首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Citrus ( Citrus sinensis L. Osbeck) leaf explants completely abscise within 48 h when exposed to saturating amounts of ethylene at 25°C. When 2,5-norbornadiene was added, 2000 μl 1−1 reduced abscission of explants also exposed to 2 μl 1−1 of ethylene to the level of the control, and 8000 μl 1−1 reduced abscission in explants exposed to 10 μl 1−1 of ethylene to the level of the control, but abscission was complete when 1 000 μl 1−1 of ethylene was used in the presence of 8 000 μl 1−1 of 2,5-norbornadiene. When explants were exposed to 2 μl 1−1 of ethylene, 2000 μl 1−1 of 2,5-norbornadiene prevented abscission if applied up to 10 h after exposure to ethylene. After 18 h, applied 2,5-norbornadiene had little effect on abscission at 48 h. A Lineweaver-Burk plot gave a 1/2 maximum value of 0.12 μl 1−1 for ethylene on abscission, 2,5-Norbornadiene gave competitive kinetics with respect to ethylene with a K1 value of approximately 120 μl 1−1 of 2,5-norbornadiene. The presence of 2,5norbornadiene stimulated ethylene production, which progressively increased as the 2,5-norbornadiene concentration was increased from 250 to 8 000 μl 1−1 2,5-Norbornadiene also suppressed the induction of cellulase and polygalacturonase by ethylene. Together, 2,5-norbornadiene and 2,4-dichlorophenoxyacetic acid were more effective than either alone in reducing abscission. 2,5-Norbornadiene also was effective in preventing the reduction of indole-3-acetic acid transport induced by ethylene.  相似文献   

2.
Rice seeds possess α-glucosidase I and II, and the action of the α-glucosidases on maltose and starch was studied. The activity on starch was increased 2.3~2.6 times in both enzymes at the concentration of 50 mM of potassium chloride. Such activation was also caused by mono and di-valent cations. The activity on maltose was not influenced by the cations. In mixed substrate experiments, liberation of 14C-glucose from 14C-maltose was not inhibited in the presence of starch, and this was also the case with that from 14C-starch in the existence of maltose. From these results, it was suggested that the α-glucosidases possess maltose-hydrolyzing site and starch-hydrolyzing site separately, and also probably regulatory. The α-glucosidases liberated only glucose from starch, and were presumed to complete hydrolysis of starch after longer incubation.  相似文献   

3.
An in vitro procedure for large scale multiplication of Sterculia urens Roxb. (Gum Kadaya Tree) has been developed using cotyledonary node segments. An average of 4.0 shoots per node were obtained on Murashige and Skoog's (MS) medium containing 2.0 mgl–1 6-benzyl amino-purine (BAP) within 21 days of initial culture. Upon subsequent subculture 16 shoots/node could be harvested every three weeks and upto three times. Sixty per cent of the shoots were successfully rooted. Rooted plantlets were transferred to plastic pots containing soil under mist house conditions before they were finally exposed to an external environment. Fifty seven per cent of the plantlets survived in nursery sheds.  相似文献   

4.
5.
The influence of indole-3-acetylaspartic acid (IAAsp) on rooting of stem cuttings from bean plants (Phaseolus vulgaris L.) of different ages, cultivated at different temperatures (17°, 21° and 25°C) was studied and compared to that of indole-3-acetic acid (IAA). At a concentration of 10–4 M, IAAsp only nonsignificantly stimulated adventitious root formation, approximately to the same level as IAA in all treatments. IAAsp at 5×10–4 M further enhanced rooting, by up 200% of control values, with little influence of temperature conditions and stock plant age. This concentration of IAA usually stimulated rooting more than the conjugate. The largest differences between the effects of IAAsp and IAA occured at the highest cultivation temperature of 25°C where stock plant age also influenced the response. The number of roots produced in comparison with the control, was enhanced from 350% on cuttings from the youngest plants to more than 600% on cuttings from the oldest. In contrast to the conjugate, 5×10–4 M IAA induced hypocotyl swelling and injury of the epidermis at the base of cuttings, in all treatments.  相似文献   

