首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H. Ssali 《Plant and Soil》1981,62(1):53-63
Summary The effect of level of CaCO3, inoculation and lime pelleting on the nodulation, dry matter yield and % N content of common bean plants (Phaseolus vulgaris) grown in five acid soils was investigated in a greenhouse study. The soils represented a range in pH from 3.9 to 5.1, in exchangeable Al from 0.0 to 4 meq/100 gm, in exchangeable Mn from 0.35 to 2.32 me/100 gm, and in %C from 0.69 to 5.60.Nodule weight decreased with increasing %C and for the soil with highest %C (5.60) no nodules were observed. In soils with low organic matter and low exchangeable Al and Mn, inoculation increased nodule weight, dry matter yield and %N especially at the lowest pH level. Where the seeds were not inoculated, nodule weight and dry matter yield increased with soil pH. No such increases were observed where the seeds were inoculated. There was no apparent advantage in lime pelleting in such soils.In soils with low organic matter content and with substantial amounts of Al and/or Mn, liming increased nodule weight and dry matter yield, and decreased exchangeable Al and/or Mn. Lime pelleting was superior to mere inoculation in increasing nodule weight particularly at low lime rates.In soils with relatively high organic matter content, nodulation was very low or none at all. Low lime rates had little effect on exchangeable Al and Ca and dry matter yield. Higher lime rates, however, decreased exchangeable Al and dry matter yield but increased exchangeable Ca.  相似文献   

2.
The effects of soil acidity on the growth and N2-fixing activity of white clover in seven acid topsoils and subsoils of New Zealand were investigated using a glasshouse experiment.The application of phosphate (Ca(H2PO4)2) to the soils resulted in very large increases in white clover growth on all soils. The application of phosphate, as well as increasing P supply, also decreased 0.02M CaCl2-extractable Al levels, but had little effect on exchangeable Al levels.Where adequate phosphate was applied, increasing rates of lime (CaCO3) resulted in increased plant growth on most soils. N2[C2H2]-fixing activity was increased by the first level of lime for one soil, but generally remained approximately constant or declined slightly at higher rates of lime. Up to the point of maximum yield, white clover top weight was more highly correlated with 0.02M CaCl2-extractable soil Al than with exchangeable Al or pH. At pH values greater than 5.5, plant yield declined on some soils, apparently because of Zn deficiency. The data suggest that white clover is unlikely to be affected by Al toxicity at 0.02M CaCl2-extractable Al levels of less than about 3.3 g g–1. However, there were differences between soils in apparent plant tolerance to 0.02M CaCl2-extractable Al, which appeared to be caused by differing C levels in the 0.02M CaCl2 extracts.  相似文献   

3.
Growth and nutrient utilization of alfalfa (Medicago sativa L. cv. Arc) and common bean (Phaseolus vulgaris L. cv. Carioca) were studied in an acid soil adjusted to eight levels of soil acidity by lime addition. Application of lime significantly (P<0.05) increased shoot and root growth for both species. However, common bean was far less sensitive to soil acidity than alfalfa. Maximum alfalfa growth was obtained at a soil pH of 5.8 and maximum bean growth was achieved at pH 5.0. Root and shoot growth of both legumes was positively correlated (P<0.01) with soil pH, exchangeable Ca and exchangeable Mg and negatively correlated (P<0.01) with soil exchangeable Al. Common bean had a lower internal P requirement for maximum growth and was more efficient than alfalfa in taking up Ca and Mg. These characteristics would contribute to the favorable growth of common bean in acid-infertile soils.  相似文献   

