首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Healthy adults were examined in three series of experiments with formation of an unconscious visual set: 1) the set was formed by repeated presentation of pairs of unequal circles (control); 2) an additional task of recognition of words/pseudowords was introduced into the context of the set-forming trials; 3) in the task additionally introduced, a subject had to spatially localize a certain target letter in a letter matrix. Scores of stability of the visual set to circles were compared. Coherence of the cortical electric activity in the alpha band was analyzed. We revealed a significant decrease in stability (rigidity) of the nonverbal visual set in the series with the additional task of spatial localization of the target stimulus. On the contrary, the set rigidity increased in the series with additional recognition of the verbal stimulus. EEG coherence patterns and behavioral data suggest that successful cognitive performance that demands dynamic situation-dependent shifts of unconscious sets takes place under conditions of alternation of tasks involving, predominantly, either the ventral ("what?") or dorsal ("where?") visual streams and, respectively, anterior or posterior systems of selective attention.  相似文献   

2.
The experimental evidence that the cognitive set shifting in healthy humans depends on the context of cognitive performance is discussed. Lability/rigidity of the experimentally formed unconscious visual set is largely determined by the type of additional task ("what?" or "where?", i. e., stimulus recognition or spatial localization, respectively) introduced into the context of the experiment. It is suggested that the acquired set more readily shifts to a new one more adequate to modified conditions in case of alternation of the ventral and dorsal visual pathways involved in the information processing in the context of cognitive performance.  相似文献   

3.
形状和空间位置知觉两条通路的功能磁共振研究   总被引:5,自引:1,他引:4  
利用功能磁共振成像(fMRI) 技术,研究在处理形状知觉、位置知觉和特定形状图形的空间位置知觉的情况下,人类视皮层背侧(Dorsal stream) 和腹侧(Ventral stream) 两条通路是怎样反应的。结果发现:形状知觉仅引起腹侧通路的兴奋;空间位置的知觉引起背侧通路的兴奋;特定形状的空间位置知觉引起腹侧通路和背侧通路的共同兴奋。这一结果丰富了对人类视觉皮层的两条通路在功能上定位的认识。  相似文献   

4.
Adult subjects were asked to recognize a hierarchical visual stimulus (a letter) while their attention was drawn to either the global or local level of the stimulus. Event-related potentials (ERP) and psychophysical indices (reaction time and percentage of correct responses) were measured. An analysis of psychophysical indices showed the global level precedence effect, i.e., the increase in a small letter recognition time when this letter is a part of incongruent stimulus. An analysis of ERP components showed level-related (global vs. local) differences in the timing and topography of the brain organization of perceptual processing and regulatory mechanisms of attention. Visual recognition at the local level was accompanied by (1) stronger activation of the visual associative areas (Pz and T6) at the stage of sensory features analysis (P1 ERP component), (2) involvement mainly of inferior temporal cortices of the right hemisphere (T6) at the stage of sensory categorization (P2 ERP component), and (3) involvement of prefrontal cortex of the right hemisphere at the stage of the selection of the relevant features of the target (N2 ERP component). Visual recognition at the global level was accompanied by (1) pronounced involvement of mechanisms of early sensory selection (N1 ERP component), (2) prevailing activation of parietal cortex of the right hemisphere (P4) at the stage of sensory categorization (P2 ERP component) as well as at the stage of the target stimulus identification (P3 ERP component). It is suggested that perception at the global level of the hierarchical stimulus is related primarily to the analysis of the spatial features of the stimulus in the dorsal visual system whereas the perception at the local level primarily involves an analysis of the object-related features in the ventral visual system.  相似文献   

5.
Adult subjects were asked to recognize a hierarchical visual stimulus (a letter) while their attention was drawn to either the global or local level of the stimulus. Event-related potentials (ERP) and behavioral indices (reaction time and percentage of correct responses) were measured. An analysis of behavioral indices showed the global level precedence effect, i.e. the increase in a small letter recognition time when this letter is a part of incongruent stimulus. An analysis of ERP components showed level-related (global vs. local) differences in the timing and topography of the brain organization of perceptual processing and regulatory mechanisms of attention. Visual recognition at the local level was accompanied by (1) stronger activation of the visual associative areas (P z and T 6) at the stage of sensory features analysis (P1 ERP component), (2) involvement mainly of inferior temporal cortices of the right hemisphere (T 6) at the stage of sensory categorization (P2 ERP component), and (3) involvement of prefrontal cortex of the right hemisphere at the stage of selection of the relevant features of the target (N2 ERP component). Visual recognition at the global level was accompanied by (1) pronounced involvement of mechanisms of early sensory selection (N1 ERP component), (2) prevailing activation of parietal cortex of the right hemisphere (P 4) at the stage of sensory categorization (P2 ERP component) as well as at the stage of the target stimulus identification (P3 ERP component). We suggested that perception of the hierarchical stimulus at the global level is related primarily to the analysis of its spatial features in the dorsal visual system whereas the perception at the local level primarily involves an analysis of the object-related features in the ventral visual system.  相似文献   

