首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flow-velocity profiles over excised frog ciliated epithelium were obtained for the region within about 600 micron of the mucosa. Fluorescent particles were used as flow tracers. Both a control and an autologous mucus suspension were observed. The control culture medium was bounded by the walls of the observation chamber, and mucus was deposited on the epithelium as a blob after mixing it with tracers. In spite of the difference in boundary conditions the two profiles, normalized to maximum particle velocity and solution depth, were indistinguishable at heights over 60 micron from the mucosa. The near-mucosa profiles in contrast were unalike with mucus exhibiting a greater shear gradient than the control culture medium. It was concluded that ciliary contact is not necessary for generation of mucus flow provided the ciliary shear is not negated by the mucus "flake" or "slab" being in simultaneous contact with significant ciliostatic patches which would act as anchors.  相似文献   

2.
In cystic fibrosis (CF) patients airways mucus shows an increased viscoelasticity due to the concentration of high molecular weight components. Such mucus thickening eventually leads to bacterial overgrowth and prevents mucus clearance. The altered rheological behavior of mucus results in chronic lung infection and inflammation, which causes most of the cases of morbidity and mortality, although the cystic fibrosis complications affect other organs as well. Here, we present a quantitative study on the correlation between cystic fibrosis mucus viscoelasticity and patients clinical status. In particular, a new diagnostic parameter based on the correlation between CF sputum viscoelastic properties and the severity of the disease, expressed in terms of FEV1 and bacterial colonization, was developed. By using principal component analysis, we show that the types of colonization and FEV1 classes are significantly correlated to the elastic modulus, and that the latter can be used for CF severity classification with a high predictive efficiency (88%). The data presented here show that the elastic modulus of airways mucus, given the high predictive efficiency, could be used as a new clinical parameter in the prognostic evaluation of cystic fibrosis.  相似文献   

3.
Phospholipid lining, present at the respiratory mucus-mucosa interface, may have an important role in the protective function of the airways by its abhesive properties and may also facilitate mucus transport. To mimic respiratory mucus-mucosa interface, monolayers of three different forms of phosphatidylglycerol (PG) have been deposited on glass slides by the Langmuir-Blodgett technique. Mucus adhesion and clearance by cough of mucus on these PG-coated or noncoated surfaces have been analyzed and compared, using frog respiratory mucus as "normal" mucus. Among the three PG types studied, the phosphatidylglycerol distearoyl, which is the phospholipid with the longest saturated fatty acid chain, was found to significantly improve the mucus cough clearance by decreasing the mucus work of adhesion compared with the noncoated surfaces. On the other hand, phosphatidylglycerol dipalmitoyl did not improve mucus cough clearance although it decreased mucus adhesion, and phosphatidylglycerol dioleyl did not improve either mucus cough clearance or mucus adhesion.  相似文献   

4.

Background

Ascending infection from the colonized vagina to the normally sterile intrauterine cavity is a well-documented cause of preterm birth. The primary physical barrier to microbial ascension is the cervical canal, which is filled with a dense and protective mucus plug. Despite its central role in separating the vaginal from the intrauterine tract, the barrier properties of cervical mucus have not been studied in preterm birth.

Methods and Findings

To study the protective function of the cervical mucus in preterm birth we performed a pilot case-control study to measure the viscoelasticity and permeability properties of mucus obtained from pregnant women at high-risk and low-risk for preterm birth. Using extensional and shear rheology we found that cervical mucus from women at high-risk for preterm birth was more extensible and forms significantly weaker gels compared to cervical mucus from women at low-risk of preterm birth. Moreover, permeability measurements using fluorescent microbeads show that high-risk mucus was more permeable compared with low-risk mucus.