4.
Liming trials were conducted at 28 sites in the western Great Plains of Canada for barley, rape, red clover and alfalfa. Yield increases from liming correlated with soil pH and Al but not with Mn. When all sites were included, yield increases from liming correlated closely (r=0.86 to 0.94) with exchangeable Al, percent Al saturation and 0.02M CaCl2-Al for barley, rape and red clover, these responses having correlated less well (R=0.56 to 0.72) with soil pH. Alfalfa yield responses gave low correlations with both pH and the Al measurements. When only the sites with soil pH≥5 were used, the yield responses to lime of barley and rape still correlated better with the Al measurements than with pH even though the correlations, in general, were much lower than when all sites were included. For the sites with soil pH>-5, the correlations were highest for yield responses of barley and rape with 0.02M CaCl2-Al. It is suggested that the use of toxic Al and Mn for routinely diagnosing the limiting factor by soil acidity could improve on the economy of liming. Contribution Number 653.  相似文献   

5.
The effects of lime and P on the chemical composition of the tropical legume Leucaena leucocephala were studied in a controlled climate laboratory experiment using 4 (Koronivia, Nadroloulou, Batiri, and Seqaqa) highly-weathered, acid soils from Fiji. For all soils, changes in the concentration of P in the Leucaena tops followed trends similar to the yield response curve, i.e., the concentration of P was highest at the soil pH at which maximum growth occurred. The concentration of Al in plant tops increased on either side of the pH of maximum growth, but Al uptake by the whole plant (tops plus roots) declined steadily with increasing pH. Although complete major (except P) and minor nutrients were added regularly, there was variation in the uptake of nutrients with pH. Poor growth at low pH values was attributed to an Al-induced P deficiency within the plant and at high pH to a soil P deficiency and, to a smaller extent, to the increased concentration of Al in the plant tops.  相似文献   

6.
A soil incubation and short-term root growth experiment was conducted to investigate the effects of organic matter application on Al toxicity alleviation in a highly weathered acid soil. Ground leaves of a tree legume (Calliandra calothyrsus Meissn.), ground barley (Hordeum vulgare L.) straw, or CaCO3 were mixed at various rates with A-horizon soil of a red podzolic soil (Epiaquic Haplustult) and incubated at 90% of field capacity for 4 or 10 weeks. After the incubation, a short term (48 h) root growth test was conducted using mung bean (Vigna radiata (L.) Wilczek), followed by the analysis of the solution and solid phases of the post-harvest soil. Adding either CaCO3 or organic matter increased root length in mung bean largely by decreasing the activity of monomeric Al in the soil solution. With organic matter, the major mechanisms of this decrease were presumed to be precipitation of soluble Al and the formation of Al-organic matter complexes. The former effect was predicted from the pH increase accompanying the organic matter addition, the increase being larger with legume leaves which had the higher exchangeable and soluble Ca and Mg contents. The concentration of Al complexed with soluble organic matter also was shown to increase with increasing rate of organic matter addition, the effect again being larger with legume leaves. The sum of monomeric Al species activity and Al3+ activity was negatively correlated with relative root length for the organic matter and CaCO3 treatments. However, indices which took into account the possible alleviation effects of basic cations in soil solution on Al toxicity provided an improvement in correlation with relative root length. The efficiency of the two organic amendments relative to CaCO3 in decreasing Al toxicity was assessed by comparing the rates required to reduce Al3+ activity below 10 μ M, the value found to be associated with 90% relative root length for mung bean. The rates of CaCO3, legume leaf and barley straw required to reach this critical value were 0.75, 14, and 42 t ha−1 respectively.  相似文献   

7.
Calba  Henri  Firdaus  Cazevieille  Patrick  Thée  Charles  Poss  Roland  Jaillard  Beno^it 《Plant and Soil》2004,260(1-2):33-46
The goals of this work were to understand the dynamics of H+, Al and Ca in the rhizosphere of maize cultivated in tropical acid soils, and to evaluate the contribution of the dissolution kinetics of the Al-hydroxides to Al dynamics. The study of the dissolution kinetics was based on a comparison between experimental and simulated data, using a model of the chemical processes in the rhizosphere. Two Oxisols, pH 5.1 and 4.6, and one Ultisol, pH 5.2, were studied. An Al-tolerant maize variety (Zea mays L.) was grown for 14 days on a 3-mm thick soil layer. The composition of the soil and the soil solution, together with the concentration of Al in the roots, were determined throughout the experiment. The results showed that root growth (i) decreased the soil solution pH, up to one pH unit, (ii) increased Al concentration in the soil solution, (iii) increased exchangeable Al, and (iv) decreased exchangeable Ca. Soil solution pH, exchangeable Al, and exchangeable Ca were closely linked. Exchangeable Al increased 1.5 – 3.0 times, due to the dissolution of easily mobilised Al components. In addition, Al accumulation in roots depended mainly on Al in the soil solution. Modelling the interactions between H+, Al, and Ca proved that the main factor determining Al in the soil solution was the kinetic reactivity of the easily mobilised Al components. These components, probably poorly crystallised Al-hydroxides, are key players in the functioning of the rhizosphere in tropical acid soils.  相似文献   

