首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Exposure to ethanol for several days increases the expression of dihydropyridine-sensitive, voltage-dependent Ca2+ channels in brain and in the neural cell line PC12. Since protein phosphorylation is a major mechanism by which ion channels are regulated, we used protein kinase inhibitors to investigate whether ethanol-induced up-regulation of Ca2+ channels involves activation of a protein kinase. Sphingosine and polymixin B, which inhibit protein kinase C and calmodulin-dependent kinases, prevented the enhancement of 45Ca2+ uptake induced by exposure of PC12 cells to ethanol for 4 days. In addition, sphingosine blocked the ability of ethanol to increase the number of [3H]dihydropyridine binding sites in PC12 cell membranes. Sphingosine's effect was prevented by simultaneous exposure to phorbol 12,13-dibutyrate, a potent activator of protein kinase C. Therefore, protein kinase C appears to be involved in the up-regulation of dihydropyridine-sensitive Ca2+ channels during prolonged exposure to ethanol.  相似文献   

2.
Treatment with 200 mM ethanol for 6 days increased binding of the Ca2+ channel antagonist, (+)-[3H]PN 200-110, to intact PC12 cells in culture. Enhancement of binding by ethanol was due to an increase in binding site number without appreciable change in binding affinity. Long-term exposure to Ca2+ channel antagonist drugs (nifedipine, verapamil, or diltiazem), which, like ethanol, acutely inhibit Ca2+ flux, failed to alter (+)-[3H]PN 200-110 binding to PC12 membranes. Cotreatment of ethanol-containing cultures with the Ca2+ channel agonist, Bay K 8644, did not attenuate the response to ethanol; instead, chronic exposure to Bay K 8644 alone increased (+)-[3H]PN 200-110 binding. These results suggest that chronic exposure to ethanol increases Ca2+ channel antagonist receptor density in living neural cells, but that acute inhibition of Ca2+ flux by ethanol is unlikely to trigger this response.  相似文献   

3.
We have recently shown that in PC12 cells, pituitary adenylate cyclase-activating polypeptide (PACAP) and NGF synergistically stimulate PACAP mRNA expression primarily via a mechanism involving a p38 mitogen-activated protein kinase (MAPK)-dependent pathway. Here we have analyzed p38 MAPK activation by PACAP and the mechanism underlying this action of PACAP in PC12 cells. PACAP increased phosphorylation of p38 MAPK with a bell-shaped dose-response relationship and a maximal effect was obtained at 10(-8) M. PACAP (10(-8) M)-induced p38 MAPK phosphorylation was already evident at 2.5 min, maximal at 5 min, and rapidly declined thereafter. PACAP-induced p38 MAPK phosphorylation was potently inhibited by depletion of Ca(2+) stores with thapsigargin and partially inhibited by the phospholipase C inhibitor U-73122, L-type voltage-dependent calcium channel inhibitors nifedipine and nimodipine, and the Ca(2+) chelator EGTA, whereas the protein kinase C inhibitor calphostin C, the protein kinase A inhibitor H-89, the cAMP antagonist Rp-cAMP, and the nonselective cation channel blocker SKF96365 had no effect. These results indicate that PACAP activates p38 MAPK in PC12 cells through activation of a phospholipase C, mobilization of intracellular Ca(2+) stores, and Ca(2+) influx through voltage-dependent Ca(2+) channels, but not cyclic AMP-dependent mechanisms.  相似文献   