Conclusions

Our findings suggest that critical biophysical barrier properties of cervical mucus in women at high-risk for preterm birth are compromised compared to women with healthy pregnancy. We hypothesize that impaired barrier properties of cervical mucus could contribute to increased rates of intrauterine infection seen in women with preterm birth. We furthermore suggest that a robust association of spinnbarkeit and preterm birth could be an effectively exploited biomarker for preterm birth prediction.  相似文献   

5.
Tropical reef fishes are exposed to high levels of damaging ultraviolet radiation. Here we report the widespread distribution of both UVA- and UVB-absorbing compounds in the epithelial mucus of these fishes. Mucus from 137 reef fish species was examined by spectrophotometry and 90% were found to have strong absorbance peaks between 290 and 400nm. Most fish species (78%) had more than one peak, that suggests a broad-band ultraviolet screening function for their mucus. Thalassoma duperrey, a tropical wrasse, was able to alter the absorbance of its epithelial mucus in response to both naturally and experimentally manipulated UV regimes. Visual modeling suggests that a fish with UV vision, such as Dascyllus albisella, could detect the changes in mucus spectra of T. duperrey that occurred in these experiments.  相似文献   

6.

Background

Over-production of mucus is an important pathophysiological feature in chronic airway disease such as chronic obstructive pulmonary disease (COPD) and asthma. Cigarette smoking (CS) is the leading cause of COPD. Oxidative stress plays a key role in CS-induced airway abnormal mucus production. Hydrogen protected cells and tissues against oxidative damage by scavenging hydroxyl radicals. In the present study we investigated the effect of hydrogen on CS-induced mucus production in rats.

Methods

Male Sprague-Dawley rats were divided into four groups: sham control, CS group, hydrogen-rich saline pretreatment group and hydrogen-rich saline control group. Lung morphology and tissue biochemical changes were determined by immunohistochemistry, Alcian Blue/periodic acid-Schiff staining, TUNEL, western blot and realtime RT-PCR.

Results

Hydrogen-rich saline pretreatment attenuated CS-induced mucus accumulation in the bronchiolar lumen, goblet cell hyperplasia, muc5ac over-expression and abnormal cell apoptosis in the airway epithelium as well as malondialdehyde increase in the BALF. The phosphorylation of EGFR at Tyr1068 and Nrf2 up-regulation expression in the rat lungs challenged by CS exposure were also abrogated by hydrogen-rich saline.

Conclusion

Hydrogen-rich saline pretreatment ameliorated CS-induced airway mucus production and airway epithelium damage in rats. The protective role of hydrogen on CS-exposed rat lungs was achieved at least partly by its free radical scavenging ability. This is the first report to demonstrate that intraperitoneal administration of hydrogen-rich saline protected rat airways against CS damage and it could be promising in treating abnormal airway mucus production in COPD.  相似文献   

7.
Fish mucus has previously been reported to change in appearance and composition among species and in response to changes in salinity and disease status. This study reports on the mucus viscosity and glycoprotein biochemistry of Atlantic salmon (Salmo salar L.), brown trout (Salmo trutta L.) and rainbow trout (Oncorhynchus mykiss Walbaum) in freshwater and seawater, both naïve to and affected by amoebic gill disease (AGD). Cutaneous mucus viscosity was measured over a range of shear rates (11.5, 23, 46 and 115 s–1), and non-Newtonian behaviour was demonstrated for all three species. Mucus viscosity was significantly greater in seawater than in freshwater for all species, and significantly lower in AGD-affected Atlantic salmon and brown trout. Mucus glucose, total protein and osmolality data indicated that differences in viscosity due to salinity were mostly attributed to changes in mucus hydration, while differences due to disease were mostly attributed to changes in mucus composition. Trends in gill mucus cell histochemistry included shifts in glycoproteins from neutral mucins in freshwater to acidic mucins in seawater, and shifts towards neutral mucins, with an increase in mucus cell numbers, in response to AGD. Results suggested that Atlantic salmon and brown trout are more similar to one another in their mucus profile than to rainbow trout. Atlantic salmon and brown trout both exhibited a whole-body mucus response to AGD, whereas rainbow trout exhibited only a local gill response. Findings hold implications for fish physiology and pathology, and indicate that future fish-disease management strategies should be species and condition specific.Communicated by I.D. HumeThe word mucus has been used in its noun form throughout the paper for clarity
An erratum to this article can be found at .  相似文献   

