首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Symbiotic cnidarians absorb inorganic carbon from seawater to supply intracellular dinoflagellates with CO(2) for their photosynthesis. To determine the mechanism of inorganic carbon transport by animal cells, we used plasma membrane vesicles prepared from ectodermal cells isolated from tentacles of the sea anemone, Anemonia viridis. H(14)CO(-)(3) uptake in the presence of an outward NaCl gradient or inward H(+) gradient, showed no evidence for a Cl(-)- or H(+)- driven HCO(-)(3) transport. H(14)CO(-)(3) and (36)Cl(-) uptakes were stimulated by a positive inside-membrane diffusion potential, suggesting the presence of HCO(-)(3) and Cl(-) conductances. A carbonic anhydrase (CA) activity was measured on plasma membrane (4%) and in the cytoplasm of the ectodermal cells (96%) and was sensitive to acetazolamide (IC(50) = 20 nM) and ethoxyzolamide (IC(50) = 2.5 nM). A strong DIDS-sensitive H(+)-ATPase activity was observed (IC(50) = 14 microM). This activity was also highly sensitive to vanadate and allyl isothiocyanate, two inhibitors of P-type H(+)-ATPases. Present data suggest that HCO(-)(3) absorption by ectodermal cells is carried out by H(+) secretion by H(+)-ATPase, resulting in the formation of carbonic acid in the surrounding seawater, which is quickly dehydrated into CO(2) by a membrane-bound CA. CO(2) then diffuses passively into the cell where it is hydrated in HCO(-)(3) by a cytosolic CA.  相似文献   

2.
Inorganic carbon acquisition in red tide dinoflagellates   总被引:3,自引:0,他引:3  
Carbon acquisition was investigated in three marine bloom-forming dinollagellates-Prorocentrum minimum, Heterocapsa triquetra and Ceratium lineatum. In vivo activities of extracellular and intracellular carbonic anhydrase (CA), photosynthetic O2 evolution, CO2 and HCO3- uptake rates were measured by membrane inlet mass spectrometry (MIMS) in cells acclimated to low pH (8.0) and high pH (8.5 or 9.1). A second approach used short-term 14C-disequilibrium incubations to estimate the carbon source utilized by the cells. All three species showed negligible extracellular CA (eCA) activity in cells acclimated to low pH and only slightly higher activity when acclimated to high pH. Intracellular CA (iCA) activity was present in all three species, but it increased only in P. minimum with increasing pH. Half-saturation concentrations (K1/2) for photosynthetic O2 evolution were low compared to ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) kinetics. Moreover, apparent affinities for inorganic carbon (Ci) increased with increasing pH in the acclimation, indicating the operation of an efficient CO2 concentration mechanism (CCM) in these dinoflagellates. Rates of CO2 uptake were comparably low and could not support the observed rates of photosynthesis. Consequently, rates of HCO3- uptake were high in the investigated species, contributing more than 80% of the photosynthetic carbon fixation. The affinity for HCO3- and maximum uptake rates increased under higher pH. The strong preference for HCO3- was also confirmed by the 14C-disequilibrium technique. Modes of carbon acquisition were consistent with the 13C-fractionation pattern observed and indicated a strong species-specific difference in leakage. These results suggest that photosynthesis in marine dinoflagellates is not limited by Ci even at high pH, which may occur during red tides in coastal waters.  相似文献   

3.
The presence of a carbon-concentrating mechanism in the symbiotic dinoflagellate Symbiodinium sp. was investigated. Its existence was postulated to explain how these algae fix inorganic carbon (C(i)) efficiently despite the presence of a form II Rubisco. When the dinoflagellates were isolated from their host, the giant clam (Tridacna gigas), CO(2) uptake was found to support the majority of net photosynthesis (45%-80%) at pH 8.0; however, 2 d after isolation this decreased to 5% to 65%, with HCO(3)(-) uptake supporting 35% to 95% of net photosynthesis. Measurements of intracellular C(i) concentrations showed that levels inside the cell were between two and seven times what would be expected from passive diffusion of C(i) into the cell. Symbiodinium also exhibits a distinct light-activated intracellular carbonic anhydrase activity. This, coupled with elevated intracellular C(i) and the ability to utilize both CO(2) and HCO(3)(-) from the medium, suggests that Symbiodinium sp. does possess a carbon-concentrating mechanism. However, intracellular C(i) levels are not as large as might be expected of an alga utilizing a form II Rubisco with a poor affinity for CO(2).  相似文献   