4.
The role of various intracellular signals and of their possible interactions in the control of neurotransmitter release was investigated in PC12 cells. To this purpose, agents that affect primarily the cytosolic concentration of Ca2+, [Ca2+]i (ionomycin, high K+), agents that affect cyclic AMP concentrations (forskolin; the adenosine analogue phenylisopropyladenosine; clonidine) and activators of protein kinase C (phorbol esters) were applied alone or in combination to either growing chromaffin-like PC12-cells, or to neuron-like PC12+ cells differentiated by treatment with NGF (nerve growth factor). In addition, the release effects of muscarinic-receptor stimulation (which causes increase in [Ca2+]i, activation of protein kinase C and decrease in cyclic AMP) were investigated. Two techniques were employed to measure catecholamine release: static incubation of [3H]dopamine-loaded cells, and perfusion incubation of unlabelled cells coupled to highly sensitive electrochemical detection of released catecholamines. The results obtained demonstrate that: (1) release from PC12 cells can be elicited by both raising [Ca2+]i and activating protein kinases (protein kinase C and, although to a much smaller extent, cyclic AMP-dependent protein kinase); and (2) these various control pathways interact extensively. Activation of muscarinic receptors by carbachol induced appreciable release responses, which appeared to be due to a synergistic interplay between [Ca2+]i and protein kinase C activation. The muscarinic-induced release responses tended to become inactivated rapidly, possibly by feedback desensitization of the receptor mediated by protein kinase C. Muscarinic inactivation was prevented (or reversed) by agents that increase, and accelerated by agents that decrease, cyclic AMP. Agents that stimulate release primarily through the Ca2+ pathway (ionomycin and high K+) were found to be equipotent in both PC12- and PC12+ cells, whereas the protein kinase C activator 12-O-tetradecanoyl-phorbol 13-acetate was approx. 10-fold less potent in PC12+ cells, when administered either alone or in combination with ionomycin. In contrast, the cell binding of phorbol esters was not greatly modified by NGF treatment. Thus control of neurotransmitter release from PC12 cells is changed by differentiation, with a diminished role of the mechanism mediated by protein kinase C.  相似文献   

5.
Concanavalin A (Con A), a tetravalent lectin with preferential affinity for mannosyl and glucosyl residues of membrane glycoconjugates, increased K+ depolarization-evoked uptake of 45Ca2+ in the PC12 neural cell line. Enhancement of uptake by Con A was concentration dependent, with maximal (24%) stimulation at 100 micrograms/ml of Con A, and was preferentially inhibited by mannoside and glucoside. Succinyl-Con A, a divalent analog with reduced biological potency, increased uptake by only 7%. The effect of Con A on 45Ca2+ uptake was dependent on membrane depolarization, was abolished by ionic Ca2+ channel blockers and organic Ca2+ channel antagonists, and was accompanied by an equivalent increase in Ca2+ channel 3H-labeled antagonist binding, observations suggesting that the voltage-dependent Ca2+ channel was the site of Ca2+ entry. The mechanism for enhancement of 45Ca2+ uptake by Con A appeared to be separate from that used by the Ca2+ channel agonist BAY K 8644 and independent of that involved in Ca2+ channel regulation by phorbol esters. These findings suggest that voltage-dependent Ca2+ channels may link cell surface carbohydrate interactions with intracellular effector processes.  相似文献   

6.
We have studied morphological differentiation and ion channel expression in PC12 cells under different culture conditions. Differentiation mediated by nerve growth factor (NGF) was compared with that induced by depletion and inhibition of protein kinases (phorbol ester beta-PMA plus staurosporine). Morphological differentiation was similar under both conditions. However, ion channel densities, studied by means of the patch-clamp technique, were enhanced by NGF and reduced by beta-PMA+staurosporine. Similar changes were also observed for omega-conotoxin-sensitive Ca2+ channels by measuring radioligand binding. The decrease in Ca2+ channel density, after treatment of the cells with beta-PMA+staurosporine, resulted in a reduced increase in the intracellular Ca2+ concentration during K+ depolarization. We conclude that morphological differentiation, but not ion channel expression, can occur during depression of protein kinase activities in PC12 cells.  相似文献   

7.
Receptor mediated internalization of 125I-ANF (99-126) and the underlying mechanism was studied in PC12 cells. Phosphorylation of PC12 cell plasma membrane proteins at 0 degrees C or 37 degrees C was not altered in presence of ANF (99-126) or c-ANF (4-23). Exposure of cells to phorbol 12-myristate 13-acetate (PMA, 100 ng/ml) did not alter the endocytic rate or extent of 125I-ANF (99-126) internalization. When cells were treated with a combination of PMA and the calcium ionophore A23187, internalization was not stimulated. Incubation with A23187 (10 microM) alone decreased 125I-ANF (99-126) internalization by 22% in Ca2+ containing medium. Cell surface binding increased 10% in the presence of Ca2+ compared to Ca2+ free medium, irrespective of the presence of A23187. Ca2+ appears to play an important role in the binding of ANF to the receptor and initiation of ligand-receptor complex internalization. Activation of protein kinase C or receptor phosphorylation is not an essential step in initiating ANF receptor internalization.  相似文献   