8.
Two hypotheses have been proposed recently that offer different views on the role of airway surface liquid (ASL) in lung defense. The "compositional" hypothesis predicts that ASL [NaCl] is kept low (<50 mM) by passive forces to permit antimicrobial factors to act as a chemical defense. The "volume" hypothesis predicts that ASL volume (height) is regulated isotonically by active ion transport to maintain efficient mechanical mucus clearance as the primary form of lung defense. To compare these hypotheses, we searched for roles for: (1) passive forces (surface tension, ciliary tip capillarity, Donnan, and nonionic osmolytes) in the regulation of ASL composition; and (2) active ion transport in ASL volume regulation. In primary human tracheobronchial cultures, we found no evidence that a low [NaCl] ASL could be produced by passive forces, or that nonionic osmolytes contributed substantially to ASL osmolality. Instead, we found that active ion transport regulated ASL volume (height), and that feedback existed between the ASL and airway epithelia to govern the rate of ion transport and volume absorption. The mucus layer acted as a "reservoir" to buffer periciliary liquid layer height (7 microm) at a level optimal for mucus transport by donating or accepting liquid to or from the periciliary liquid layer, respectively. These data favor the active ion transport/volume model hypothesis to describe ASL physiology.  相似文献   

9.

Background

Protection of the large intestine with its enormous amount of commensal bacteria is a challenge that became easier to understand when we recently could describe that colon has an inner attached mucus layer devoid of bacteria (Johansson et al. (2008) Proc. Natl. Acad. Sci. USA 105, 15064–15069). The bacteria are thus kept at a distance from the epithelial cells and lack of this layer, as in Muc2-null mice, allow bacteria to contact the epithelium. This causes colitis and later on colon cancer, similar to the human disease Ulcerative Colitis, a disease that still lacks a pathogenetic explanation. Dextran Sulfate (DSS) in the drinking water is the most widely used animal model for experimental colitis. In this model, the inflammation is observed after 3–5 days, but early events explaining why DSS causes this has not been described.

Principal Findings

When mucus formed on top of colon explant cultures were exposed to 3% DSS, the thickness of the inner mucus layer decreased and became permeable to 2 µm fluorescent beads after 15 min. Both DSS and Dextran readily penetrated the mucus, but Dextran had no effect on thickness or permeability. When DSS was given in the drinking water to mice and the colon was stained for bacteria and the Muc2 mucin, bacteria were shown to penetrate the inner mucus layer and reach the epithelial cells already within 12 hours, long before any infiltration of inflammatory cells.

Conclusion

DSS thus causes quick alterations in the inner colon mucus layer that makes it permeable to bacteria. The bacteria that reach the epithelial cells probably trigger an inflammatory reaction. These observations suggest that altered properties or lack of the inner colon mucus layer may be an initial event in the development of colitis.  相似文献   

10.
Glycosaminoglycans and NO synthase probably regulate mucous cell secretion in the skin of Tapes philippinarum. We have demonstrated the presence of "protein" cells, "glycogen" cells, "phenol" cells and five types of mucous cells, with different chemical composition of the mucus in the mantle epithelium of T. philippinarum. The foot epithelium contained "protein" cells and two types of mucous cells. Using biotinylated lectins, in the mantle and foot epithelia we have shown specific sites for the following oligosaccharides: alpha-D-glucose, alpha-D-mannose, alpha-L-fucose, alpha-D-1,3-N-acetyl-galactosamine and alpha-N-acetyl-glucosamine. nNOS immunoreactivity in the intraepithelial and intradermal cells and in the mucocytes suggested a regulatory role of NO in mucus secretion, as demonstrated also in other invertebrates.  相似文献   