4.
In photosynthesis, cyanobacteria, algae and plants fix carbon dioxide (CO(2)) into carbohydrates; this is necessary to support life on Earth. Over 50years ago, Otto Heinrich Warburg discovered a unique stimulatory role of CO(2) in the Hill reaction (i.e., O(2) evolution accompanied by reduction of an artificial electron acceptor), which, obviously, does not include any carbon fixation pathway; Warburg used this discovery to support his idea that O(2) in photosynthesis originates in CO(2). During the 1960s, a large number of researchers attempted to decipher this unique phenomenon, with limited success. In the 1970s, Alan Stemler, in Govindjee's lab, perfected methods to get highly reproducible results, and observed, among other things, that the turnover of Photosystem II (PSII) was stimulated by bicarbonate ions (hydrogen carbonate): the effect would be on the donor or the acceptor, or both sides of PSII. In 1975, Thomas Wydrzynski, also in Govindjee's lab, discovered that there was a definite bicarbonate effect on the electron acceptor (the plastoquinone) side of PSII. The most recent 1.9? crystal structure of PSII, unequivocally shows HCO(3)(-) bound to the non-heme iron that sits in-between the bound primary quinone electron acceptor, Q(A), and the secondary quinone electron acceptor Q(B). In this review, we focus on the historical development of our understanding of this unique bicarbonate effect on the electron acceptor side of PSII, and its mechanism as obtained by biochemical, biophysical and molecular biological approaches in many laboratories around the World. We suggest an atomic level model in which HCO(3)(-)/CO(3)(2-) plays a key role in the protonation of the reduced Q(B). In addition, we make comments on the role of bicarbonate on the donor side of PSII, as has been extensively studied in the labs of Alan Stemler (USA) and Vyacheslav Klimov (Russia). We end this review by discussing the uniqueness of bicarbonate's role in oxygenic photosynthesis and its role in the evolutionary development of O(2)-evolving PSII. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

5.
Marine diatoms, the major primary producer in ocean environment, are known to take up both CO(2) and HCO(3)(-) in seawater and efficiently concentrate them intracellularly, which enable diatom cells to perform high-affinity photosynthesis under limiting CO(2). However, mechanisms so far proposed for the inorganic carbon acquisition in marine diatoms are significantly diverse despite that physiological studies on this aspect have been done with only limited number of species. There are two major hypotheses about this; that is, they take up and concentrate both CO(2) and HCO(3)(-) as inorganic forms, and efficiently supply CO(2) to Rubisco by an aid of carbonic anhydrases (biophysical CO(2)-concentrating mechanism: CCM); and as the other hypothesis, biochemical conversion of HCO(3)(-) into C(4) compounds may play a major role to supply concentrated CO(2) to Rubisco. At moment however, physiological evidence for these hypotheses were not related well to molecular level evidence. In this study, recent progresses in molecular studies on diatom-carbon-metabolism genes were related to the physiological aspects of carbon acquisition. Furthermore, we discussed the mechanisms regulating CO(2) acquisition systems in response to changes in pCO(2). Recent findings about the participation of cAMP in the signaling pathway of CO(2) concentration strongly suggested the occurrences of mammalian-type-signaling pathways in diatoms to respond to changes in pCO(2). In fact, there were considerable numbers of putative adenylyl cyclases, which may take part in the processes of CO(2) signal capturing.  相似文献   