8.
Chronic treatment of PC 12 cells with the 1,4-dihydropyridine Ca2+ channel antagonist nifedipine [5 x 10-8M/5 days] and the activator S Bay K 8644 [5 x 10-7 M/5 days] resulted in up- and down-regulation of 1,4-dihydropyridine binding site density by 29 and 24%, respectively, without change in affinity. These changes in binding site density represent functional changes as indicated by the corresponding changes in K+ depolarization-induced 45Ca2+ uptake and in whole cell currents carried by Ba2+ ions. This homologous regulation of voltage-dependent Ca2+ channels [VDCC] by potent and specific ligands parallels that observed for other classes of membrane receptors.  相似文献   

9.
Exposure to ethanol for several days increases the number and function of dihydropyridine-sensitive Ca2+ channels in excitable tissues. In the neural cell line PC12, this process is blocked by inhibitors of protein kinase C (PKC), suggesting that PKC mediates ethanol-induced increases in Ca2+ channels. We report that treatment with 25-200 mM ethanol for 2-8 days increased PKC activity in PC12 cells and NG108-15 neuroblastoma-glioma cells. Detailed studies in PC12 cells showed that ethanol also increased phorbol ester binding and immunoreactivity to PKC delta and PKC epsilon. These changes were associated with increased PKC-mediated phosphorylation. Ethanol did not activate the enzyme directly, nor did ethanol increase levels of diacylglycerol. Ethanol-induced increases in PKC levels may promote up-regulation of Ca2+ channels, and may also regulate the expression and function of other proteins involved in cellular adaptation to ethanol.  相似文献   

10.
Muscarinic cholinergic receptor stimulation evokes catecholamine secretion from some cell types, but the mechanism has not been well characterized. Using pheochromocytoma (PC12) cells, we show that the muscarinic agonist methacholine stimulates 45Ca2+ influx and [3H]norepinephrine release in a dose-dependent manner. Experiments performed in Na+-free medium or with inhibitors of voltage-dependent Ca2+ channels suggest the involvement of a receptor-activated Ca2+ channel which differs significantly from the voltage-dependent Ca2+ channel involved in nicotinic receptor-stimulated release. Furthermore, both influx and release were inhibited by pertussis toxin (0.5-2.0 ng/ml, 21 h) with a dose dependency which paralleled the dose dependency of pertussis toxin-dependent in vivo ADP-ribosylation of a 41-kDa protein. These experiments provide the first evidence that muscarinic stimulation evokes neurotransmitter secretion by opening a receptor-activated Ca2+ channel which is controlled by a pertussis toxin-sensitive protein.  相似文献   

11.
One of the early events associated with the treatment of cells by tumor promotor phorbol esters is the tight association of protein kinase C to the plasma membrane. To better understand the factors that regulate this process, phorbol ester-induced membrane binding of protein kinase C was studied using homogenates, as well as isolated membranes and purified enzyme. Addition of 12-O-tetradecanoylphorbol 13-acetate (TPA) to the homogenates of parietal yolk sac cells and NIH 3T3 cells in the presence of Ca2+ resulted in plasma membrane binding of protein kinase C which subsequently remained bound to the membrane independent of Ca2+. Although protein kinase C was activated by TPA in the absence of Ca2+ and by diolein in the presence of Ca2+, both these agents when added to homogenates under these respective conditions had no effect on membrane association of protein kinase C. However, under these conditions relatively weak binding of protein kinase C was found if purified protein kinase C was used with isolated membranes. Binding studies using purified protein kinase C and washed membranes showed that the binding of the TPA-kinase complex to membranes required phospholipids and reached saturation at 0.1 unit (24 ng of protein kinase C)/mg of parietal yolk sac cell membrane protein. Phorbol ester treatment of cells in media with and without Ca2+ showed that the TPA-induced increase in membrane-associated protein kinase C was regulated by Ca2+ levels even in intact cells. TPA-stabilized membrane binding of protein kinase C differs in several aspects from the previously reported Ca2+-induced reversible binding. TPA-stabilized binding of protein kinase C to isolated membranes is temperature dependent, relatively high in the plasma membrane-enriched fraction, saturable at physiological levels of protein kinase C, requires the presence of both membrane protein(s) and phospholipids, and further requires the addition of phospholipid micelles. In contrast, Ca2+-induced reversible binding is more rapid, not appreciably influenced by temperature, not selective for a particular subcellular fraction, not saturable with physiological amounts of protein kinase C, exhibits trypsin-insensitive membrane binding sites, and requires membrane phospholipids but not added phospholipid micelles.  相似文献   