11.
In recent years, diseases of corals caused by opportunistic pathogens have become widespread. How opportunistic pathogens establish on coral surfaces, interact with native microbiota, and cause disease is not yet clear. This study compared the utilization of coral mucus by coral-associated commensal bacteria (“Photobacterium mandapamensis” and Halomonas meridiana) and by opportunistic Serratia marcescens pathogens. S. marcescens PDL100 (a pathogen associated with white pox disease of Acroporid corals) grew to higher population densities on components of mucus from the host coral. In an in vitro coculture on mucus from Acropora palmata, S. marcescens PDL100 isolates outgrew coral isolates. The white pox pathogen did not differ from other bacteria in growth on mucus from a nonhost coral, Montastraea faveolata. The ability of S. marcescens to cause disease in acroporid corals may be due, at least in part, to the ability of strain PDL100 to build to higher population numbers within the mucus surface layer of its acroporid host. During growth on mucus from A. palmata, similar glycosidase activities were present in coral commensal bacteria, in S. marcescens PDL100, and in environmental and human isolates of S. marcescens. The temporal regulation of these activities during growth on mucus, however, was distinct in the isolates. During early stages of growth on mucus, enzymatic activities in S. marcescens PDL100 were most similar to those in coral commensals. After overnight incubation on mucus, enzymatic activities in a white pox pathogen were most similar to those in pathogenic Serratia strains isolated from human mucosal surfaces.Serratia is a gammaproteobacterium frequently isolated from waters, plants, and animals (7). Some isolates of Serratia are well-characterized symbionts of invertebrates. Serratia marcescens and Serratia liquefaciens have been identified as vertically transmitted symbionts of the sugar beet maggot (9). Serratia colonizes male and female reproductive tracts of the maggots, eggs, and pharyngeal filter. There, the bacteria are hypothesized to aid in metamorphosis by digesting chitinous puparial walls (9). In the gut of another insect, the diamondback moth, strains of S. marcescens appear to live as commensals capable of modestly (5 to 8%) increasing growth rates of the host (8). Serratia strains have also been isolated from feces and cloacal swabs from clinically normal captive birds, but not from organs or carcasses of sick or diseased animals housed within the same facility (3, 20). Serratia spp. have also been linked to diseases of invertebrate animals and their larvae (for reviews, see references 7, 15, and 21). To cause diseases in nematodes and flies, S. marcescens first colonizes the intestines, degrades cells of the alimentary tract and then spreads to other organs (14, 21). There are, however, exceptions to this mode of infection. Serratia entomophila, the causal agent of amber disease in grubs, grows within the alimentary tract of the animal to >106 CFU. However, bacteria neither attach to nor colonize surfaces of the gut; rather, they adhere to gut contents (10) and cause the appearance of signs by producing the Sep toxin that inhibits accumulation of the insect''s digestive serine proteases and disrupts the cytoskeletal network (6). It appears, therefore, that various isolates of Serratia are capable of entering into a full range of interactions (from mutualistic to commensal to pathogenic) with their animal hosts (for reviews, see references 7, 15, and 21).A strain of S. marcescens, PDL100, was shown to be associated with white pox disease of the threatened Caribbean coral Acropora palmata (22, 27). White pox disease results in coral tissue necrosis, exposing carbonate skeleton at a rate of 2.5 cm2 day−1 (22). It is not yet clear how S. marcescens PDL100 colonizes and infects corals. It is likely that to cause disease, the pathogen first needs to colonize and establish within the coral surface mucus layer.The coral surface mucus layer contains polymers of mixed origin. Coral mucus is made in the mucocytes of the polyp, where the photosynthate produced by the coral symbiotic dinoflagellate Symbiodinium spp. is converted into polymers that are excreted onto the coral surface (for a review, see reference 2). A glycoprotein is the major component of coral mucus from both hard and soft corals (16, 17, 19). The composition of the glycoprotein differs among coral species (4, 17). The mucus polymer of Acropora formosa, for example, contains 36 to 38% of neutral sugars, 18 to 22% of amino sugars, and 19 to 30% of amino acids; lipids make up 4.2% of the polymer (17). In the mucus of A. formosa, the oligosaccharide decorations (two to four sugar residues long) are attached to the polypeptide backbone by an O-glycosidic link to serine or threonine through the carbon 1 of mannose (16). The glycoproteins from A. formosa and Pseudopterogorgia americana corals contain terminal arabinose residues linked by a β1→2 or β1→3 bond. In the mucus of acroporid corals, arabinose, N-acetyl-glucosamine, mannose, glucose, galactose, N-acetyl-galactosamine, and fucose were the major sugars; serine and threonine were the major amino acids (4, 17). The elucidation of the chemical structure of coral mucus is complicated by the fact that the mucus contains excretions of coral mucocytes, extracellular substances produced by the associated microbiota as well as oligomers that may result from the degradation of these polymers (for reviews, see references 2 and 24).In this study, we tested the hypothesis that S. marcescens PDL100 is capable of a more extensive utilization of A. palmata mucus than other environmental or pathogenic isolates of S. marcescens. This hypothesis is based on the recent discoveries that pathogenic and commensal host-associated bacteria differ in their patterns of carbon source utilization during growth on components of the mucus that lines host surfaces (5, 26). These different strategies of mucus utilization may allow pathogenic bacteria to outcompete native residents and establish within the host''s mucosa (5, 13, 26). To test this hypothesis, growth of the strain PDL100 on coral mucus and enzymatic activities induced during growth on mucus were assayed and compared to those of pathogenic and environmental isolates of S. marcescens and three native coral-associated bacteria.  相似文献   

