首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The subcellular distribution of the most abundant mRNA sequences, particularly those of the immunoglobulin heavy (Ig H) and light (IG L) chain mRNA sequences, of MOPC 21 (P3K) mouse myeloma cells has been examined by translating the mRNA of various subcellular fractions in a messenger-dependent reticulocyte lysate (MDL) and by identifying Ig products with the use of a specific antiserum. Analyses of the distribution of the mRNA template activity and the translation products by SDS polyacrylamide gel electrophoresis reveal that approximately 85% of the mRNA present in the free ribosomal fraction is incorporated into polysomes and that the remainder is present as mRNP particles. On the endoplasmic reticulum (ER) the mRNA is found entirely in polysomes. In general, the size class of free (F) and membrane-bound (MB) polysomes corresponds to the size of their translation products. Thus, mRNAs coding Ig H (5.0 x 10(5) daltons in size) and Ig L (2.5 x 10(5) daltons in size) are incorporated into polysomes formed of 12 and 6 ribosomes, respectively. About 10% of the Ig mRNAs are not bound to membranes. A third of these are associated with mRNPs and the remainder incorporated into F polysomes of the same size as the Ig-synthesizing MB polysomes.  相似文献   

2.
Regeneration of a newt limb requires a constant supply of adequate amounts of a neuronal contribution at the amputation site. Denervation during the early stages of regeneration precludes its growth and morphogenesis. It has been reported that denervation of a regenerating limb lowers the efficiency of incorporation of radioactive amino acids to 60% of contralateral control levels. To gain more insight into the mechanism responsible for this decrease, we examined the effects of denervation on the size distribution and quantity of regenerate polysomes. We characterized the [35S]methionine-labeled nascent peptidyl-tRNA from polysomes by hydroxyapatite chromatography. Moreover, we show that the labeled nascent peptides on polysomes can serve as a measure to quantitate the relative amounts of ribosomes on polysomes and the relative size of the translational machinery. Thus, we report that [35S]methionine-labeled nascent polypeptides on polysomes from denervated regenerates contain about 48% less radioactivity than those from controls. Despite decreased incorporation of [35S]methionine into nascent peptides, the relative distribution of radioactivity across linear sucrose gradients is not significantly altered by denervation. Studies of polysomes labeled with [3H]uridine prior to denervation indicate that ribosome content is depressed by denervation. Our results suggest that the nerve-dependent decrease in protein synthesis is mediated by decreasing the number of ribosomes active in protein synthesis. In addition, similarities in the ratios of free monosomes to polysomes and the relative size distribution of polypeptides between denervated and innervated regenerates indicate that in denervated regenerates the number of translatable mRNA molecules decreases in a coordinate manner with the number of ribosomes active in protein synthesis.  相似文献   

3.
There is a single-site interaction of [methylene-14C]thiamphenicol and [methylene-14C]chloramphenicol with run-off ribosomes with dissociation constants Kd = 6.8 micronM and Kd = 4.6 micronM respectively. Similar affinities for the antibiotics are observed in polysomes totally deprived of nascent peptides, or bearing nascent peptides on the A-site. However, two types of interaction are observed in endogenous polysomes with some ribosomes bearing nascent peptides on the P-site and other in the A-site. The lower-affinity bindings (dissociation constants Kd = 6.4 micronM and Kd = 1.5 micronM for thiamphenicol and chloramphenicol respectively) are due to the ribosomes bearing nascent peptides on the A-site. The higher-affinity bindings (dissociation constants Kd = 2.3 micronM and Kd = 1.5 micronM for thiamphenicol and chloramphenicol, respectively) are due to the ribosomes bearing nascent peptides on the P-site. Therefore binding of nascent peptides to the A-site does not affect the affinities of thiamphenicol and chloramphenicol for the ribosome. On the other hand interaction of the nascent peptides with the P-site of the ribosomes increases the affinities of both antibiotics for the ribosome. Thiamphenicol and chloramphenicol are thus good inhibitors of peptide bond formation in ribosomes and polysomes. Their affinities are increased precisely when the peptidyl-tRNA is placed in the P-site preceeding the peptide bond formation step, which is specifically blocked by the antibiotics. There is a single-site interaction per ribosome for [35S]thiostrepton, which does not appear to be affected by the attachment to the ribosomes of mRNA, tRNA and nascent peptides either to the A or the P-site. [N-methyl-14C]Lincomycin, [N-methyl-14C]erythromycin, [G-3H]streptogramin B and [G-3H]-streptogramin A bind to run-off ribosomes and polysomes totally free from nascent peptides. However, these antibiotics do not interact with ribosomes bearing nascent peptides either in the A or the P-site and therefore are not active on preformed polysomes. Thus lincomycin and streptogramin A only interact with free ribosomes and 50-S subunits and block the early rounds of peptide bond formation prior to polysome formation. Erythromycin and streptogramin B do not inhibit either initiation or the first round of peptide bond formation. However, erythromycin and streptogramin B, prebound to the ribosome, block peptide elongation probably by steric hindrance with the growing oligopeptide chain when this reaches a certain critical length.  相似文献   