8.

Aims

Wilderness and other natural areas are threatened by large-scale disturbances (e.g., wildfire), air pollution, climate change, exotic diseases or pests, and a combination of these stress factors (i.e., stress complexes). Linville Gorge Wilderness (LGW) is one example of a high elevation wilderness in the southern Appalachian region that has been subject to stress complexes including chronic acidic deposition and several wildfires, varying in intensity and extent. Soils in LGW are inherently acidic with low base cation concentrations and decades of acidic deposition have contributed to low pH, based saturation, and Ca:Al ratio. We hypothesized that wildfires that occurred in LGW followed by liming burned areas would accelerate the restoration of acidic, nutrient depleted soils. Because soils at LGW had extremely low concentrations of exchangeable Ca2+ and Mg2+ dolomitic lime was applied to further boost these cations. We evaluated the effectiveness of dolomitic lime application in restoring exchangeable Ca2+ and Mg2+ and subsequently increasing pH and Ca:Al ratio of soils and making Ca and Mg available to recovering vegetation.

Methods

Five treatment areas were established: severely burned twice (2000 & 2007) with dolomitic lime application (2xSBL); moderately burned twice with lime application (2xMBL); severely burned twice, unlimed (2xSB); moderately burned once (2000), unlimed (1xMB); and a reference area (REF; unburned, unlimed). In 2008 and 2009, we measured overstory, understory, and ground-layer vegetation; forest floor mass and nutrients; and soil and soil solution chemistry within each treatment area.

Results

All wildfire burned sites experienced substantial overstory mortality. However, understory biomass doubled between sample years on the most recently burned sites due to the rapid regrowth of ericaceous shrubs and prolific sprouting of deciduous trees. Burning followed by lime application (2xSBL and 2xMBL) significantly increased shallow soil solution NO3-N, but we found no soil solution NO3-N response to burning alone (2xSB and 1xMB). Surface soil base saturation and exchangeable Ca2+ were significantly affected by liming; Ca2+ concentrations were greater on 2xMBL and 2xSBL than 2xSB, 1xMB and REF. There was a smaller difference due to moderate burning along with greater soil Ca2+ on 1xMB compared to REF, but no difference between 2xSB and REF. Surface and subsurface soil exchangeable Al3+ were lower on 2xSBL than 2xSB, 2xMBL, 1xMB, and REF. Liming decreased soil acidity somewhat as surface soil pH was higher on the two burned sites with lime (pH?=?3.8) compared to 2xSB without lime (pH?=?3.6).

Conclusions

Liming resulted in decreased soil Al3+ on 2xSBL coupled with increased soil Ca2+ on both 2xSBL and 2xMBL, which improved soil Ca/Al ratios. However, the soil Ca/Al ratio response was transitory, as exchangeable Al3+ increased and Ca/Al ratio decreased over time. Higher lime application rates may be necessary to obtain a substantial and longer-term improvement of cation-depleted soils at LGW.  相似文献   

