The results show that these blue-green algae do not behave as ‘ideal osmometers’ in media of high osmotic strength. It is proposed that short-term changes in plasmalemma permeability in these organisms may be due to transient membrane instability resulting from osmotic imbalance between the cell and its surrounding fluid at the onset of hyperosmotic shock.  相似文献   

5.
—Rat cerebral slices were incubated in oxygenated Krebs-Ringer bicarbonate glucose saline, and the uptake of Li+ was measured after periods of 15 s to 5 min. Saturation was not seen within the concentrations of Li+ employed (0·5-2·0 mm ). The half-time of the uptake was 7·9 min. At steady state, after 1 h incubation, the concentration of Li+ in the tissue was linearly related to that of the medium (0·5-1·5 mm Li+) with a concentration ratio of 1·29–1·66. The concentrations of K+ and Na+ in the slices incubated without Li+ were found to be (μmol/g incubated wt, mean ±s.d .) 63·8 ± 9·6 and 96·2 ± 7·8 respectively (n = 28). In the presence of media with 1·5 mm -Li+, the K+ and Na+ in the slices were 56·2 ± 8·8 and 101·0 ± 7·7 respectively (n = 37). The concentration of Li+ in the slices, after 1 h incubation, increased in a non linear way as the concentration of K+ in the medium was decreased within a range of 0·10 mm -K+. In the absence of K+ in the medium the uptake of Li+ was approx 50% higher than in the presence of 4·9 mm -K+. There was an inverse linear relationship between the concentration of Li+ in the slices and that of Ca2+ in the medium within the range of 0-5·2 mm (-0·13 mm -Li+/mm Ca2+). The concentration of Li+ in the slices increased by approx 10% when the Mg2+ in the medium was increased from 1·3 mm to 2·6 mm . Changes of the concentration of Na+ between 120 mm and 170 mm in the medium had no significant effect on the Li+ uptake.  相似文献   

6.
All of the common cytochalasins activate superoxide anion release and exocytosis of β-N-acetylglucosaminidase and lysozyme from guinea-pig polymorphonuclear leukocytes (neutrophils) incubated in a buffered sucrose medium. Half-maximal activation of both processes is produced by approx. 2 μM cytochalasin A, C >μM cytochalasin B ? 4–5 μM cytochalasin D, E. While maximal rates of O2? release and extents of exocytosis require extracellular calcium (1–2 mM), replacing sucrose with monovalent cation chlorides is inhibitory to neutrophil activation by cytochalasins. Na+, K+ or choline inhibited either cytochalasin B- or E-stimulated O2? production with IC50 values of 5–10 mM and inhibition occurs whether Cl?, NO3? or SCN? is the anion added with Na+ or K+. Release of β-N-acetylglucosaminidase in control or cytochalasin B-stimulated cells is inhibited by NaCl (IC50 ≈ 10 mM), while cytochalasin E-stimulated exocytosis is reduced less and K+ or choline chloride are ineffective in inhibiting either cytochalasin B- or E-stimulated exocytosis. Release of β-glucuronidase, myeloperoxidase or acid phosphatase from neutrophils incubated in buffered sucrose is not stimulated by cytochalasin B. Stimulation of either O2? or β-N-acetylglucosaminidase release by low concentrations of cytochalasin A is followed by inhibition of each at higher concentrations. It appears that all cytochalasins can activate both NAD(P)H oxidase and selective degranulation of neutrophils incubated in salt-restricted media and that differential inhibition of these two processes by monovalent cations and/or anions is produced at some step(s) subsequent to cytochalasin interaction with the cell.  相似文献   