6.
Chen X  Qiu CE  Shao JZ 《Plant physiology》2006,141(2):731-736
Photosynthetic utilization of inorganic carbon in the marine diatom Phaeodactylum tricornutum was investigated by the pH drift experiment, measurement of K(1/2) values of dissolved inorganic carbon (DIC) with pH change, and comparison of the rate of photosynthesis with the rate of the theoretical CO(2) formation from uncatalyzed HCO(3)(-) conversion in the medium. The higher pH compensation point (10.3) and insensitivity of the photosynthetic rate to acetazolamide indicate that the alga has good capacity for direct HCO(3)(-) utilization. The photosynthetic rate reached 150 times the theoretical CO(2) supply rate at 100 micromol L(-1) DIC (pH 9.0) in the presence of 10 mmol L(-1) K(+) and 46 times that in the absence of K(+), indicating that for pH 9.4-grown P. tricornutum, HCO(3)(-) in the medium is taken up through K(+)-dependent and -independent HCO(3)(-) transporters. The K(1/2) (CO(2)) values at pH 8.2 were about 4 times higher than those at pH 9.0, whereas the K(1/2) (HCO(3)(-)) values at pH 8.2 were slightly lower than those at pH 9.0 whether without or with K(+), providing further evidence for the presence of the two HCO(3)(-) transport patterns in this alga. Photosynthetic rate and affinity for HCO(3)(-) in the presence of K(+), respectively, were about 2- and 7-fold higher than those in the absence of K(+), indicating that K(+)-dependent HCO(3)(-) transport is a predominant pattern of HCO(3)(-) cellular uptake in low DIC concentration. However, as P. tricornutum was cultured at pH 7.2 or 8.0, photosynthetic affinities to HCO(3)(-) were not affected by K(+), implying that K(+)-dependent HCO(3)(-) transport is induced when P. tricornutum is cultured at high alkaline pH.  相似文献   

7.
Cyanobacteria (as well as many chemoautotrophs) actively pump inorganic carbon (in the form of HCO(3)(-)) into the cytosol in order to enhance the overall efficiency of carbon fixation. The success of this approach is dependent upon the presence of carboxysomes-large, polyhedral, cytosolic bodies which sequester ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) and carbonic anhydrase. Carboxysomes seem to function by allowing ready passage of HCO(3)(-) into the body, but hindering the escape of evolved CO(2), promoting the accumulation of CO(2) in the vicinity of RubisCO and, consequently, efficient carbon fixation. This selectivity is mediated by a thin shell of protein, which envelops the carboxysome's enzymatic core and uses narrow pores to control the passage of small molecules. In this review, we summarize recent advances in understanding the organization and functioning of these intriguing, and ecologically very important molecular machines.  相似文献   

8.
The properties of a form of ribulose diphosphate carboxylase having a high affinity for CO(2) have been studied. Its apparent Km(HCO(3) (-)) of 0.5 to 0.8 mm (pH 7.8) and calculated Km(CO(2)) of 11 to 18 mum are comparable to the values exhibited by intact chloroplasts during photosynthesis. This form of the enzyme was released from chloroplasts in hypotonic media and was unstable, rapidly converting to a form having a high Km(HCO(3) (-)) of 20 to 25 mm similar to that for the purified enzyme. Incubation of the enzyme with MgCl(2) and HCO(3) (-) yielded a third form with an intermediate Km(HCO(3) (-)) of 2.5 to 3.0 mm.The low Km form had sufficient activity both at air levels of CO(2) and at saturating CO(2) to account for the rates of photosynthesis by intact chloroplasts. The low Km form could be stabilized in the presence of ribose 5-phosphate, adenosine triphosphate, and MgCl(2), at low temperatures for up to 2 hours.  相似文献   