4.
《The Journal of cell biology》1986,103(6):2253-2261
The requirement for ribonucleotides and ribonucleotide hydrolysis was examined at several distinct points during translocation of a secretory protein across the endoplasmic reticulum. We monitored binding of in vitro-assembled polysomes to microsomal membranes after removal of ATP and GTP. Ribonucleotides were not required for the initial low salt- insensitive attachment of the ribosome to the membrane. However, without ribonucleotides the nascent secretory chains were sensitive to protease digestion and were readily extracted from the membrane with either EDTA or 0.5 M KOAc. In contrast, nascent chains resisted extraction with either EDTA or 0.5 M KOAc and were insensitive to protease digestion after addition of GTP or nonhydrolyzable GTP analogues. Translocation of the nascent secretory polypeptide was detected only when ribosome binding was conducted in the presence of GTP. Thus, translocation-competent binding of the ribosome to the membrane requires the participation of a novel GTP-binding protein in addition to the signal recognition particle and the signal recognition particle receptor. The second event we examined was translocation and processing of a truncated secretory polypeptide. Membrane-bound polysomes bearing an 86-residue nascent chain were generated by translation of a truncated preprolactin mRNA. Ribonucleotide- independent translocation of the polypeptide was detected by cleavage of the 30-residue signal sequence after puromycin termination. Nascent chain transport, per se, is apparently dependent upon neither ribonucleotide hydrolysis nor continued elongation of the polypeptide once a functional ribosome-membrane junction has been established.  相似文献   

5.
Signal recognition particle (SRP) induces elongation arrest of nascent presecretory proteins as the signal peptide protrudes from the large ribosomal subunit. To examine the relationship between the size of the precursor and extent of SRP mediated inhibition of polypeptide chain elongation, we performed in vitro translation experiments in the presence of SRP using a series of truncated preproinsulin mRNA molecules. These precursors possessed the same NH2 terminus as native preproinsulin followed by progressively shorter COOH termini. SRP inhibited translation of precursors as short as 64 amino acids in length, however, the extent of inhibition diminished for shorter precursors. This correlated with a reduction in the time required for ribosomes to transit through the mRNA encoding the shortened precursors. By exploiting a chimeric protein comprising the first 71 residues of preproinsulin fused to the bacterial cytoplasmic enzyme chloramphenicol acetyltransferase, we demonstrate that the largest size a nascent chain can reach and still be susceptible to SRP-mediated elongation arrest is approximately 17 kDa. Our data support the model that SRP binding to the signal peptide is a reversible process even in the absence of microsomal membranes, and that SRP can arrest polypeptide chain elongation at multiple stages during translation.  相似文献   