6.
Light inhibits root elongation, increases ethylene production and enhances the inhibitory action of auxins on root elongation of pea ( Pisum sativum L. cv. Weibulls Marma) seedlings. To investigate the role of ethylene in the interaction between light and auxin, the level of ethylene production in darkness was increased to the level produced in light by supplying 1-aminocyclopropane-1-carboxylic acid (ACC) or benzylaminopurine (BAP). Ethylene production was measured in excised root tips after treatment of intact seedlings for 24 h, while root growth was measured after 48 h. Auxin, at a concentration causing a partial inhibition of root elongation, did not increase ethylene production significantly. A 4-fold increase in ethylene production, caused either by light, 0.1 μ M ACC or 0.1 μ M BAP, inhibited root elongation by 40–50%. The auxins 2,4-dichlorophenoxyacetic acid and indolebutyric acid applied at 0.1 μ M inhibited root elongation by 15–25% in darkness but by 50–60% in light. Supply of ACC or BAP in darkness enhanced the inhibitory effects of auxins to about the same extent as in light. The inhibition caused by the auxins as well as by the BAP was associated with swelling of the root tips. ACC and BAP treatment synergistically increased the swelling caused by auxins. We conclude that auxin and ethylene, when applied or produced in partially inhibitory concentrations, act synergistically to inhibit root elongation and increase root diameter. The effect of light on the response of the roots to auxins is mediated by a light-induced increase in ethylene production.  相似文献   

7.
A method for plant regeneration in Robinia pseudoacacia L. from cell suspension culture was established. Non regenerative friable callus from hypocotyls and cotyledon explants from in vitro raised seedling induced on solid Murashige and Skoog (MS) medium supplemented with 0.05 mg dm−3 2,4-dichlorophenoxyacetic acid (2,4-D) was used for initiation of cell suspension cultures on same MS medium but without agar. Single cells were isolated after 3 d and the optimum cell density was 1–3 × 104 cells per cm3 of the liquid MS medium. Plating efficiency was 29.6 % and callus formed within 4 weeks was subcultured and transferred to solid MS medium supplemented with 0.6 mg dm−3 benzyladenine (BA) along with 0.05 mg dm−3 α-naphthalene-1-acetic acid (NAA) for the induction of adventitious bud primordia. The shoots developed were isolated and re-cultured on MS medium containing 0.6 mg dm−3 BA. These microshoots after dipping in 1–2 cm3 of 10 mg dm−3 indole-3-butyric acid (IBA) for 24 h in dark were cultured on half strength solid MS medium supplemented with 0.05 % charcoal and showed 80–82 % rooting within 4 weeks.  相似文献   

8.
9.
Lemna gibba plants were incubated aseptically on medium containing labelled 10-7 M indole-3-acetic acid (IAA-1-14C). Most of the radioactivity disappeared from the culture medium during a 24 h light period. A high percentage of the loss was due to photolysis and only a low percentage of the radioactivity was recovered in the plants. Uptake of 14C by the plants was strongly stimulated by light. The radioactivity taken up by the plants was the sum of photosynthetically taken up 14CO2 and 14C taken up in IAA. Analyses with the indolo-α-pyrone fluorescence method revealed that the free IAA content was almost the same in plants grown in control and in IAA media for 5 h, whereas the amount of IAA which could be liberated by alkaline hydrolysis was doubled by the presence of IAA in the medium.  相似文献   

10.
Indole-3-butyric acid (IBA) greatly enhanced the rooting of an early-flowering variety of protea, Leucadendron discolor, but had very little effect on a late-flowering variety. IBA transport and metabolism were studied in both varieties after incubating the cuttings in 3H-IBA. More of the radio-label was transported to the leaves of the easy-to-root variety than the difficult-to-root (35–45% and 10%, respectively). IBA was metabolized rapidly by the cuttings of both varieties and after 24 h most of the label was in the new metabolite. However, free IBA (about 10%) was present in the cuttings during the whole period up to the time of root emergence (4 weeks). More free IBA was accumulated in the base of easy-to-root cuttings, while in the difficult-to-root variety most of the IBA was found in the leaves. The metabolite was identified tentatively as an ester conjugate with a glucose. It is possible that IBA-glucose serves as a source for free IBA, and the difference between the varieties is a consequence of the free IBA which is released, transported and accumulated in the site of a root formation.  相似文献   