12.
Cystic fibrosis (CF) lung disease is characterized by persistent lung infection. Thickened (concentrated) mucus in the CF lung impairs airway mucus clearance, which initiates bacterial infection. However, airways have other mechanisms to prevent bacterial infection, including neutrophil-mediated killing. Therefore, we examined whether neutrophil motility and bacterial capture and killing functions are impaired in thickened mucus. Mucus of three concentrations, representative of the range of normal (1.5 and 2.5% dry weight) and CF-like thickened (6.5%) mucus, was obtained from well-differentiated human bronchial epithelial cultures and prepared for three-dimensional studies of neutrophil migration. Neutrophil chemotaxis in the direction of gravity was optimal in 1.5% mucus, whereas 2.5% mucus best supported neutrophil chemotaxis against gravity. Lateral chemokinetic movement was fastest on airway epithelial surfaces covered with 1.5% mucus. In contrast, neutrophils exhibited little motility in any direction in thickened (6.5%) mucus. In in vivo models of airway mucus plugs, neutrophil migration was inhibited by thickened mucus (CF model) but not by normal concentrations of mucus ("normal" model). Paralleling the decreased neutrophil motility in thickened mucus, bacterial capture and killing capacity were decreased in CF-like thickened mucus. Similar results with each mucus concentration were obtained with mucus from CF cultures, indicating that inhibition of neutrophil functions was mucus concentration dependent not CF source dependent. We conclude that concentrated ("thick") mucus inhibits neutrophil migration and killing and is a key component in the failure of defense against chronic airways infection in CF.  相似文献   

13.

Rationale

Epithelial remodelling in asthma is characterised by goblet cell hyperplasia and mucus hypersecretion for which no therapies exist. Differentiated bronchial air-liquid interface cultures from asthmatic children display high goblet cell numbers. Epidermal growth factor and its receptor have been implicated in goblet cell hyperplasia.

Objectives

We hypothesised that EGF removal or tyrphostin AG1478 treatment of differentiating air-liquid interface cultures from asthmatic children would result in a reduction of epithelial goblet cells and mucus secretion.

Methods

In Aim 1 primary bronchial epithelial cells from non-asthmatic (n = 5) and asthmatic (n = 5) children were differentiated under EGF-positive (10ng/ml EGF) and EGF-negative culture conditions for 28 days. In Aim 2, cultures from a further group of asthmatic children (n = 5) were grown under tyrphostin AG1478, a tyrosine kinase inhibitor, conditions. All cultures were analysed for epithelial resistance, markers of differentiation using immunocytochemistry, ELISA for MUC5AC mucin secretion and qPCR for MUC5AC mRNA.

Results

In cultures from asthmatic children the goblet cell number was reduced in the EGF negative group (p = 0.01). Tyrphostin AG1478 treatment of cultures from asthmatic children had significant reductions in goblet cells at 0.2μg/ml (p = 0.03) and 2μg/ml (p = 0.003) as well as mucus secretion at 2μg/ml (p = 0.04).