6.
Human liver cDNA coding for protein C has been synthesized, cloned and sequenced. The abundance of protein C message is approximately 0.02% of total mRNA. Three overlapping clones contain 1,798 nucleotides of contiguous sequence, which approximates the size of the protein's mRNA, based upon Northern hybridization. The cDNA sequence consists of 73 5'-noncoding bases, coding sequence for a 461 amino acid nascent polypeptide precursor, a TAA termination codon, 296 3'-noncoding bases, and a 38 base polyadenylation segment. The nascent protein consists of a 33 amino acid "signal", a 9 amino acid propeptide, a 155 amino acid "light" chain, a Lys-Arg connecting dipeptide, and a 262 amino acid "heavy" chain. Human protein C and Factor IX and X precursors possess about one third identical amino acids (59% in the gamma-carboxyglutamate domain), including two forty-six amino acid segments homologous to epidermal growth factor. Human protein C also has similar homology with prothrombin in the "leader", gamma-carboxyglutamate and serine protease domains, but lacks the two "kringle" domains found in prothrombin.  相似文献   

7.
The incorporation of [3H]-glucosamine into polypeptides of three fractions of polysomes in MPC-11 cells was studied. After short term incubation greatest incorporation was observed in a fraction of membrane-bound polysomes, which after nitrogen cavitation of cells, remained bound to the endoplasmic reticulum (ER) associated with the nucleus (fraction 2). Polypeptide chains on membrane-bound polysomes in the microsomal fraction (fraction 1) and free polysomes contained much less radioactivity. Since nascent polypeptide chains contained within membrane-bound polysomes of fraction 2 are glycosylated at an earlier stage than those in fraction 1 it is likely that this represents a difference in type of proteins synthesized in the respective fractions of ER.  相似文献   

8.
Fractionation of MOPC 41 DL-1 tumors revealed that the mRNA for the light chain of immunoglobulin is localized exclusively in membrane- bound ribosomes. It was shown that the translation product of isolated light chain mRNA in a heterologous protein-synthesizing system in vitro is larger than the authentic secreted light chain; this confirms similar results from several laboratories. The synthesis in vitro of a precursor protein of the light chain is not an artifact of translation in a heterologous system, because it was shown that detached polysomes, isolated from detergent-treated rough microsomes, not only contain nascent light chains which have already been proteolytically processed in vivo but also contain unprocessed nascent light chains. In vitro completion of these nascent light chains thus resulted in the synthesis of some chains having the same mol wt as the authentic secreted light chains, because of completion of in vivo proteolytically processed chains and of other chains which, due to the completion of unprocessed chains, have the same mol wt as the precursor of the light chain. In contrast, completion of the nascent light chains contained in rough microsomes resulted in the synthesis of only processed light chains. Taken together, these results indicate that the processing activity is present in isolated rough microsomes, that it is localized in the membrane moiety of rough microsomes, and, therefore, that it was most likely solubilized during detergent treatment used for the isolation of detached polysomes. Furthermore, these results established that processing in vivo takes place before completion of the nascent chain. The data also indicate that in vitro processing of nascent chains by rough microsomes is dependent on ribosome binding to the membrane. If the latter process is interfered with by aurintricarboxylic acid, rough microsomes also synthesize some unprocessed chains. The data presented in this paper have been interpreted in the light of a recently proposed hypothesis. This hypothesis, referred to as the signal hypothesis, is described in greater detail in the Discussion section.  相似文献   

9.
T Honjo  D Swan  S Packman  F Polsky  P Leder 《Biochemistry》1976,15(13):2775-2779
Here we describe the 500-fold purification of an mRNA encoding an immunoglobulin lambda light chain derived from the mouse myeloma tumor, RPC-20. Purification involves the isolation of membrane-bound polysomes, oligo(dT)-cellulose chromatography, and sucrose gradient centrifugation under conditions favoring denaturation of polynucleotide complexes. The mRNA purified in this way directs the cell-free synthesis of a polypeptide which is five or six amino acids longer than the mature form of RPC-20 light chain. In addition to directing the synthesis of a precursor-like polypeptide, the mRNA migrates on electrophoresis as a band containing approximately 1150 nucleotides, about 500 more than required to encode the mature form of the light chain.  相似文献   