9.
Total Al concentration or pH in 1∶5 10 mM CaCl2 extracts and exchangeable Al in 100 mM BaCl2 extracts cannot always distinguish between Al-toxic and Al-nontoxic topsoils. Our objectives were to compare the abilities of different measures of Al and pH in various extracts to predict the effects of acidity on growth and nodulation of subterranean clover. In a glasshouse experiment,Trifolium subterraneum L. cv. Mt Barker was grown in acidic soils from 3 sites in the Western Australian wheatbelt with different histories of phosphate fertilizer application. The pH was adjusted to give a range of 3.8–7 in the centrifuged soil solution (SS). Total (Al-tot), reactive Al (8-hydroxyquinoline-extractable, Al-HQ) and pH were measured in SS and 1∶5 extracts of KCl, CaCl2 and LaCl3. Another method of estimating reactive Al (Al which reacts with Chelex-100) was also measured in SS only. Other measurements included exchangeable Al and H, Ca in SS, and P in SS and the CaCl2 extracts. Both plant growth and early nodulation decreased with increasing acidity. Plant growth in the acidified and unlimed treatments of all soils was best described by Al-HQ in SS, KCl or CaCl2 (r2=0.68–0.70). Multiple regression of relative yield against Al or pH with the concentration of P in SS increased the percentage variation explained by 10% and 30%, respectively. Early nodulation was well correlated (r2=0.67–0.91) with pH or exch. H, Al-tot or exch. Al and Al-HQ. No improvement in the correlation was gained by including P using multiple regression. At constant ionic strength, increasing the valence of the extracting cation decreased the ability of soil tests to distinguish phytotoxic Al.  相似文献   

10.
Summary Effects of increasing rates of lime and phosphorus addition on concentrations of available nutrients in soil and on P, Al and Mn uptake by two pasture legumes, lotus (Lotus pedunculatus Cav.) and white clover (Trifolium repens L.), were studied in a pot experiment using a highly leached acid (pH 4.2) soil.Liming resulted in an increase in exchangeable Ca and thus in percentage base saturation, with concomitant decreases in levels of exchangeable Al, Fe and Mn. The relationship between exchangeable Ca and Al was linear and negative with a gradient of almost unity. Liming had no consistent effect on measured CEC values. Increasing lime rates significantly reduced concentrations of Mg, K and Na in saturation paste extracts but had no effect on exchangeable Mg, K and Na levels.With increasing lime additions, available phosphate indicesviz water soluble, resin-, Morgan-and Williams-extractable all decreased significantly, Truog-extractable was unaffected, while Brayextractable generally increased. Fractionation revealed that lime additions caused a decrease in easily soluble, Fe-bound and to a lesser extent Ca-bound phosphate fractions, had no effect on reductant soluble phosphate, but resulted in an increase in the Al-bound fraction. P uptake and yield of both legumes increased with lime and P additions.Correlations between available phosphate indices and yield of both legumes were weak or nonsignificant. However, high, significant positive correlation coefficients were found between available phosphate and plant uptake of P. Indices of available Al and Mn were not generally significantly correlated with plant uptake of Al or Mn but significant negative correlations were found between available Al and Mn and yield of both species.  相似文献   

11.
Velvet beans, fast growing leguminous cover crops used in the humid tropics, are shallow rooted on acid soils. This might be due to an inherent branching pattern, to an intrinsic toxicity of the acid subsoil or to a relative preference for root development in the topsoil. Such preference could be based on soil chemical factors in the subsoil or on physical factors such as penetration resistance or aeration. In a field experiment with two species of velvet bean (Mucuna pruriens var. utilis and M. deeringiana) all topsoil was removed and plants were sown directly into the acid subsoil. Root development was neither affected by this treatment nor by P fertilization or liming. In the absence of topsoil good root development in the exposed upper layer of subsoil was possible, so the hypothesis of a toxicity per se of the subsoil could be rejected. To test whether poor root development in the subsoil in the presence of topsoil is due to an inherent branching pattern of the plant or to a relative preference for topsoil, a modified in-growth core technique was used. Local topsoil and subsoil and an acid soil with a higher exchangeable Al content were placed in mesh bags at different depths and at different bulk densities, with and without lime and/or P fertilizer. A comparison of root development in mesh bags placed in the topsoil or subsoil showed that position and thus inherent branching pattern is not important. Root development in the subsoil was poor when this soil was placed in a mesh bag in the topsoil, but in an acid soil of much higher exchangeable Al content and higher percentage Al saturation more roots developed. In a second experiment in mesh bags, bulk density of the repacked soil in the range 1.0–1.5 g cm-3 had no significant effect on root development. P fertilization and a high rate of liming of the soil placed in the mesh bag had a positive effect on root length density. It is concluded that poor root development in the acid subsoil under field conditions is due to a relative preference for topsoil. Al saturation and bulk density of the soil are not directly involved in this preference, but differences in availability of P and Mg or in Ca/Al ratios might play a role.  相似文献   