6.
Subjects were divided into two equal groups 35 healthy subjects each. Formation of the visual set to facial emotion recognition was supplemented with two types of additional task: either visuospatial (to find a target stimulus among others) or verbal (to tell a word from a pseudoword). The results of the experiments were compared to those obtained in similar experiments without the memory load. Changes in the EEG beta rhythm during visual set forming and testing were studied. The EEG was analyzed by wavelet transformation. Changes in the mean level, maximum and latency of the maximum of wavelet coefficient were rated at different stages of the experiment. All these characteristics for the beta rhythm were higher in experiments with both types of additional memory load as compared to those without the memory load.  相似文献   

7.
Event-related potentials (ERP) of the brain and psychometric indices (reaction time and percentage of correct responses) were studied in adult subjects during recognizing hierarchical visual stimuli (letters), while the subject’s attention was drawn to either the global or the local level of the stimulus. The psychophysical indices demonstrated the global precedence effect, i.e., an increased recognition time of a small letter, which was a part of an incongruent stimulus. The ERP component analysis demonstrated that differences in the regulatory mechanisms of attention and timing and topography of brain organization during processing of visual information depended on the level of recognizing the hierarchical stimulus (global vs. local). Visual recognition at the local level was accompanied by a stronger activation of visual associative areas (P z and T 6) at the stage of sensory feature analysis (P1 ERP component), as well as by the predominant involvement of the temporal inferior cortex of the right hemisphere (T 6) at the stage of sensory categorization (the P2 ERP component) and of the frontal cortex of the right hemisphere at the stage of selection for the relevant target features (the N2 ERP component). Visual recognition at the global level was accompanied by significant involvement of the early sensory selection (the N1 ERP component) and predominant activation of the parietal cortex of the right hemisphere (P 4) at the stage of sensory categorization (the P2 ERP component), as well as at the stage of identification of the target stimulus (the P3 ERP component). Perception of a stimulus at the global level is assumed to depend mostly on the analysis of its spatial features in the dorsal visual system, whereas perception at the local level involves analysis of the object-related features in the ventral visual system.  相似文献   

8.
Spatial and frequency EEG characteristics of two groups of healthy adult subjects were examined in two series of experiments, which differed in conditions of the second cognitive task in a trial. The first task was the same in the two series: subjects had to evaluate size relationship between two closely spaced circles. The second task successively presented in trials of the first series consisted in the recognition of words/pseudowords, and in the second series, subjects had to localize a target letter in a matrix. It was assumed that the cognitive performance in the first series predominantly involved the ventral visual system, whereas during task performance in the second series, predominant involvement of the ventral and dorsal visual systems alternated. Multichannel EEG fragments recorded prior to the presentation of the task pairs were analyzed. Analysis of variance of the EEG spectral power revealed the generalized significant effect of the factor of the second task in the pair for delta band and lower beta subband, the power being higher in the first series. Factor brain hemisphere had a significant effect for the alpha band in the occipital area, the spectral power being lower in the left hemisphere for both experimental series. The task x hemisphere interaction was significant in the temporal cortical areas for the EEG power in alpha2 band, i.e., the predominant involvement of the ventral visual system was associated with stronger asymmetry of alpha2 rhythm and lower spectral power in this band in the left temporal area. Thus, the character of the forthcoming cognitive activity was shown to be reflected in spatio-frequency characteristics of the preceding EEG.  相似文献   

9.
The primate visual system consists of a ventral stream, specialized for object recognition, and a dorsal visual stream, which is crucial for spatial vision and actions. However, little is known about the interactions and information flow between these two streams. We investigated these interactions within the network processing three-dimensional (3D) object information, comprising both the dorsal and ventral stream. Reversible inactivation of the macaque caudal intraparietal area (CIP) during functional magnetic resonance imaging (fMRI) reduced fMRI activations in posterior parietal cortex in the dorsal stream and, surprisingly, also in the inferotemporal cortex (ITC) in the ventral visual stream. Moreover, CIP inactivation caused a perceptual deficit in a depth-structure categorization task. CIP-microstimulation during fMRI further suggests that CIP projects via posterior parietal areas to the ITC in the ventral stream. To our knowledge, these results provide the first causal evidence for the flow of visual 3D information from the dorsal stream to the ventral stream, and identify CIP as a key area for depth-structure processing. Thus, combining reversible inactivation and electrical microstimulation during fMRI provides a detailed view of the functional interactions between the two visual processing streams.  相似文献   