12.
Protein kinase C is known to be involved both in initiation and termination of cellular responses due to phosphoinositide breakdown. Here we report that in PC12 cells (a line of neurosecretory cells derived from a rat pheochromocytoma), pretreatment with nanomolar concentrations of phorbol myristate acetate, PMA, which is believed to specifically activate protein kinase C, inhibits the cytosolic-free Ca2+ concentration rise induced by depolarizing agents. In contrast, plasma membrane potential and 45Ca efflux from preloaded cells were unaffected by PMA pretreatment. Inhibition by PMA and diacylglycerol of the cytosolic-free Ca2+ concentration rise induced by depolarization was observed also in another cell line, the insulin secreting line RINm5F. These results raise the possibility that the voltage-gated Ca2+ channel is under inhibitory control by protein kinase C.  相似文献   

13.
Transverse tubule membranes isolated from rabbit skeletal muscle consist mainly of sealed vesicles that are oriented primarily inside out. These membranes contain a high density of binding sites for 1,4-dihydropyridine calcium channel antagonists. The presence of functional voltage-dependent calcium channels in these membranes has been demonstrated by their ability to mediate 45Ca2+ efflux in response to changes in membrane potential. Fluorescence changes of the voltage-sensitive dye, 3,3'-dipropyl-2,2'-thiadicarbocyanine, have shown that transverse tubule vesicles may generate and maintain membrane potentials in response to establishing potassium gradients across the membrane in the presence of valinomycin. A two-step procedure has been developed to measure voltage-dependent calcium fluxes. Vesicles loaded with 45Ca2+ are first diluted into a buffer designed to generate a membrane potential mimicking the resting state of the cell and to reduce the extravesicular Ca2+ to sub-micromolar levels. 45Ca2+ efflux is then measured upon subsequent depolarization. Flux responses are modulated with appropriate pharmacological specificity by 1,4-dihydropyridines and are inhibited by other calcium channel antagonists such as lanthanum and verapamil.  相似文献   

14.
In skeletal muscle the L-type Ca2+ channel directly controls the opening of the sarcoplasmic reticulum Ca2+ release channel (RYR1), and RYR1, in turn, prevents L-type Ca2+ channel inactivation. We demonstrate that the two proteins interact using calmodulin binding regions of both proteins. A recombinant protein representing amino acids 1393-1527 (D1393-1527) of the carboxyl-terminal tail of the skeletal muscle L-type voltage-dependent calcium channel binds Ca2+, Ca2+ calmodulin, and apocalmodulin. In the absence of calmodulin, D1393-1527 binds to both RYR1 and a peptide representing the calmodulin binding site of RYR1 (amino acids 3609-3643). In addition, biotinylated R3609-3643 peptide can be used with streptavidin beads to pull down [3H]PN200-110-labeled L-type channels from detergent-solubilized transverse tubule membranes. The binding of the L-type channel carboxyl-terminal tail to the calmodulin binding site on RYR1 may stabilize the contact between the two proteins, provide a mechanism for Ca2+ and/or calmodulin regulation of their interaction, or participate directly in functional signaling between these two proteins. A unique aspect of this study is the finding that calmodulin binding sequences can serve as specific binding motifs for proteins other than calmodulin.  相似文献   

15.
Actions of maitotoxin, the most potent marine toxin known obtained from toxic dinoflagellate, Gambier-discus toxicus, were studied using clonal rat pheochromocytoma cells (PC12), rat liver mitochondria and liposomes. Maitotoxin induced a profound release of norepinephrine and dopamine from PC12 cells and the molar ratio of norepinephrine to dopamine was almost the same as that stored in the cells. This releasing action was apparent at a concentration of 5 X 10(-10) g/ml or more, the releasing rate increased with an increase in the concentration of applied maitotoxin and attained maximum at about 10(-6) g/ml. The [3H]norepinephrine release induced by maitotoxin was abolished in the absence of external Ca2+ and increased with increasing concentration of external Ca2+ up to 10 mM. The release gradually decreased as the external Na+ concentrations were reduced from 130 to 20 mM, but maitotoxin is still able to induce a profound release in the absence of external Na+. The releasing action of maitotoxin was markedly suppressed by various Ca2+ channel blockers, such as Mn2+, verapamil, and nicardipine, and by a local anesthetic, tetracaine. The inhibitory actions of Ca2+ channel blockers were antagonized by external Ca2+ and became less obvious in the higher Ca2+ concentration range. Maitotoxin did not exhibit any ionophoretic activities on rat mitochondrial and liposomal membranes. These results suggest that maitotoxin has the ability to activate voltage-dependent Ca2+ channels of PC12 cells.  相似文献   