10.
We have been studying the insertion of the seven transmembrane domain (TM) protein opsin to gain insights into how the multiple TMs of polytopic proteins are integrated at the endoplasmic reticulum (ER). We find that the ER components associated with the first and second TMs of the nascent opsin polypeptide chain are clearly distinct. The first TM (TM1) is adjacent to the alpha and beta subunits of the Sec61 complex, and a novel component, a protein associated with the ER translocon of 10 kDa (PAT-10). The most striking characteristic of PAT-10 is that it remains adjacent to TM1 throughout the biogenesis and membrane integration of the full-length opsin polypeptide. TM2 is also found to be adjacent to Sec61alpha and Sec61beta during its membrane integration. However, TM2 does not form any adducts with PAT-10; rather, a transient association with the TRAM protein is observed. We show that the association of PAT-10 with opsin TM1 does not require the N-glycosylation of the nascent chain and occurs irrespective of the amino acid sequence and transmembrane topology of TM1. We conclude that the precise makeup of the ER membrane insertion site can be distinct for the different transmembrane domains of a polytopic protein. We find that the environment of a particular TM can be influenced by both the "stage" of nascent chain biosynthesis reached, and the TM's relative location within the polypeptide.  相似文献   

11.
The previously observed (Walter, et al. 1981 J. Cell Biol. 91:545-550) inhibitory effect of SRP selectively on the cell-free translation of mRNA for secretory protein (preprolactin) was shown here to be caused by a signal sequence-induced and site-specific arrest in polypeptide chain elongation. The Mr of the SRP-arrested nascent preprolactin chain was estimated to be 8,000 corresponding to approximately 70 amino acid residues. Because the signal sequence of preprolactin comprises 30 residues and because approximately 40 residues of the nascent chain are buried (protected from protease) in the large ribosomal subunit, we conclude that it is the interaction of SRP with the amino-terminal signal peptide of the nascent chain (emerged from the large ribosomal subunit) that modulates translation and thereby causes an arrest in chain elongation. This arrest is released upon SRP-mediated binding of the elongation-arrested ribosomes to the microsomal membrane, resulting in chain completion and translocation into the microsomal vesicle.  相似文献   

12.
Abstract: Free and membrane-bound polysomes were isolated from the cerebral hemispheres and cerebellum of the young adult rabbit. The two polysomal populations were translated in an mRNA-dependent cell-free system derived from rabbit reticulocytes. Analysis of the [35S]methionine-labeled translation products on two-dimensional polyacrylamide gels indicated an efficient separation of the two classes of brain polysomes. The relative synthesis of S100 protein by free and membrane- bound polysomes was determined by direct immuno-precipitation of the cell-free translation products in the presence of detergents to reduce nonspecific trapping. Synthesis of S100 protein was found to be twofold greater on membrane-bound polysomes compared with free polysomes isolated from either the cerebral hemispheres or the cerebellum. In addition, the proportion of poly- (A+)mRNA coding for SlOO protein was also twofold greater in membrane-bound polysomes compared with free polysomes isolated from the cerebral hemispheres. These results indicate that the cytoplasmic S100 protein is synthesized predominantly on membrane-bound polysomes in the rabbit brain. We suggest that the nascent S100 polypeptide chain translation complex is attached to the rough endoplasmic reticulum by an ionic interaction involving a sequence of 13 basic amino acids in S100 protein.  相似文献   

13.
Monocistronic messenger RNA in yeast   总被引:7,自引:0,他引:7  
We have determined the rate of polypeptide chain synthesis on different size polysomes in yeast. The completion time for the average polypeptide chain in vivo at 23 °C is two minutes by this technique and is in good agreement with values we have determined by other independent methods.These kinetic experiments indicate that the average size of a nascent polypeptide chain on a polysome is directly related to the size of the polysome. This demonstrates that in the simple eucaryotic organism, Saccharomyces cerevisiae, mRNA is monocistronic in the sense that each mRNA molecule codes for one protein molecule which is released intact from the ribosome upon completion. The pattern of amino acid incorporation into Escherichia coli polysomes is distinctly different. These findings have a number of interesting implications for the genetics of the lower eucaryotes and indicate that the cellular mechanisms of control and co-ordination in yeast may differ from those found in procaryotes and may be similar to cellular mechanisms of control for mammalian cells.  相似文献   