9.
The effects of pH-induced changes in seawater carbonate chemistry on inorganic carbon (C(i)) acquisition and domoic acid (DA) production were studied in two potentially toxic diatom species, Pseudo-nitzschia multiseries and Nitzschia navis-varingica, and the non-toxic Stellarima stellaris. In vivo activities of carbonic anhydrase (CA), photosynthetic O(2) evolution and CO(2) and HCO(3)(-) uptake rates were measured by membrane inlet MS in cells acclimated to low (7.9) and high pH (8.4 or 8.9). Species-specific differences in the mode of carbon acquisition were found. While extracellular carbonic anhydrase (eCA) activities increased with pH in P. multiseries and S. stellaris, N. navis-varingica exhibited low eCA activities independent of pH. Half-saturation concentrations (K(1/2)) for photosynthetic O(2) evolution, which were highest in S. stellaris and lowest in P. multiseries, generally decreased with increasing pH. In terms of carbon source, all species took up both CO(2) and HCO(3)(-). K(1/2) values for inorganic carbon uptake decreased with increasing pH in two species, while in N. navis-varingica apparent affinities did not change. While the contribution of HCO(3)(-) to net fixation was more than 85% in S. stellaris, it was about 55% in P. multiseries and only approximately 30% in N. navis-varingica. The intracellular content of DA increased in P. multiseries and N. navis-varingica with increasing pH. Based on our data, we propose a novel role for eCA acting as C(i)-recycling mechanism. With regard to pH-dependence of growth, the 'HCO(3)(-) user' S. stellaris was as sensitive as the 'CO(2) user' N. navis-varingica. The suggested relationship between DA and carbon acquisition/C(i) limitation could not be confirmed.  相似文献   

10.
Cyanobacteria have evolved an extremely effective single-cell CO(2) concentrating mechanism (CCM). Recent molecular, biochemical and physiological studies have significantly extended current knowledge about the genes and protein components of this system and how they operate to elevate CO(2) around Rubisco during photosynthesis. The CCM components include at least four modes of active inorganic carbon uptake, including two bicarbonate transporters and two CO(2) uptake systems associated with the operation of specialized NDH-1 complexes. All these uptake systems serve to accumulate HCO(3)(-) in the cytosol of the cell, which is subsequently used by the Rubisco-containing carboxysome protein micro-compartment within the cell to elevate CO(2) around Rubisco. A specialized carbonic anhydrase is also generally present in this compartment. The recent availability of at least nine cyanobacterial genomes has made it possible to begin to undertake comparative genomics of the CCM in cyanobacteria. Analyses have revealed a number of surprising findings. Firstly, cyanobacteria have evolved two types of carboxysomes, correlated with the form of Rubisco present (Form 1A and 1B). Secondly, the two HCO(3)(-) and CO(2) transport systems are distributed variably, with some cyanobacteria (Prochlorococcus marinus species) appearing to lack CO(2) uptake systems entirely. Finally, there are multiple carbonic anhydrases in many cyanobacteria, but, surprisingly, several cyanobacterial genomes appear to lack any identifiable CA genes. A pathway for the evolution of CCM components is suggested.  相似文献   

11.
Chemoautotrophic symbioses, in which endosymbiotic bacteria are the major source of organic carbon for the host, are found in marine habitats where sulfide and oxygen coexist. The purpose of this study was to determine the influence of pH, alternate sulfur sources, and electron acceptors on carbon fixation and to investigate which form(s) of inorganic carbon is taken up and fixed by the gamma-proteobacterial endosymbionts of the protobranch bivalve Solemya velum. Symbiont-enriched suspensions were generated by homogenization of S. velum gills, followed by velocity centrifugation to pellet the symbiont cells. Carbon fixation was measured by incubating the cells with (14)C-labeled dissolved inorganic carbon. When oxygen was present, both sulfide and thiosulfate stimulated carbon fixation; however, elevated levels of either sulfide (>0.5 mM) or oxygen (1 mM) were inhibitory. In the absence of oxygen, nitrate did not enhance carbon fixation rates when sulfide was present. Symbionts fixed carbon most rapidly between pH 7.5 and 8.5. Under optimal pH, sulfide, and oxygen conditions, symbiont carbon fixation rates correlated with the concentrations of extracellular CO(2) and not with HCO(3)(-) concentrations. The half-saturation constant for carbon fixation with respect to extracellular dissolved CO(2) was 28 +/- 3 microM, and the average maximal velocity was 50.8 +/- 7.1 micromol min(-1) g of protein(-1). The reliance of S. velum symbionts on extracellular CO(2) is consistent with their intracellular lifestyle, since HCO(3)(-) utilization would require protein-mediated transport across the bacteriocyte membrane, perisymbiont vacuole membrane, and symbiont outer and inner membranes. The use of CO(2) may be a general trait shared with many symbioses with an intracellular chemoautotrophic partner.  相似文献   