12.
An experiment was conducted from 1997 to 2000 on an acid soil in Cameroon to assess the effectiveness of cultivating acid tolerant maize (Zea mays L.) cultivar and the use of organic and inorganic fertilizers as options for the management of soil acidity. The factors investigated were: phosphorus (0 and 60 kg ha?1), dolomitic lime (0 and 2 t ha?1), organic manure (no manure, 4 t ha?1 poultry manure, and 4 t ha?1 of leaves of Senna spectabilis), and maize cultivars (ATP-SR-Y – an acid soil-tolerant, and Tuxpeño sequia – an acid susceptible). On acid soil, maize grain yield of ATP-SR-Y was 61% higher than the grain yield of Tuxpeño sequia. Continuous maize cultivation on acid soil further increased soil acidity, which was manifested by a decrease in pH (0.23 unit), exchangeable Ca (31%) and Mg (36%) and by an increase in exchangeable Al (20%). Yearly application of 60 kg ha?1 of P for 3 years increased soil acidity through increases in exchangeable Al (8%) and H (16%) and a decrease in exchangeable Ca (30%), Mg (11%) and pH (0.07 unit). Lime application increased grain yield of the tolerant (82%) and susceptible (208%) cultivars. The grain yield increases were associated with a mean decrease of 43% in exchangeable Al, and 51% in H, a mean increase of 0.27 unit in pH, 5% in CEC, 154% in exchangeable Ca, and 481% in Mg contents of the soil. Poultry manure was more efficient than leaves of Senna producing 38% higher grain yield. This yield was associated with increases in pH, Ca, Mg and P, and a decrease in Al. The highest mean grain yields were obtained with lime added to poultry manure (4.70 t ha?1) or leaves of Senna (4.72 t ha?1). Grain yield increase was more related to the decrease in exchangeable Al (r = ?0.86 to ?0.95, P<0.01) and increase in Ca (r = 0.78–0.94, P<0.01), than to pH (r = ?0.57 (non-significant) to ?0.58 (P<0.05)). Exchangeable Al was the main factor determining pH (r = ?0.88 to ?0.92, P<0.01). The yield advantage of the acid tolerant cultivar was evident even after correcting for soil acidity. Acid soil-tolerant cultivars are capable of bringing unproductive acid soils into cultivation on the short run. The integration of soil amendments together with acid soil-tolerant cultivar offers a sustainable and comprehensive strategy for the management of acid soils in the tropics.  相似文献   

13.
Sorghum [Sorghum bicolor (L.) Moench] is the fifth most important cereal crop of the world. In South America, it is grown mainly on acid soils, and its production on these soils is limited by deficient levels of available P, Ca, Mg, and micronutrients, and toxic levels of Al and Mn. A greenhouse experiment was undertaken to evaluate the genotypic differences in sorghum for uptake (U), inhibition (IH), influx (IN) into roots, and transport (TR) to shoot for nutrients at three levels of soil Al saturation (2, 41, 64%). Overall shoot nutrient U, IN, and TR showed a significant inverse correlation with soil Al saturation and shoot Al concentration, and a significant positive correlation with shoot and root dry weight. The nutrient uptake parameters differentiated genotypes into most and least efficient categories at various levels of soil Al saturation. The nutrient uptake parameters showed significant differences with respect to soil Al saturation, genotypes, and their interactions. In the current study, Al tolerant genotypes recorded higher IN and TR for P, K, Ca, Mg, Zn, and Fe than Al-sensitive genotypes. Therefore, these U, IN, and TR traits could be used in selection of sorghum plants adaptable to acid soils. Sorghum genotypes used in this study showed intraspecific genetic diversity in U, IN, and TR for essential nutrients. It was concluded that selection of acid soil tolerant genotypes and further breeding of acid (Al) tolerant sorghum cultivars are feasible.IICA/EMBRAPA/World BankIICA/EMBRAPA/World BankIICA/EMBRAPA/World Bank  相似文献   