14.
V Siegel  P Walter 《The EMBO journal》1988,7(6):1769-1775
We have developed an assay in which incomplete preprolactin chains of varying lengths are targeted to the endoplasmic reticulum (ER) membrane in an elongation independent manner. The reaction had the same molecular requirements as nascent chain translocation across the ER membrane, namely, it was signal recognition particle (SRP) dependent, and required the nascent chain to be present as peptidyl tRNA (i.e. most likely ribosome associated) and to have its signal sequence exposed outside the ribosome. We found that the efficiency of the targeting reaction dropped dramatically as the chains grew longer than 140 amino acids in length, which probably reflected a decrease in affinity of the nascent chain-ribosome complex for SRP. Thus at physiological SRP concentrations (10 nM) there appears a sharp cut-off point in the ability of these chains to be targeted, while at high SRP concentrations (270 nM) all chains could be targeted. In kinetic experiments, high concentrations of SRP were found to change the time in elongation after which translocation of the nascent polypeptide could no longer occur.  相似文献   

15.
We report here a differential release of specific mRNAs from the cytoskeleton by cytochalasin D treatment. Non-membrane-bound polysomal mRNAs, such as histone mRNA and c-fos mRNA, are readily released from the cytoskeleton of HeLa cells during cytochalasin D treatment. Over 90% of H3 and H4 histone mRNA is associated with the cytoskeleton in control cells and only 25% in cells treated with cytochalasin D (40 micrograms/ml). In contrast, the membrane-bound polysomal mRNAs for HLA-B7 and chorionic gonadotropin-alpha are inefficiently released from the cytoskeletal framework by cytochalasin D alone; approximately 98% of the HLA-B7 mRNA in control cells is associated with the cytoskeleton, whereas approximately 65% of the HLA-B7 mRNA is retained on the cytoskeleton in cells treated with cytochalasin D (40 micrograms/ml). Disruption of polysome structure with puromycin during cytochalasin D treatment results in the efficient release of HLA-B7 mRNA from the cytoskeleton. Under these conditions, only 25% of the HLA-B7 mRNA remains associated with the cytoskeletal framework. Thus, membrane-bound polysomes appear to be attached to the cytoskeleton through a cytochalasin D-sensitive site as well as through association with the nascent polypeptide and/or ribosome. These results demonstrate a complex association of polysomes with the cytoskeleton and elements of the endoplasmic reticulum.  相似文献   

16.
Immunoglobulin M (IgM)-secreting murine plasmablasts have been used to explore the cytologic site(s) of the successive modifications of the polypeptide H and L chains (steps of glycosylation, chain assembly, and polymerization) which occur during intracellular transport (ICT) and the interrelationships between these events. A combination of pulse- chase biosynthetic labeling protocols (using amino acids and sugars), subcellular fractionation, and electron microscope autoradiography was used in conjunction with inhibitors of glycosylation and agents (carboxyl cyanide m-chlorophenyl hydrazone [CCCP] and monensin) which block Ig exit from the rough endoplasmic reticulum (RER) or Golgi cisternae. The data are consistent with the following conclusions: (1) Sugar addition and modification occur in three main steps: (a) en bloc addition of core sugars to nascent H chains, (b) partial trimming of these oligosaccharide chains in the RER, (c) quasiconcerted addition of terminal sugars (galactose, fucose, and sialic acid) in a very distal compartment between monensin-sensitive Golgi cisternae and the cell surface. (2) H and L chain assembly occurs between nascent H chains and a pool of free light chains present in the RER, followed by interchain disulfide bonding and rapid assembly of monomers into J chain- containing pentamers in the RER. Small amounts of various apparently non-obligatory intermediates in polymerization are also formed. (3) Carbohydrate addition is not required for chain assembly, polymerization, and secretion since completely unglycosylated chains (synthesized in the presence of deoxyglucose or tunicamycin) undergo polymerization and are secreted (although at a reduced rate). (4) Surface 8s IgM molecules do not represent a step in the IgM secretory pathway.  相似文献   