12.
The oxygen isotope composition of atmospheric CO(2) is an important signal that helps distinguish between ecosystem photosynthetic and respiratory processes. In C(4) plants the carbonic anhydrase (CA)-catalyzed interconversion of CO(2) and bicarbonate (HCO(3)(-)) is an essential first reaction for C(4) photosynthesis but also plays an important role in the CO(2)-H(2)O exchange of oxygen as it enhances the rate of isotopic equilibrium between CO(2) and water. The C(4) dicot Flaveria bidentis containing genetically reduced levels of leaf CA (CA(leaf)) has been used to test whether changing leaf CA activity influences online measurements of C(18)OO discrimination (Delta(18)O) and the proportion of CO(2) in isotopic equilibrium with leaf water at the site of oxygen exchange (theta). The Delta(18)O in wild-type F. bidentis, which contains high levels of CA relative to the rates of net CO(2) assimilation, was less than predicted by models of Delta(18)O. Additionally, Delta(18)O was sensitive to small decreases in CA(leaf). However, reduced CA activity in F. bidentis had little effect on net CO(2) assimilation, transpiration rates (E), and stomatal conductance (g(s)) until CA levels were less than 20% of wild type. The values of theta determined from measurements of Delta(18)O and the (18)O isotopic composition of leaf water at the site of evaporation (delta(e)) were low in the wild-type F. bidentis and decreased in transgenic plants with reduced levels of CA activity. Measured values of theta were always significantly lower than the values of theta predicted from in vitro CA activity and gas exchange. The data presented here indicates that CA content in a C(4) leaf may not represent the CA activity associated with the CO(2)-H(2)O oxygen exchange and therefore may not be a good predictor of theta during C(4) photosynthesis. Furthermore, uncertainties in the isotopic composition of water at the site of exchange may also limit the ability to accurately predict theta in C(4) plants.  相似文献   

13.
Stimulation of the bicarbonate dehydration reaction in thylakoid suspension under conditions of saturating light at pH 7.6-8.0 was discovered. This effect was inhibited by nigericin or the lipophilic carbonic anhydrase (CA) inhibitor ethoxyzolamide (EZ), but not by the hydrophilic CA inhibitor, acetazolamide. It was shown that the action of EZ is not caused by an uncoupling effect. It was concluded that thylakoid CA is the enzyme utilizing the light-generated proton gradient across the thylakoid membrane thus facilitating the production of CO(2) from HCO(3)(-) and that this enzyme is covered from the stroma side of thylakoids by a lipid barrier.  相似文献   