16.
Calcium-dependent facilitation of L-type calcium channels has been reported to depend on the function of calmodulin kinase II. In contrast, the mechanism for voltage-dependent facilitation is not clear. In HEK 293 cells expressing Ca(v)1.2, Ca(v)beta2a, and calmodulin kinase II, the calcium current measured at +30 mV was facilitated up to 1.5-fold by a 200-ms-long prepulse to +160 mV. This voltage-dependent facilitation was prevented by the calmodulin kinase II inhibitors KN93 and the autocamtide-2-related peptide. In cells expressing the Ca(v)1.2 mutation I1649E, a residue critical for the binding of Ca2+-bound calmodulin, facilitation was also abolished. Calmodulin kinase II was coimmunoprecipitated with the Ca(v)1.2 channel from murine heart and HEK 293 cells expressing Ca(v)1.2 and calmodulinkinase II. The precipitated Ca(v)1.2 channel was phosphorylated in the presence of calmodulin and Ca2+. Fifteen putative calmodulin kinase II phosphorylation sites were identified mostly in the carboxyl-terminal tail of Ca(v)1.2. Neither truncation at amino acid 1728 nor changing the II-III loop serines 808 and 888 to alanines affected facilitation of the calcium current. In contrast, facilitation was decreased by the single mutations S1512A and S1570A and abolished by the double mutation S1512A/S1570A. These serines flank the carboxyl-terminal EF-hand motif. Immunoprecipitation of calmodulin kinase II with the Ca(v)1.2 channel was not affected by the mutation S1512A/S1570A. The phosphorylation of the Ca(v)1.2 protein was strongly decreased in the S1512A/S1570A double mutant. These results suggest that voltage-dependent facilitation of the Ca(v)1.2 channel depends on the phosphorylation of Ser1512/Ser1570 by calmodulin kinase II.  相似文献   

17.
Stimulation of rat pheochromocytoma PC12 cells with ionophore A23187, carbachol, or high K+ medium, agents which increase intracellular Ca2+, results in the phosphorylation and activation of tyrosine hydroxylase (Nose, P., Griffith, L. C., and Schulman, H. (1985) J. Cell Biol. 101, 1182-1190). We have identified three major protein kinases in PC12 cells and investigated their roles in the Ca2+-dependent phosphorylation of tyrosine hydroxylase and other cytosolic proteins. A set of PC12 proteins were phosphorylated in response to both elevation of intracellular Ca2+ and to protein kinase C (Ca2+/phospholipid-dependent protein kinase) activators. In addition, distinct sets of proteins responded to either one or the other stimulus. The three major regulatory kinases, the multifunctional Ca2+/calmodulin-dependent protein kinase, the cAMP-dependent protein kinase, and protein kinase C all phosphorylate tyrosine hydroxylase in vitro. Neither the agents which increase Ca2+ nor the agents which directly activate kinase C (12-O-tetradecanoylphorbol-13-acetate or 1-oleyl-2-acetylglycerol) increase cAMP or activate the cAMP-dependent protein kinase, thereby excluding this pathway as a mediator of these stimuli. The role of protein kinase C was assessed by long term treatment of PC12 cells with 12-O-tetradecanoylphorbol-13-acetate, which causes its "desensitization." In cells pretreated in this manner, agents which increase Ca2+ influx continue to stimulate tyrosine hydroxylase phosphorylation maximally, while protein kinase C activators are completely ineffective. Comparison of tryptic peptide maps of tyrosine hydroxylase phosphorylated by the three protein kinases in vitro with phosphopeptide maps generated from tyrosine hydroxylase phosphorylated in vivo indicates that phosphorylation by the Ca2+/calmodulin-dependent kinase most closely mirrors the in vivo phosphorylation pattern. These results indicate that the multifunctional Ca2+/calmodulin-dependent protein kinase mediates phosphorylation of tyrosine hydroxylase by hormonal and electrical stimuli which elevate intracellular Ca2+ in PC12 cells.  相似文献   