14.
The vascular plant flora of open land on superficial bedrock in southem Sweden (northwards to 59°N) is described and related to soil chemical properties. including soil acidity (pH), exchangeable Al, Ca, Fe, Mn, Mg, and phosphate, as well as to soil solution pH and concentrations of Al, Ca and Mg, and to the contents of soil organic matter, soil depth and bedrock types (sandstone, gneiss, granites, various dark igneous rocks and limestones). About 120 localities with totally 652 sites (4 m2) have been examined. Experimental evidence for the toxicity of acid soils and mineral nutrient deficiency of neutral and alkaline soils is related to field data. Hydrogen and Al ion toxicity in acid soils and low phosphate solubility in neutral - alkaline soils are identified as major factors limiting the field distributions of rock habitat plants. Some species (e.g., Rumex acetosella and Sedum telephium ) were limited by phosphate also in acid soils. The relative importance of H and Al ion concentrations to plant performance under variously acid soil conditions is discussed, and strong evidence is given for a decisive influence of Al ion toxicity on species diversity at pH-KCI > 4.5. The importance of grazing and former land use is considered briefly and the floristic differences between the western and the eastern half of the study area are discussed originating from differences in general distribution patterns of species and soil chemical properties.  相似文献   

15.
模拟酸雨对主要酸性土壤中铝的溶出及形态的影响   总被引:5,自引:0,他引:5  
本文研究了模拟酸雨对主要酸性土壤中铝的溶出及形态变化的影响。结果表明,模拟酸雨对土壤酸化的影响较小,但对土壤铝的溶出却影响明显,尤其在pH<4.0时;模拟酸雨对不同类型土壤的影响是不同的,其中以高度风化的酸性土壤较为敏感。模拟酸雨对土壤游离铝形态的影响是重要的,酸处理后,交换性铝略有增加,无定形活性铝增加较多,而有机络合态铝有减少的趋势。这表明在酸雨的长期作用下,铝终将转化为交换性铝和水溶性铝而进入环境并危害生态系统。  相似文献   

16.
Summary Two acid soils showing different Al solubility as a function of pH were limed to a range of pH values (in 10–2 M CaCl2) between 4.1 and 5.6. The apparent critical pH for the growth of barley in pots was 0.25 lower in the soil showing lower Al solubility. The addition of phosphate reduced exchangeable and soluble Al in the soils, and lowered the apparent critical pH by 0.35 while maintaining the difference between the soils. The Al concentration at the critical pH, measured after cropping to take account of the treatment effects on soil Al, also varied with soil and with phosphate addition. These apparent critical values of both pH and soluble Al varied linearly with available phosphate, over the range 18 to 73 mg P/kg soil, as follows: pH from 4.9 to 4.3; soluble Al, from 0.010 mM to 0.056 mM; and the soluble Ca/Al mole ratio, from 1270 to 214.  相似文献   

17.
For three acid soils from Santa Catarina, Brazil, lime application and time of incubation with lime had little effect on the adsorption of added phosphorus. In two soils with high contents of exchangeable aluminium, solution P and isotopically exchangeable P were decreased by incubating with lime for 1 month: phosphorus was probably adsorbing on freshly precipitated aluminium hydrous oxides. In one soil with less exchangeable aluminium, P in solution was increased by liming. After 23 months lime increased solution and exchangeable P possibly due to crystallization of aluminium hydrous oxides reducing the number of sites for P adsorption. All these changes were however small. In a pot experiment, lime and phosphorus markedly increased barley shoot and root dry matter and P uptake. Although liming reduced P availability measured by solution P, isotopically exchangeable P and resin extractable P, it increased phosphorus uptake by reducing aluminium toxicity and promoting better root growth. The soil aluminium saturation was reduced by liming, but the concentration of aluminium in roots changed only slightly. The roots accumulated aluminium without apparently being damaged.  相似文献   