17.
Several major mRNA species of mouse and other mammalian cells occur both as small untranslated ribonucleoprotein particles and as functional molecules associated with ribosomes in polysomes. One of these, that codes for a 21-kDa polypeptide, was analyzed with respect to distribution of sites accessible to RNase T1 in the 5'-noncoding region. This region, which is about 100 nucleotides long, contains several sites that are highly sensitive to the enzyme, as well as many G residues not susceptible to cleavage. The distribution of highly sensitive sites was compared in the active and inactive states of the P21 mRNA present in cytoplasmic extracts by subjecting the extract to limited nuclease digestion followed by separation of partially fragmented polysomes from free messenger ribonucleoprotein particles. The mRNA in polysomes contained two highly sensitive sites, one near the 5' terminus and the other in the middle of the region, next to a sequence potentially capable of Shine-Dalgarno interaction. The untranslated molecules lacked the 5'-proximal site but had several highly accessible sites not present in the active molecules. The initiation AUG showed little accessibility both in polysomes and in messenger ribonucleoproteins. Both forms were quite different from the deproteinized mRNA with respect to distribution of nuclease-sensitive sites. Our results indicate that interaction of the mRNA with cytoplasmic factors strongly affects its conformation in the 5'-noncoding region and that a particular conformation may be important for effective interaction with ribosomal particles during polypeptide chain initiation.  相似文献   

18.
In vitro synthesis of pp60v-src: myristylation in a cell-free system.   总被引:16,自引:4,他引:12       下载免费PDF全文
Covalent attachment of myristic acid to pp60v-src, the transforming protein of Rous sarcoma virus, was studied in a cell-free system. Using a synthetic peptide containing the first 11 amino acids of the mature pp60v-src polypeptide sequence as a substrate, we probed lysates from a variety of cells and tissues for N-myristyl transferase (NMT) activity. Nearly every eucaryotic cell type tested contained NMT, including avian, mammalian, insect, and plant cells. Since NMT activity was detected in rabbit reticulocyte lysates, we took advantage of the translational capability of these lysates to determine the precise point during translation at which myristate is attached to pp60v-src. src mRNA, transcribed from cloned v-src DNA, was translated in reticulocyte lysates which had been depleted of endogenous myristate. Addition of [3H]myristate to lysates 10 min after the start of synchronized translation resulted in a dramatic decrease in the incorporation of radiolabeled myristate into pp60v-src polypeptide chains. These results imply that although myristate can be attached posttranslationally to synthetic peptide substrates, myristylation in vivo is apparently a very early cotranslational event which occurs before the first 100 amino acids of the nascent polypeptide chain are polymerized.  相似文献   

19.
20.
Heavy chain-binding protein (BiP) associates posttranslationally with nascent Ig heavy chains in the endoplasmic reticulum (ER) and remains associated with these heavy chains until they assemble with light chains. The heavy chain-BiP complex can be precipitated by antibody reagents against either component. To identify sites on heavy chain molecules that are important for association with BiP, we have examined 30 mouse myelomas and hybridomas that synthesize Ig heavy chains with well characterized deletions. Mutant Ig heavy chains that lack the CH1 domain could not be demonstrated to associate with BiP, whereas mutant Ig heavy chains with deletions of the CH2 or CH3 domain were still able to associate with BiP. In two light chain negative cell lines that produced heavy chains with deletions of the CH1 domain, free heavy chains were secreted. When Ig assembly and secretion were examined in mutants that did not associate with BiP, and were compared with normal parental lines, it was found that the rate of Ig secretion was increased in the mutant lines and that the Ig molecules were secreted in various stages of assembly. In one mutant line (CH1-) approximately one-third of the secreted Ig molecules were incompletely assembled, whereas the Ig molecules secreted by the parental line were completely assembled. Our data show the CH1 domain to be important for association with BiP and that when this association does not occur, incompletely assembled heavy chains can be secreted. This implies a role for BiP in preventing the transport of unassembled Ig molecules from the ER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号