18.
Depolarization of membrane potential by high external K+ activates Ca2+ influx via voltage-dependent Ca2+ channels in GH4C1 cells (Tan, K.-N., and Tashjian, A. H., Jr. (1983) J. Biol. Chem. 258, 418-426). The involvement of this channel in thyrotropin-releasing hormone (TRH) action on prolactin (PRL) release was assessed by comparing the pharmacological characteristics of TRH-induced PRL release with PRL release due to high K+. Two components of TRH-stimulated PRL release were detected. The major component (approximately equal to 75%) was dependent on external Ca2+ concentration and was inhibited by voltage-dependent Ca2+ channel blockers in a manner quantitatively similar to high K+-stimulated PRL release. The minor component (approximately equal to 25%) of TRH-stimulated PRL release was insensitive to voltage-dependent Ca2+ channel blockers and could occur in the presence of low external Ca2+ (10(-5)-10(-7) M). Neither voltage-dependent Ca2+ channel blockers nor depletion of medium Ca2+ prevented the action of TRH on mobilizing cell-associated 45Ca2+ from GH4C1 cells. Divalent cations that permeate voltage-dependent Ca2+ channels (Sr2+ and Ba2+) substituted for Ca2+ in supporting high K+- and TRH-stimulated PRL release while Mg2+, a nonpermeant cation, did not. We conclude that TRH stimulates PRL release by increasing [Ca2+]i through at least two mechanisms: one requires only low [Ca2+]o, the second involves Ca2+ influx via voltage-dependent Ca2+ channels. This latter mechanism accounts for approximately equal to 75% of maximum TRH-induced PRL release.  相似文献   

19.
Frequent strong depolarizations facilitate Ca2+ channels in various cell types by shifting their gating behavior towards mode 2, which is characterized by long openings and high probability of being open. In cardiac cells, the same type of gating behavior is potentiated by beta-adrenoceptors presumably acting via phosphorylation of a protein identical to or associated with the channel. Voltage-dependent phosphorylation has also been reported to underlie Ca2+ channel facilitation in chromaffin adrenal medulla and in skeletal muscle cells. We studied a possible voltage-dependent facilitation of the principal channel forming alpha 1-subunit of the dihydropyridine-sensitive smooth muscle Ca2+ channel. Single channel and whole-cell Ca2+ currents were recorded in Chinese hamster ovary cells stably expressing the class Cb Ca2+ channel alpha 1-subunit. Strong depolarizing voltage-clamp steps preceding the test pulse resulted in a 2- to 3-fold increase of the single Ca2+ channel activity and induction of mode 2-like gating behavior. Accordingly we observed a significant potentiation of the whole-cell current by approximately 50%. In contrast to the previous suggestions we found no experimental evidence for involvement of channel phosphorylation by protein kinases (cAMP-dependent protein kinase, protein kinase C and other protein kinases utilizing ATP gamma S) in the control and facilitated current. The data demonstrate that the L-type Ca2+ channel alpha 1-subunit solely expressed in Chinese hamster ovary cells is subject to a voltage-dependent facilitation but not to phosphorylation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Studies utilizing cultured muscle cells have shown that myoblast fusion requires extracellular Ca2+ and involves transient coordinated changes in cell membrane topography and cytoskeletal organization. However, neither the mechanisms by which Ca2+ influences these changes nor its cellular sites of action are known. We have investigated the effects of Ca2+ channel modulators and phorbol esters on fusion of embryonic chick myoblasts in culture. Myoblast fusion was inhibited by the Ca2+ channel blockers D600 and nitrendipine and stimulated by the Ca2+ channel activator Bay K 8644. We have obtained evidence that the tumor promoting phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) inhibits fusion through activation of protein kinase C. Myoblasts prevented from fusing by Ca2+ channel blockers or TPA display a distinctive elongated morphology that is characteristic of cells prevented from fusion by Ca2+ deprivation. The inhibition of fusion by D600 and TPA is significantly diminished in the presence of the Ca2+ ionophore A23187. TPA arrest of myoblast fusion was found to be accompanied by an increase in phosphorylation of the 20-kDa light chain of cytoplasmic myosin in a dose- and time-dependent manner. The effects of TPA on myoblast fusion and phosphorylation of myosin light chain were mimicked by the cell permeant diacylglycerol sn-1,2-dioctanoylglycerol, a potent activator of protein kinase C. The present results suggest that activators of protein kinase C block fusion by interfering with a Ca2+ signal transduction pathway and that this interference may be associated with a protein kinase C catalyzed inhibitory phosphorylation of myosin light chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号