7.
Chondrocytes in cartilage are embedded in a matrix containing a high concentration of proteoglycans and hence of fixed negative charges. Their extracellular ionic environment is thus different from that of most cells, with extracellular Na+ being 250–350 mM and extracellular osmolality 350–450 mOsm. When chondrocytes are isolated from the matrix and incubated in standard culture medium (DMEM; osmolality 250–280 mOsm), their extracellular environment changes sharply. We incubated isolated bovine articular chondrocytes and cartilage slices in DMEM whose osmolity was altered over the range 250–450 mOsm by Na+ or sucrose addition. 35S-sulphate and 3H-proline incorporation rates were at a maximum when the extracellular osmolality was 350–400 mOsm for both freshly isolated chondrocytes and for chondrocytes in cartilage. The incorporation rate per cell of isolated chondrocytes was only 10% that of chondrocytes in situ both 4 and 24 hours after isolation. For freshly isolated chondrocytes, the rate increased 30–50% in DMEM to which NaCl or sucrose had been added to the increase osmolality. In chondrocytes incubated overnight in DMEM, the rate was greatest in DMEM of normal osmolality and fell from the maximum in proportion to the change in osmolality. The effects of surcrose addition on incorporation rates were similar but not identical to those of Na+ addition. Changes in cell volume might be linked to changes in synthesis rates since the cell volume of chondrocytes (measured by Coulter-counter) increased 30–40% when the cells are removed from their in situ environment into DMEM. Synthesis rates can thus be partly regulated by changes in extracellular osmolality, which in cartilage is controlled by proteoglycan concentration. This provides a mechanism by which the chondrocytes can rapidly respond to changes in extracellular matrix composition. © 1993 Wiley-Liss, Inc.  相似文献   

8.
K. Raschke  P. Dittrich 《Planta》1977,135(1):69-75
Following small hypo-osmotic shocks, ion concentrations (Na+, K+, Cl-) in Platymonas subcordiformis decreased; this was due mainly to an increase of cell volume. With larger hypo-osmotic stresses, the decrease of ion concentration continued and, additionally, extrusion of mannitol was observed. The ion and mannitol concentrations were not regained after 240 min. In contrast, following hyperosmotic shocks, the ion concentrations increased transitorily during the first 20–40 min. The same was true for K+ following small hyperosmotic stresses and for Na+ and — partially — Cl- with larger shocks. Large hyperosmotic stresses caused permanent accumulation of mannitol, which levelled off after 60–80 min. Thus the transient increase of ions bridged the concentration gap until mannitol was accumulated to a high enough concentration to account for the osmotic adaptation of Platymonas, together with a basal level of the ions K+, Na+, Cl-.Abbreviations PS photosynthesis - Resp respiration  相似文献   

9.
On homogenization of rat cerebral cortex slices previously incubated with [3H] GABA or [14C]GABA for 5 or 30 min, respectively, particles were recovered in P2 fractions which exhibited similar buoyant density, but different sedimentation velocity on linear sucrose density gradient centrifugation. The K+-evoked release of [3H]GABA from particles isolated from slices previously incubated for 5 min with [3H]GABA was increased in the presence of exogenous Ca2+. In contrast, the K+-evoked release from particles isolated from slices previously incubated for 30 min with [3H]GABA, was not influenced by the presence of exogenous Ca2+.These results suggest that, depending on the incubation time of slices, exogenously applied GABA can be detected in differnnt pools. These pools not only seem to differ in their Ca2+ dependency of K+-evoked release but also in their subcellular localization.  相似文献   

10.
Summary Ehrlich cells shrink when the osmolality of the suspending medium is increased and behave, at least initially, as osmometers. Subsequent behavior depends on the nature of the hyperosmotic solute but in no case did the cells exhibit regulatory volume increase. With hyperosmotic NaCl an osmometric response was found and the resultant volume maintained relatively constant. Continuous shrinkage was observed, however, with sucrose-induced hyperosmolality. In both cases increasing osmolality from 300 to 500 mOsm initiated significant changes in cellular electrolyte content, as well as intracellular pH. This was brought about by activation of the Na+/H+ exchanger, the Na/K pump, the Na++K++2Cl cotransporter and by loss of K+ via a Ba-sensitive pathway. The cotransporter in response to elevated [Cl] i (100mm) and/or the increase in the outwardly directed gradient of chemical potential for Na+, K+ and Cl, mediated net loss of ions which accounted for cell shrinkage in the sucrose-containing medium. In hyperosmotic NaCl, however, the net Cl flux was almost zero suggesting minimal net cotransport activity.We conclude that volume stability following cell shrinkage depends on the transmembrane gradient of chemical potential for [Na++K++Cl], as well as the ratio of intra- to extracellular [Cl]. Both factors appear to influence the activity of the cotransport pathway.  相似文献   