14.
Marine photosynthesis drives the oceanic biological CO2 pump to absorb CO2 from the atmosphere, which sinks more than one third of the industry-originated CO2 into the ocean. The increasing atmos-pheric CO2 and subsequent rise of pCO2 in seawater, which alters the carbonate system and related chemical reactions and results in lower pH and higher HCO3- concentration, affect photosynthetic CO2 fixation processes of phytoplanktonic and macroalgal species in direct and/or indirect ways. Although many unicellular and multicellular species can operate CO2-concentrating mechanisms (CCMs) to util-ize the large HCO3- pool in seawater, enriched CO2 up to several times the present atmospheric level has been shown to enhance photosynthesis and growth of both phytoplanktonic and macro-species that have less capacity of CCMs. Even for species that operate active CCMs and those whose photo-synthesis is not limited by CO2 in seawater, increased CO2 levels can down-regulate their CCMs and therefore enhance their growth under light-limiting conditions (at higher CO2 levels, less light energy is required to drive CCM). Altered physiological performances under high-CO2 conditions may cause genetic alteration in view of adaptation over long time scale. Marine algae may adapt to a high CO2 oceanic environment so that the evolved communities in future are likely to be genetically different from the contemporary communities. However, most of the previous studies have been carried out under indoor conditions without considering the acidifying effects on seawater by increased CO2 and other interacting environmental factors, and little has been documented so far to explain how physi-ology of marine primary producers performs in a high-CO2 and low-pH ocean.  相似文献   

15.
Inorganic carbon uptake was investigated in two marine dinoflagellates, Amphidinium carterae Hulburt and Heterocapsa oceanica Stein. Mass spectrometric and potentiometric assays indicated that both species lacked external carbonic anhydrase (CA). The presence of internal CA was demonstrated by potentiometric assay and by the inhibition of photosynthesis upon the addition of 500 μM ethoxyzolamide a membrane‐permeable inhibitor of CA. The capacity for bicarbonate transport was investigated by comparing the calculated rate of spontaneous CO2 formation at pH 8.2 and 25°C with the rate of photosynthesis after the addition of 100 μM NaHCO3. Both species appeared to have a very limited capacity for direct bicarbonate uptake. Monitoring of CO2 and O2 fluxes in both species by mass spectrometry demonstrated a rapid uptake of CO2 on illumination, to concentrations below the CO2 equilibrium concentration, indicating an effective selective uptake of CO2. This dependence of photosynthesis on free CO2 alone suggests that these species are CO2 limited in their natural environment because the CO2 concentration of seawater is very low.  相似文献   

16.
The dissolved inorganic carbon (DIC) acquisition mechanisms were researched in intact microbial mats dominated by the cyanobacteria Microcoleus chthonoplastes Thuret, by determining the effect on photosynthesis of different inhibitors. The microbial mats exhibited high affinity for DIC at alkaline pH, with K(m(DIC)) values similar to the ones described for pure cultures of cyanobacteria and algae in which carbon concentrating mechanisms have been researched. Besides, the photosynthesis was non-sensitive to pH changes within the range of 5.6-9.6, indicating that HCO(3)(-) was the main DIC source used for photosynthesis. The M. chthonoplastes mats featured external and internal carbonic anhydrase (CA) activity as measured in intact cells and cell extracts, respectively. Acetazolamide (AZ, which slowly enters the cell and then inhibits mainly the external CA) and ethoxyzolamide (EZ, which inhibits both external and internal CA) reduced significantly the oxygen evolution rates, demonstrating that the CA was implied in the DIC acquisition. Vanadate inhibited photosynthesis by 60% although its application, when CA being inhibited (i.e. after applying AZ + EZ), did not produce any additional effect. It could indicate that ATPase-dependent HCO(3)(-) use occurred and also that this putative mechanism was coupled with CA-like activity at the plasma membrane. The involvement of Na(+)-dependent HCO(3)(-) transporters in DIC acquisition was also inferred as monensin and 4-4'-diisothiocyanatostibilene-2,2'-disulfonate (DIDS) reduced photosynthesis by 70%. DIDS produced a strong inhibitory effect even after application of AZ + EZ + vanadate, indicating that this mechanism was not related to CA activity. The microbial mats become subject to very unfavourable conditions for Rubisco carboxylation at their natural habitats (e.g. external pH of 10.5 and O(2) concentration doubled with respect to saturation concentration); therefore, this putative diversity of DIC acquisition mechanisms could ensure their growth under these extreme conditions.  相似文献   