10.
Growing evidence indicates a moderate but significant relationship between processing speed in visuo-cognitive tasks and general intelligence. On the other hand, findings from neuroscience proposed that the primate visual system consists of two major pathways, the ventral pathway for objects recognition and the dorsal pathway for spatial processing and attentive analysis. Previous studies seeking for visuo-cognitive factors of human intelligence indicated a significant correlation between fluid intelligence and the inspection time (IT), an index for a speed of object recognition performed in the ventral pathway. We thus presently examined a possibility that neural processing speed in the dorsal pathway also represented a factor of intelligence. Specifically, we used the mental rotation (MR) task, a popular psychometric measure for mental speed of spatial processing in the dorsal pathway. We found that the speed of MR was significantly correlated with intelligence scores, while it had no correlation with one’s IT (recognition speed of visual objects). Our results support the new possibility that intelligence could be explained by two types of mental speed, one related to object recognition (IT) and another for manipulation of mental images (MR).  相似文献   

11.
Deng Y  Guo R  Ding G  Peng D 《PloS one》2012,7(3):e33337
Both the ventral and dorsal visual streams in the human brain are known to be involved in reading. However, the interaction of these two pathways and their responses to different cognitive demands remains unclear. In this study, activation of neural pathways during Chinese character reading was acquired by using a functional magnetic resonance imaging (fMRI) technique. Visual-spatial analysis (mediated by the dorsal pathway) was disassociated from lexical recognition (mediated by the ventral pathway) via a spatial-based lexical decision task and effective connectivity analysis. Connectivity results revealed that, during spatial processing, the left superior parietal lobule (SPL) positively modulated the left fusiform gyrus (FG), while during lexical processing, the left SPL received positive modulatory input from the left inferior frontal gyrus (IFG) and sent negative modulatory output to the left FG. These findings suggest that the dorsal stream is highly involved in lexical recognition and acts as a top-down modulator for lexical processing.  相似文献   

12.
13.
Using a cognitive set to emotional facial expression as a model, induced synchronization/desynchronization of the cortical theta- and alpha-activities were studied in adult healthy people under conditions of increased load on the working memory (additional task of the verbal stimuli recognition). A correlation was found between behavioral (increase in the set rigidity) and electrophysiological (decrease of the induced theta-rhythm synchronization) data. A hypothesis is suggested that the earlier revealed increase in the tonic prestimulus theta-activity and suppression of the poststimulus phasic activation of the cortico-hippocampal system are one of the mechanisms of the decrease in plasticity of the cognitive function of the emotional facial expression recognition under conditions of the increased load on the working memory. Reciprocal relations between two functional systems of the brain activity integration (cortico-hippocampal and fronto-thalamic) in the process of recognition of emotional facial expression are discussed.  相似文献   

14.
There are two highly interconnected clusters of visually responsive areas in the primate cortex. These two clusters have relatively few interconnections with each other, though those interconnections are undoubtedly important. One of the two main clusters (the dorsal stream) links the primary visual cortex (V1) to superior regions of the occipito-parietal cortex, while the other (the ventral stream) links V1 to inferior regions of the occipito-temporal cortex. According to our current understanding of the functional anatomy of these two systems, the dorsal stream's principal role is to provide real-time 'bottom-up' visual guidance of our movements online. In contrast, the ventral stream, in conjunction with top-down information from visual and semantic memory, provides perceptual representations that can serve recognition, visual thought, planning and memory offline. In recent years, this interpretation, initially based chiefly on studies of non-human primates and human neurological patients, has been well supported by functional MRI studies in humans. This perspective presents empirical evidence for the contention that the dorsal stream governs the visual control of movement without the intervention of visual awareness.  相似文献   

15.
Using fMRI, we showed that an area in the ventral temporo-occipital cortex (area vTO), which is part of the human homolog of the ventral stream of visual processing, exhibited priming for both identical and depth-rotated images of objects. This pattern of activation in area vTO corresponded to performance in a behavioral matching task. An area in the caudal part of the intraparietal sulcus (area cIPS) also showed priming, but only with identical images of objects. This dorsal-stream area treated rotated images as new objects. The difference in the pattern of priming-related activation in the two areas may reflect the respective roles of the ventral and dorsal streams in object recognition and object-directed action.  相似文献   

16.
Ventral and dorsal streams are visual pathways deputed to transmit information from the photoreceptors of the retina to the lateral geniculate nucleus and then to the primary visual cortex (V1). Several studies investigated whether one pathway is more vulnerable than the other during development, and whether these streams develop at different rates. The results are still discordant. The aim of the present study was to understand the functionality of the dorsal and the ventral streams in two populations affected by different genetic disorders, Noonan syndrome (NS) and 22q11.2 deletion syndrome (22q11.2DS), and explore the possible genotype–phenotype relationships. ‘Form coherence’ abilities for the ventral stream and ‘motion coherence’ abilities for the dorsal stream were evaluated in 19 participants with NS and 20 participants with 22q11.2DS. Collected data were compared with 55 age‐matched controls. Participants with NS and 22q11.2DS did not differ in the form coherence task, and their performance was significantly lower than that of controls. However, in the motion coherence task, the group with NS and controls did not differ, and both obtained significantly higher scores than the group with 22q11.2DS. Our findings indicate that deficits in the dorsal stream are related to the specific genotype, and that in our syndromic groups the ventral stream is more vulnerable than the dorsal stream.  相似文献   