Conclusions

We have shown in this preliminary study that through EGF removal and tyrphostin AG1478 treatment the goblet cell number and mucus hypersecretion in differentiating air-liquid interface cultures from asthmatic children is significantly reduced. This further highlights the epidermal growth factor receptor as a potential therapeutic target to inhibit goblet cell hyperplasia and mucus hypersecretion in asthma.  相似文献   

14.
  • 1.1. Sialidase activity is detectable in whole cervical mucus of normal women throughout the menstrual cycle and presents cyclic variations towards endogenous and exogenous substrates.
  • 2.2. The level of sialic acid bound to the mucus increases progressively till mid-cycle and declines in the post-ovulatory phase.
  • 3.3. The sialidase of the mucus probably derives from different sources and its role remains speculative.
  相似文献   

15.
Wang YY  Lai SK  So C  Schneider C  Cone R  Hanes J 《PloS one》2011,6(6):e21547
Mucus secretions typically protect exposed surfaces of the eyes and respiratory, gastrointestinal and female reproductive tracts from foreign entities, including pathogens and environmental ultrafine particles. We hypothesized that excess exposure to some foreign particles, however, may cause disruption of the mucus barrier. Many synthetic nanoparticles are likely to be mucoadhesive due to hydrophobic, electrostatic or hydrogen bonding interactions. We therefore sought to determine whether mucoadhesive particles (MAP) could alter the mucus microstructure, thereby allowing other foreign particles to more easily penetrate mucus. We engineered muco-inert probe particles 1 μm in diameter, whose diffusion in mucus is limited only by steric obstruction from the mucus mesh, and used them to measure possible MAP-induced changes to the microstructure of fresh human cervicovaginal mucus. We found that a 0.24% w/v concentration of 200 nm MAP in mucus induced a ~10-fold increase in the average effective diffusivity of the probe particles, and a 2- to 3-fold increase in the fraction capable of penetrating physiologically thick mucus layers. The same concentration of muco-inert particles, and a low concentration (0.0006% w/v) of MAP, had no detectable effect on probe particle penetration rates. Using an obstruction-scaling model, we determined that the higher MAP dose increased the average mesh spacing ("pore" size) of mucus from 380 nm to 470 nm. The bulk viscoelasticity of mucus was unaffected by MAP exposure, suggesting MAP may not directly impair mucus clearance or its function as a lubricant, both of which depend critically on the bulk rheological properties of mucus. Our findings suggest mucoadhesive nanoparticles can substantially alter the microstructure of mucus, highlighting the potential of mucoadhesive environmental or engineered nanoparticles to disrupt mucus barriers and cause greater exposure to foreign particles, including pathogens and other potentially toxic nanomaterials.  相似文献   

16.
Summary High-voltage transmission electron microscopy and cryo-ultramicrotomy together with scanning electron microscopy and some conventional transmission electron microscopy of ultrathin sections have been applied to the mucous surfaces of bovine olfactory and respiratory epithelia. Distal segments of olfactory cilia tend to run in parallel and could be followed over distances up to about 30 m using high-voltage electron microscopy. This technique and scanning electron microscopy showed that on average 12–13 of such cilia could be observed per nerve ending. After correction for obscured cilia this number becomes about 17. High-voltage micrographs and micrographs made from sections prepared with a cryo-ultramicrotome showed the presence of electron-lucent pockets inside the olfactory mucus. The latter technique also showed that the mucus itself is not fibrous, but rather a continuum varying in electron density. The mucus layer contains various granular structures. Ciliary and microvillar membranes appear thicker with cryo-ultramicrotomy than when the sections are prepared with conventional techniques. The cores of the axonemal microtubules in olfactory as well as in respiratory cilia are darkly stained with this technique. Vesicles present inside the nerve endings are also darkly stained. Dimensions and some other numerical values of interest in olfaction are presented.  相似文献   