11.
12.
The effect of l-3,5,3′-triiodothyronine (T3) and thyroxine (T4) on (Na+ + K+)-ATPase activities was examined in rabbit kidneys because in this tissue almost 80% of the metabolism is connected to active sodium transport. T3-receptor concentrations were estimated as 0.62 and 0.80 pmol/mg per DNA in the cortex and outer medulla, respectively. A dose of 0.5 mg T3/kg body weight for 3 days increased basal metabolic rate by almost 60%, and the mitochondrial 1-α-glycerophosphate dehydrogenase activity was increased by 50% in both the cortex and medulla. (Na+ + K+)-ATPase activity in the liver was raised by almost 50%. However, no changes in (Na+ + K+)-ATPase activities or binding sites for [3H]ouabain in either the kidney cortex or medulla could be observed. T4 at 16 mg/kg daily for 14 days was also without effect on renal (Na+ + K+)-ATPase activities. Furthermore, the response to T3 was absent at high sodium excretion rates induced by unilateral nephrectomy and extracellular volume expansion. Thus, despite stimulation of basal metabolic rate and renal 1-α-glycerophosphate dehydrogenase activity by T3 and T4, the (Na+ + K+)-ATPase activity in the rabbit kidney is identical in euthyroid and hyperthyroid states. However, thyroid hormones prevent the normal natriuretic response to extracellular volume expansion.  相似文献   

13.
Incubation of L1210 murine leukemia cells in vitro with 10 μM of the bifunctional alkylating agent bis(2-chloroethyl)methylamine (nitrogen mustard, HN2) for 10 min brought about a fall of more than 99.9% in their ability to form colonies when the cells were suspended in 0.5% nutrient agar. Incubation with HN2 also inhibited the influx of the potassium congener 86Rb+ to exponentially proliferating L1210 cells in a concentration-dependent manner. This inhibition was specific and was accounted for by a reduction of a diuretic-sensitive component of 86Rb+ influx, identified in the preceding paper (Wilcock, C. and Hickman, J.A. (1988) Biochim. Biophys. Acta 946, 359–367) as being mediated by a Na+/K+/Cl cotransporter. Inhibition by 10 μM HN2 was complete after a 3-h incubation. There was no inhibition at this time of the ouabain-sensitive component of 86Rb+ influx, mediated by Na+/K+-ATPase. After 3 h of incubation with 10 μM HN2 there was also no change in the membrane potential of the treated cells as measured by the distribution of the [3H]TPMP+, no decrease in cellular ATP concentration and no change in intracellular pH, and the ability of the cells to exclude the vital dye Trypan blue was not significantly different from control values. These effects of HN2, therefore, appeared to follow lethal damage, but precede cell death. In the stationary phase of L1210 cell growth, the component of HN2 and diuretic-sensitive K+ influx to L1210 cells was reduced, whilst the component constituting the HN2-insensitive ouabain-sensitive sodium pump was increased. The monofunctional alkylating agent MeHN1 (2-chloroethyldimethylamine) which cannot cross-link cellular targets and has no antitumour activity, did not inhibit 86Rb+ influx to L1210 cells when incubated at equimolar or equitoxic concentrations to HN2. Intracellular potassium concentration was maintained close to control values of 138 ± 10 mM in HN2-treated cells because of an approx. 35% fall in cell volume. The results suggest that the Na+/K+/Cl cotransporter is a selectively inhibitable target for HN2, and the lesion is discussed with reference to the cytotoxic effects of this agent.  相似文献   