17.
Changes in face expression recognition and EEG synchronization arising from additional load on working memory were studied in healthy adults. Two types of additional task--semantic and visuospatial--were used to load working memory in an experiment with a visual set, formed to facial stimuli. During perception of new facial stimuli, both these types of additional task caused an increase of erroneous face expression recognitions in the form of assimilative illusions. Alpha-band (8-10 Hz) EEG synchronization analysis revealed that additional memory load causes a decrease of frontal attention system input in set-forming and set-shifting. As for theta-band (4-7 Hz) synchronization, it changed ambiguously at additional memory load--in right fronto-temporal region coherence function decreased; other coherence connections, especially intra-hemispheric and in the left hemisphere, increased. At issue is the crucial role of fronto-thalamic and cortico-hippocampal systems in plasticity of visual sets formed to facial expressions.  相似文献   

18.
Buchsbaum BR  Olsen RK  Koch P  Berman KF 《Neuron》2005,48(4):687-697
To hear a sequence of words and repeat them requires sensory-motor processing and something more-temporary storage. We investigated neural mechanisms of verbal memory by using fMRI and a task designed to tease apart perceptually based ("echoic") memory from phonological-articulatory memory. Sets of two- or three-word pairs were presented bimodally, followed by a cue indicating from which modality (auditory or visual) items were to be retrieved and rehearsed over a delay. Although delay-period activation in the planum temporale (PT) was insensible to the source modality and showed sustained delay-period activity, the superior temporal gyrus (STG) activated more vigorously when the retrieved items had arrived to the auditory modality and showed transient delay-period activity. Functional connectivity analysis revealed two topographically distinct fronto-temporal circuits, with STG co-activating more strongly with ventrolateral prefrontal cortex and PT co-activating more strongly with dorsolateral prefrontal cortex. These argue for separate contributions of ventral and dorsal auditory streams in verbal working memory.  相似文献   

19.
We have identified and characterized a zebrafish recessive maternal effect mutant, ichabod, that results in severe anterior and dorsal defects during early development. The ichabod mutation is almost completely penetrant, but exhibits variable expressivity. All mutant embryos fail to form a normal embryonic shield; most fail to form a head and notochord and have excessive development of ventral tail fin tissue and blood. Abnormal dorsal patterning can first be observed at 3.5 hpf by the lack of nuclear accumulation of (beta)-catenin in the dorsal yolk syncytial layer, which also fails to express bozozok/dharma/nieuwkoid and znr2/ndr1/squint. At the onset of gastrulation, deficiencies in expression of dorsal markers and expansion of expression of markers of ventral tissues indicate a dramatic alteration of dorsoventral identity. Injection of (beta)-catenin RNA markedly dorsalized ichabod embryos and often completely rescued the phenotype, but no measurable dorsalization was obtained with RNAs encoding upstream Wnt pathway components. In contrast, dorsalization was obtained when RNAs encoding either Bozozok/Dharma/Nieuwkoid or Znr2/Ndr1/Squint were injected. Moreover, injection of (beta)-catenin RNA into ichabod embryos resulted in activation of expression of these two genes, which could also activate each other. RNA injection experiments strongly suggest that the component affected by the ichabod mutation acts on a step affecting (beta)-catenin nuclear localization that is independent of regulation of (beta)-catenin stability. This work demonstrates that a maternal gene controlling localization of (beta)-catenin in dorsal nuclei is necessary for dorsal yolk syncytial layer gene activity and formation of the organizer in the zebrafish.  相似文献   

20.
The human visual cortex enables visual perception through a cascade of hierarchical computations in cortical regions with distinct functionalities. Here, we introduce an AI-driven approach to discover the functional mapping of the visual cortex. We related human brain responses to scene images measured with functional MRI (fMRI) systematically to a diverse set of deep neural networks (DNNs) optimized to perform different scene perception tasks. We found a structured mapping between DNN tasks and brain regions along the ventral and dorsal visual streams. Low-level visual tasks mapped onto early brain regions, 3-dimensional scene perception tasks mapped onto the dorsal stream, and semantic tasks mapped onto the ventral stream. This mapping was of high fidelity, with more than 60% of the explainable variance in nine key regions being explained. Together, our results provide a novel functional mapping of the human visual cortex and demonstrate the power of the computational approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号