17.
Intestinal mucus, a viscous secretion that lines the mucosa, is believed to be a barrier to absorption of many therapeutic compounds and carriers, and is known to play an important physiological role in controlling pathogen invasion. Nevertheless, there is as yet no clear understanding of the barrier properties of mucus, such as the nature of the molecular interactions between drug molecules and mucus components as well as those that govern gel formation. Secretory mucins, large and complex glycoprotein molecules, are the principal determinants of the viscoelastic properties of intestinal mucus. Despite the important role that mucins play in controlling transport and in diseases such as cystic fibrosis, their structures remain poorly characterized. The major intestinal secretory mucin gene, MUC2, has been identified and fully sequenced. The present study was undertaken to determine a detailed structure of the cysteine-rich region within the C-terminal end of human intestinal mucin (MUC2) via homology modeling, and explore possible configurations of a dimer of this cysteine-rich region, which may play an important role in governing mucus gel formation. Based on sequence–structure alignments and three-dimensional modeling, a cystine knot tertiary structure homologous to that of human chorionic gonadotropin (HCG) is predicted at the C-terminus of MUC2. Dimers of this C-terminal cystine knot (CTCK) were modeled using sequence alignment based on HCG and TGF-beta, followed by molecular dynamics and simulated annealing. Results support the formation of a cystine knot dimer with a structure analogous to that of HCG.   相似文献   

18.

Background

Increased mucus secretion is one of the important characteristics of the response to smoke inhalation injuries. We hypothesized that gel-forming mucins may contribute to the increased mucus production in a smoke inhalation injury. We investigated the role of c-Jun N-terminal kinase (JNK) in modulating smoke-induced mucus secretion.

Methods

We intubated mice and exposed them to smoke from burning cotton for 15 min. Their lungs were then isolated 4 and 24 h after inhalation injury. Three groups of mice were subjected to the smoke inhalation injury: (1) wild-type (WT) mice, (2) mice lacking JNK1 (JNK1-/- mice), and (3) WT mice administered a JNK inhibitor. The JNK inhibitor (SP-600125) was injected into the mice 1 h after injury.

Results

Smoke exposure caused an increase in the production of mucus in the airway epithelium of the mice along with an increase in MUC5AC gene and protein expression, while the expression of MUC5B was not increased compared with control. We found increased MUC5AC protein expression in the airway epithelium of the WT mice groups both 4 and 24 h after smoke inhalation injury. However, overproduction of mucus and increased MUC5AC protein expression induced by smoke inhalation was suppressed in the JNK inhibitor-treated mice and the JNK1 knockout mice. Smoke exposure did not alter the expression of MUC1 and MUC4 proteins in all 3 groups compared with control.

Conclusion

An increase in epithelial MUC5AC protein expression is associated with the overproduction of mucus in smoke inhalation injury, and that its expression is related on JNK1 signaling.  相似文献   

19.
Depletion of the periciliary liquid in "Cystic Fibrosis" airway disease results in reduced mucociliary transport, persistent mucus hypersecretion and consequently increased height of the luminal mucus layer, so hypoxic gradients in the mucus plugs are developed. Because of anaerobic lung zones, it is highly probable that anaerobic bacteria not detected by routine bacteriologic culture methods also reside within the mucus. Notwithstanding this evidence, microbiology laboratories working in the cystic fibrosis field do not generally use strict anaerobic bacteriologic cultures to determine the presence of anaerobic bacteria in the Cystic Fibrosis lung. The aim of this review is to focus on the published data regarding the finding of anaerobic bacteria in cystic fibrosis airway disease. Therefore, microbiology, diagnosis, antimicrobial susceptibility and possible impact on clinical management of anaerobic bacteria lung infection in cystic fibrosis are described.  相似文献   