11.
12.
While indole-3-butyric acid (IBA) has been confirmed to be an endogenous form of auxin in peas, and may occur in the shoot tip in a level higher than that of indole-3-acetic acid (IAA), the physiological significance of IBA in plants remains unclear. Recent evidence suggests that endogenous IAA may play an important role in controlling stem elongation in peas. To analyze the potential contribution of IBA to stem growth we determined the effectiveness of exogenous IBA in stimulating stem elongation in intact light-grown pea seedlings. Aqueous IBA, directly applied to the growing internodes via a cotton wick, was found to be nearly as effective as IAA in inducing stem elongation, even though the action of IBA appeared to be slower than that of IAA. Apically applied IBA was able to stimulate elongation of the subtending internodes, indicating that IBA is transported downwards in the stem tissue. The profiles of growth kinetics and distribution suggest that the basipetal transport of IBA in the intact plant stem is slower than that of IAA. Following withdrawal of an application, the residual effect of IBA in growth stimulation was markedly stronger than that of IAA, which may support the notion that IBA conjugates can be a better source of free auxin through hydrolysis than IAA conjugates. It is suggested that IBA may serve as a physiologically active form of auxin in contributing to stem elongation in intact plants.  相似文献   

13.
Nanocarriers for encapsulation and sustained release of agrochemicals such as auxins have emerged as an attractive strategy to provide enhanced bioavailability and efficacy for improved crop yields and nutrition quality. Here, a comparative study was conducted on the effectiveness of chitosan-as a biopolymeric nanocarrier- and silver-as a metallic nanocarrier- on in vitro adventitious rooting potential of microcuttings in apple rootstocks, for the first time. Auxins indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) loaded silver (nAg) or chitosan nanoparticles (nChi) were synthesized. Scanning electron microscopy and transmission electron microscopy studies showed the spherical shape of the nanoparticles. The average particle size of IAA-nChi was 167.5 ± 0.1 nm while that of IBA-nChi was 123.2 ± 2.6 nm. The hydrodynamic diameter of the nAg-IAA and nAg-IBA particles were measured as 93.66 ± 5 nm and 71.41 ± 3 nm, respectively. Fourier transform infrared spectroscopy analyses confirmed the encapsulation of IAA or IBA in the chitosan nanoparticles. Meanwhile, the characteristic peaks of IAA or IBA were detected on silver nanoparticles. In-vitro adventitious rooting of microcuttings of Malling Merton 106 (MM 106) was significantly higher both in chitosan and silver nanoparticles loaded with IAA or IBA (91.7%–62.5%) compared to free IAA or IBA applications (50.0%–33.3%), except for 2.0 mg L–1 IBA (66.7%). However, the application of 2 mg L–1 IBA and IBA-nChi at all concentrations caused an undesirable large callus development.  相似文献   

14.
Anin vitro procedure for large scale multiplication ofBoswellia serrata Roxb. has been developed using cotyledonary node segments. In average 4 shoots per node were obtained on Murashige and Skoog's (MS) medium containing 0.5 mg dm−3 6-benzylaminopurine (BAP) and 0.05 mg dm−3 napthaleneacetic acid (NAA) within 22 d. By repeated subculture technique 90–100 shoots per node could be obtained after 88 d of initial culture. Shoots could be rooted on MS medium containing 1/4 salts, 1% saccharose, and a combination of 0.5 mg dm−3 indole-3-butyric acid (IBA) and 0.25 mg dm−3 indole-3-acetic acid (IAA). Addition of antioxidants like polyvinylpyrrolidone (PVP-50 mg dm−3) and ascorbic acid (100 mg dm−3) in both multiplication and rooting media prevented browning of cultures. Approximately 80% of shoots rooted within 8–10 d. Rooted plantlets were kept for 15 d in culture bottles containing SoilriteTM irrigated with a nutrient solution containing 1/4 MS salts and finally transferred to pots containing soil: SoilriteTM (1∶1), mixture with 70% transplantation success.  相似文献   