17.
HCO3^-、K^+和HSO3^-对黄瓜幼苗光合作用的影响   总被引:1,自引:0,他引:1  
本试验以‘津春4号’黄瓜幼苗叶片为试材,研究HCO3^-、K^+和HSO3^-对黄瓜幼苗光合作用的影响,试图用KHCO3水溶液中的HCO3^-作为碳源来补充CO2的不足,同时用NaHSO3适当的抑制黄瓜的光呼吸,进而提高光合速率。结果表明:HCO3^-可以作为碳源来补充大气中CO2的不足,HCO3^-、K^+和HSO3^-可以提高光合速率、叶片可溶性糖含量,可提高叶绿素a含量、叶绿素b含量及叶绿素总含量,从而增强了光合作用的原初反应,能显著提高PSI和PSII的光合电子传递速率,提高ATP合酶的活性,从而加快了光合磷酸化的进程。通过提高Rubisco羧化活性、PEPC酶的含量及活性,降低Rubisco加氧活性,加快了CO2的固定与还原。  相似文献   

18.
经济海洋褐藻羊栖菜(Hizikia fusiforme(Harv.)Okamura)低潮时常常周期性地暴露于空气中。为了认识这种海藻在潮汐循环背景下的光合特征,对其在高潮沉水和低潮干出不同条件下的光合作用碳素获得机制进行了比较。沉水时,羊栖菜主要利用海水中HCO_3~-作为外源无机碳源驱动光合作用;而在干出条件下,其光合作用的主要碳源为空气中的CO_2。在这两种不同环境条件下,光合作用与pH值的关系不同:沉水状态时,羊栖菜在高pH值(10.0)下光合活性很弱;而在干出条件下,羊栖菜在高pH值时仍有较高的光合活性。然而,光合作用无论是在沉水还是在干出条件下,对外源碳源的获得都表现出对胞外碳酸酐酶(CA)强烈的依赖性,并且其光合速率都受周围环境中无机碳源水平的限制。此外,在沉水和干出两种环境条件下,羊栖菜光合作用都表现出对氧气的敏感性。这表明,在羊栖菜中,依赖胞外CA的碳源获得机制不能使细胞内CO_2浓度提高到阻碍其光呼吸的程度。增加空气中或海水中无机碳的浓度,能促进羊栖菜的光合作用,进而增加这种海藻的水产养殖产量。  相似文献   

19.
Intestinal fluids of most marine teleosts are alkaline (pH 8.4-9.0) and contain high levels of HCO(3)(-) equivalents (40-130 mM) which are excreted at a significant rate (>100 microEq kg(-1) h(-1)). Recent research reveals the following about this substantial HCO(3)(-) secretion: (1) It is not involved in acid-base regulation or neutralisation of stomach acid, but increases in parallel with drinking rate at elevated ambient salinities suggesting a role in osmoregulation; (2) In species examined so far, all sections of the intestine can secrete bicarbonate; (3) The secretion is dependent on mucosal Cl(-), sensitive to mucosal DIDS, and immuno-histochemistry indicates involvement of an apical Cl(-)/HCO(3)(-) exchanger. In addition, hydration of CO(2) via carbonic anhydrase in combination with proton extrusion appears to be essential for bicarbonate secretion. The mode of proton extrusion is currently unknown but potential mechanisms are discussed. One consequence of the luminal alkalinity and high bicarbonate concentrations is precipitation of calcium and magnesium as carbonate complexes. This precipitation is hypothesised to reduce the osmolality of intestinal fluids and thus play a potential role in water absorption and osmoregulation. The present studies on European flounder reveal that elevated luminal calcium (but not magnesium) concentrations stimulate intestinal bicarbonate secretion both acutely and chronically, in vitro and in vivo. At the whole animal level, the result of this elevated bicarbonate secretion was increased calcium precipitation with an associated reduction in the osmolality of rectal fluids and plasma. These observations suggest direct functional links between intestinal bicarbonate secretion, divalent cation precipitation and osmoregulation in marine teleost fish.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号