14.
Studies on the subcellular distribution of immunoreactive cholecystokinin (CCK) in homogenates of rat cerebral cortex showed that approximately 95% was associated with particulate fractions, including presynaptic terminals (synaptosomes). Chromatography of extracts of tissue and medium from incubated synaptosomes revealed that this material was almost exclusively in the form of COOH-terminal octapeptide (CCK-8), very little CCK-33 being present. There was a wide range of CCK-8 concentrations in synaptosomes from different brain regions (cortex > striatum ? hypothalamus > brain stem). Cerebral cortex synaptosomes were incubated in vitro and showed a complex pattern of CCK-8 release with varying concentrations of tissue: amounts in the medium rose rapidly with increasing synaptosome concentrations, then fell to a plateau at higher tissue values. A mechanism for the rapid disposal of extracellular CCK-8 was associated with synaptosomal fractions. Depolarization-induced (high K+) release of CCK-8 was observed with cortex and corpus striatum synaptosomes. A rapid and reversible enhancement of CCK-8 release from cortex slices was observed in response to elevated K+. Veratrine also released CCK-8 from cortex slices, although this was not reversible. Stimulus-induced release of CCK-8 from synaptosomes and slices required extracellular Ca2+. The storage, release and degradation of CCK-8 by nerve-endings suggest a synaptic function for this peptide.  相似文献   

15.
Ionophore-induced changes in the cell-associated fluorescence of samples of approx. 50 000 individual murine L1210 leukemia cells which had been incubated with the voltage-sensitive dye 3,3′-dihexyloctacarbocyanine iodide (DiOC6(3)) were monitored by flow cytometry. The K+ ionophore valinomycin (1 μM) produced homogeneous changes in the fluorescence of the entire population, the magnitude of which was dependent upon the concentration of extracellular K+. These changes allowed the estimation of the potassium equilibrium potential of the cells, by the null-point method, to be – 11.9 mV. The Ca2+ ionophore A23187 (500 nM) produced heterogeneous changes in fluorescence, with populations of both hyperpolarised and depolarised cells. In addition, the depolarised population underwent an apparent size change, with a reduction in cell volume. This heterogeneity of response resulted in a minimal change in the median fluorescence value for the whole population, which suggests that it would not have been detectable by methods dependent upon net population-averaged changes in fluorescence. Removal of extracellular Na+ or preincubation of cells with amiloride (500 μM) effectively eliminated the depolarised population. Removal of extracellular K+ increased the hyperpolarised population. These findings provide evidence for the presence of Ca2+-induced Na+ exchange and Ca2+-induced K+ efflux mechanisms in these cells which may be expressed simultaneously in the cell population.  相似文献   

16.
—Depolarizing concentrations of K+ elevate levels of both adenosine 3′,5′monophosphate (cyclic AMP) and guanosine 3′,5′monophosphate (cyclic GMP) in incubated slices of mouse cerebellum. Calcium is an essential requirement for the K+ -induced accumulation of cyclic GMP. Barium and Sr2+, but not Mn2+ or Co2+, can substitute for Ca2+ in this process. Relatively high concentrations of Mg2+ inhibit the effect of Ca2+ on K+-induced accumulation of cyclic GMP. In contrast, depolarizing concentrations of K+ are capable of elevating cyclic AMP levels in brain slices suspended in media containing Mg2+ and no other divalent cations. High concentrations of Ca2+ (1 mm or greater) augment this Mg2+ -dependent, K+-induced accumulation of cyclic AMP, however. Strontium and Mn2+, but not Ba2+ or Co2+, can substitute for Ca2+ in this process, and high concentrations of Mg2+ are not inhibitory. The divalent cation ionophore, A-23187 (10 μm ), in the presence of extracellular Ca2+ elevates the level of cyclic GMP, but not cyclic AMP, in incubated mouse cerebellum slices. The results of this study indicate that intracellular Ca2+ concentration is a major factor regulating cyclic GMP levels in brain. In addition the present results suggest that, in brain tissue, depolarization-induced accumulation of cyclic GMP, but not cyclic AMP, is closely linked to some Ca2+-dependent mechanism(s) mediating release of intracellular substances.  相似文献   