15.
Indole-3-methanol is a product of indole-3-acetic acid metabolism in wheat leaves ( Triticum compactum Host., cv. Little Club). It leads either to the production of the corresponding aldehyde and carboxylic acid, to the production of a polar glucoside which releases indole-3-methanol on β-glucosidase treatment, or to an unidentified apolar product on mild alkaline hydrolysis in aqueous methanol. With reference to a published pathway of indole-3-acetic acid degradation, the results provide evidence for a prominent role of indole-3-methanol and also for the occurrence of co-oxidation processes in wheat leaves involving indole-3-acetic acid and phenolic cosubstrates.  相似文献   

16.
17.
A polypeptide which inhibits the growth of human carcinoma cells has been characterized from Novikoff rat ascites fluid. This tumor inhibitory factor co-purified with transforming growth factor activity through acid/ethanol extraction and Bio-Gel chromatography. The two activities were completely separated by reverse phase HPLC. The tumor inhibitory factor is heat stable and requires disulfide bonds for bioactivity. This factor inhibited the anchorage independent growth of the more differentiated human colon carcinoma cell lines but did not affect the less differentiated carcinoma cells. The presence of stimulatory and inhibitory activities in the same extracts suggests that the relative concentrations of these factors may be important in the control of cell growth.  相似文献   

18.
Micropropagated shoots of Stackhousia tryonii were exposed (individually or in combination) to indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), and 1-naphthalene acetic acid (NAA) at concentrations 1, 2 or 4 g dm–3 with the view to induce rooting under ex vitro conditions. The treated microshoots were grown in a mist room for four weeks and assessed for survival, rooting percentage, number of roots and root length. The results showed that IBA at 2 g dm–3 was most effective in inducing roots. Mixing of two or more auxins markedly reduced rooting percentage indicating antagonistic effects. The results demonstrated the potential of combining ex vitro rooting and hardening in one step, with view to reducing costs of multiplying plants via micropropagation.  相似文献   

19.
Metabolism of indole-3-acetic acid in soybean [ Glycine max (L.) Merr.] was investigated with [1-14C]- and [2-14C]-indole-3-acetic acid (IAA) applied by injection into soybean hypocotyl sections and by incubation with soybean callus. Free IAA and its metabolites were extracted with 80% methanol and separated by high performance liquid chromatography with [3H]-IAA as an internal standard. Metabolism of IAA in soybean callus was much greater than that in tobacco ( Nicotiana tabacum L.) callus used for comparison. High performance liquid chromatography of soybean extracts showed at least 10 metabolite peaks including both decarboxylated and undecarboxylated products. A major unstable decarboxylated metabolite was purified. [14C]-indole-3-methanol (IM) was three times more efficient than [2-14C]-IAA as substrate for producing this metabolite. It was hydrolyzable by β-glucosidase (EC 3.2.1.21), yielding an indole and D-glucose. The indole possessed characteristics of authentic IM. Thus, the metabolite is tentatively identified as indole-3-methanol-β-D-glucopyranoside. The results suggest that soybean tissues are capable of oxidizing IAA via the decarboxylative pathway with indole-3-methanol-glucoside as a major product. The high rate of metabolism of IAA may be related to the observed growth of soybean callus with high concentrations of IAA in the culture medium.  相似文献   

20.
Recent progress in understanding the biosynthesis of the auxin, indole-3-acetic acid (IAA) in Arabidopsis thaliana is reviewed. The current situation is characterized by considerable progress in identifying, at the molecular level and in functional terms, individual reactions of several possible pathways. It is still too early to piece together a complete picture, but it becomes obvious that A. thaliana has multiple pathways of IAA biosynthesis, not all of which may operate at the same time and some only in particular physiological situations. There is growing evidence for the presence of an indoleacetamide pathway to IAA in A. thaliana, hitherto known only from certain plant-associated bacteria, among them the phytopathogen Agrobacterium tumefaciens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号