20.
The ability to count bacteria associated with reef-building corals in a rapid, reliable, and cost-effective manner has been hindered by the viscous and highly autofluorescent nature of the coral mucus layer (CML) in which they live. We present a new method that disperses bacterial cells by trypsinization prior to 4′,6-diamidino-2-phenylindole (DAPI) staining and quantification by epifluorescence microscopy. We sampled seawater and coral mucus from Porites lobata from 6 reef sites influenced by wastewater intrusion and 2 reef sites unaffected by wastewater in Hawaii. Bacterial and zooxanthella abundances and cell sizes were quantified for each sample. Bacteria were more abundant in coral mucus (ranging from 5.3 × 105 ± 1.0 × 105 cells ml−1 to 1.8 × 106 ± 0.2 × 106 cells ml−1) than in the surrounding seawater (1.9 × 105 ± 0.1 × 105 cells ml−1 to 4.2 × 105 ± 0.2 × 105 cells ml−1), and the mucus-associated cells were significantly smaller than their seawater counterparts at all sites (P < 0.0001). The difference in cell size between mucus- and seawater-associated bacteria decreased at wastewater-influenced sites, where simultaneously mucus bacteria were larger and seawater bacteria were smaller than those at uninfluenced sites. The abundance of zooxanthellae in mucus ranged from 1.1 × 105 ± 0.1 × 105 cells ml−1 to 3.4 × 105 ± 0.3 × 105 cells ml−1. The frequency of dividing cells (FDC) was higher in the surrounding seawater than in mucus, despite finding that a 1,000-fold-higher zooxanthella biovolume than bacterial biovolume existed in the CML. Establishment of a standardized protocol for enumeration will provide the field of coral microbial ecology with the urgently needed ability to compare observations across studies and regions.The extremely viscous and highly autofluorescent nature of coral mucus has been a major challenge in developing enumeration techniques and has limited our ability to study the ecological interactions among coral mucus layer (CML)-associated microbial communities. Only a few studies have used direct counts to quantify bacteria in the CML, and the methods and subsequent results vary widely. The techniques have included scanning electron microscopy (SEM) (34), phase-contrast microscopy (27), and epifluorescent microscopy using a variety of stains (acridine orange staining [8], SYBR gold [20], and 4′,6-diamidino-2-phenylindole [DAPI] [3]). Bacterial abundances reported from these studies spanned more than 5 orders of magnitude (from 1.6 × 102 cells [cm2]−1 using acridine orange [8] to 6.2 × 107 cells [cm2]−1 using SYBR gold [20]), and some of the studies are difficult to compare to each other because different units were used, such as cells ml−1 of mucus and cells (cm2)−1 of coral. Some variation in abundance is likely due to differences in mucus sampling methods and differences among coral species. However, the enormous quantity of autofluorescence emitted in green and red wavelengths found in most coral species creates a substantial challenge for reliably counting fluorescently stained cells in that portion of the spectrum, because many of the particles are bacterium sized. Many of these same particles could be visible with phase-contrast microscopy as well. Thus far, researchers quantifying CML-associated bacteria using epifluorescence microscopy have prepared their samples by following well-established protocols that were developed for seawater. We suggest that the viscous and autofluorescent nature of coral mucus may require some modifications from standard seawater protocols for epifluorescence microscopy to be most effective.SEM is an alternative to fluorescence-dependent techniques. It has the advantage of acquiring images with sufficient detail to distinguish among particles and cells, but this method is time-consuming, visualizes only the surface of the sample, and is not widely available or affordable enough for it to be a standard field protocol. An additional limitation is that most studies that have employed SEM for CML observation have found bacteria to be too dispersed to count in a reasonable number of micrographs (8, 19).Here we present a new method that disperses bacterial cells by enzymatically digesting the mucus with trypsin (an adaptation of routine cellular biology cell line culture procedures) and subsequently staining the cells with DAPI for rapid quantification using epifluorescence microscopy. DAPI fluoresces in the blue end of the spectrum, and its emission does not overlap with the autofluorescence of the mucus samples. This method is rapid, uses reagents and equipment readily available in microbial ecology laboratories, and can provide necessary information for studies of the ecology of microbial cells associated with mucus. It may also be helpful for studies of other aquatic gel-associated microbial communities.This visualization capability revealed that bacteria living with the reef-building coral Porites lobata were significantly smaller than their water-associated counterparts and that this difference is reduced in reefs heavily influenced by anthropogenic impacts. There is only one other report that we are aware of that observed small bacterial cell size in mucus from corals (of the genus Fungia), but that study did not quantify cell size (34). Given that mucus is a carbon-rich environment (6, 11, 12, 18, 24, 25, 31), this discovery is counterintuitive. It highlights questions regarding the ecological interactions that must occur in situ to select for small cell size in such a rich environment (3, 4, 7, 8, 11, 25, 34).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号