17.
In several tissues a coupling between glycolysis and (Na++K+)-ATPase has been observed. We report here studies on the coupling of glycolysis and (Na++K+)-ATPase in Rous-transformed hamster cells and Ehrlich ascites tumor cells. The rate of (Na++K+)-ATPase was estimated by the initial rate of ouabain-sensitive K+ influx after K+ reintroduction to K+-depleted cells. Experiments were performed with cells producing ATP via oxidative phosphorylation alone (i.e., lactate sole substrate), glycolysis alone (i.e., glucose as substrate in the absence of oxygen or with antimycin A), or glycolysis and oxidative phosphorylation (i.e., glucose as substrate in the presence of oxygen). The cells produced ATP at approximately the same rate under all of these conditions, but the initial rate of K+-influx was approx. 2-fold higher when AtP was produced from glycolysis. Changes in cell Na+ due to other transport processes related to glycolysis, such as Na+-H+ exchange, Na+-glucose cotransport, and K+-H+ exchange were ruled out as mediators of this effect on (Na++K+)-ATPase. These data suggest that glycolysis is more effective than oxidative phosphorylation in providing ATP to (Na++K+)-ATPase to these cultured cells.  相似文献   

18.
1. The incorporation of l-[1-14C]leucine into the proteins of liver slices and into the serum albumin and lipoproteins transported by these slices was investigated. 2. Transport rates were found to be dependent on the K+ content of the slices. 3. The effect of K+ on transport of serum albumin and of serum lipoprotein can be separated from any effect on synthesis by altering K+ concentrations after inhibition of protein synthesis by cycloheximide or puromycin. 4. The effect of low K+ concentrations is reversible. 5. There is linear relationship between the K+ content of the slices and the transport of protein. A simple method is described for maintaining various steady concentrations of K+ in the liver slices. 6. K+ may be replaced by Rb+. Cs+ is partly effective, but NH4+ and Li+ are no more effective than Na+. 7. We found evidence that K+ content rather than the flux rates of K+ or Na+ is important in this effect. 8. These results are probably important in ethionine and carbon tetrachloride poisoning in the rat, and may be significant in liver transplantation.  相似文献   

19.
Evidence accumulating during almost 50 years suggests Na+, K+-ATPase dysfunction in bipolar disorder, a disease treatable with chronic administration of lithium salts, carbamazepine or valproic acid. Three Na+, K+-ATPase α subunits (α1–3) and two β subunits (β1 and β2) are expressed in brain together with the auxiliary protein FXYD7. FXYD7 decreases K+ affinity, and thus contributes to stimulation of the enzyme at elevated extracellular K+ concentrations. Na+, K+-ATPase subtype and FXYD7 genes were determined by RT-PCR in mice co-expressing one fluorescent signal with an astrocytic marker or a different fluorescent signal with a neuronal marker and treated for 14 days with carbamazepine. Following fluorescence-activated cell sorting of neurons and astrocytes it was shown that α2 Expression was upregulated in astrocytes and neurons and α1 selectively in neurons, but α3 was unchanged. β1 was upregulated in astrocytes, but not in neurons. β2 was unaffected in astrocytes and absent in neurons. FXYD7 was downregulated specifically in neurons. According to cited literature data these changes should facilitate K+ uptake in neurons, without compromising preferential uptake in astrocytes at increased extracellular K+ concentrations. This process seems to be important for K+ homeostasis of the cellular level of the brain (Xu et al. Neurochem Res E-pub Dec. 12, 2012).  相似文献   

20.
Cell volume regulation in Ehrlich ascites tumor cells   总被引:4,自引:0,他引:4  
Ehrlich cells subjected to anisoosmolar media show very rapid volume changes. In hypertonic media they shrink. In hypotonic media they swell but the rapid initial swelling is followed by a regulatory shrinkage lasting ca. 30 minutes. Cells suspended in media with identical ionic concentrations but different total osmolarity (adjusted by sucrose) were compared. These studies revealed that swollen cells adjust their volume by decreasing the amount of intracellular K+ and ninhydrin positive substances. Intracellular Na+ and ATP concentrations were unchanged. Accordingly 42K+ flux analysis showed that the (passive) cell membrane permeability for K+ is increased to a minor degree and the Na+ permeability unaffected. The increased K+ permeability could not be correlated to an increase in 45Ca2+ influx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号