18.
Summary We studied the effect of liming on the rates of mineralization and nitrification in a coarse-textured kaolinitic Ultisol. Soil samples were taken from field plots which received lime rates from 0 to 4mt/ha three years prior to the study. The pH of the soil samples varied from 4.2 to 6.1. Ammonification of soil organic N and added urea source proceeded readily and was not affected by lime rate. Nitrification occurred in both limed and unlimed soils but the rate of nitrification depended upon the rate of lime application. Soil pH, exchangeable Ca and exchangeable A1 were significantly correlated with the amount of NO3-N accumulated at the end of the 65 days incubation period. Nitrification of NH4-N from ammonium sulfate was absent in soils receiving lower rates of lime which gave pH values ranging from 4.2 to 4.8. Added ammonium source was nitrified readily after a 3-week delay period in the soil (pH 6.1) which received a higher rate of lime (4 mt/ha).  相似文献   

19.
Baligar  V.  He  Z.L.  Martens  D.C.  Ritchey  K.D.  Kemper  W.D. 《Plant and Soil》1997,195(1):129-136
Remediation of soil acidity is crucial for increasing crop production and improving environmental quality of acid infertile soils. Soil incubation and greenhouse pot experiments were carried out to examine the interactions between phosphate rock (PR), coal combustion by-product (BP), dolomitic lime (L), and cellulose (C) in an acidic soil and their effects on ryegrass (Lolium perenne L. cv Linn) growth. BP and PR application increased plant P content and dry matter yield (DMY) of shoots and roots by improving soil Ca availability and reducing Al toxicity. Application of BP at low rates (5 to 10 g BP kg-1) with PR appeared to decrease both plant P content and DMY compared to PR application alone. The reduced DMY is due to an increased Al concentration in soil solution as a result of displacement of sorbed Al by Ca of BP. Increases in DMY were obtained by addition of lime along with PR and BP at low rates or by increasing BP application rates above 15 g kg-1. This improved plant response was likely related to alleviation of Al toxicity by CaCO3 contained in the BP. In addition to raising the pH to an acceptable level for plant growth, the dolomitic lime supplied needed Mg for plants, thereby maintaining a good balance between available Ca and Mg for plants in the BP- and PR-amended soils. The addition of cellulose to the BP- and PR-amended soils reduced water-soluble Al and increased DMY. Plant growth increased PR dissolution by 2.4 to 243% in a soil with low available P. Use of BP at moderate rates with PR and dolomitic lime appears to be the best combination in increasing crop yields on infertile acidic soils.  相似文献   

20.
Soils of the Appalachian region of the United States are acidic and deficient in P. North Carolina phosphate rock (PR), a highly substituted fluoroapatite, should be quite reactive in these soils, allowing it to serve both as a source of P and a potential ameliorant of soil acidity. An experiment was conducted to evaluate the influence of PR dissolution on soil chemical properties and wheat (Triticum aestivum cv. Hart) seedling root elongation. Ten treatments including nine rates of PR (0, 12.5, 25, 50, 100, 200, 400, 800, and 1600 mg P kg-1) and a CaCO3 (1000 mg kg-1) control were mixed with two acidic soils, moistened to a level corresponding to 33 kPa moisture tension and incubated for 30 days. Pregerminated wheat seedlings were grown for three days in the PR treated soils and the CaCO3 control. Root length was significantly (P<0.05) increased both by PR treatments and CaCO3, indicating that PR dissolution was ameliorating soil acidity. The PR treatments increased soil pH, exchangeable Ca, and soil solution Ca while lowering exchangeable Al and 0.01 M CaCl2 extractable soil Al. Root growth in PR treatments was best described by an exponential equation (P<0.01) containing 0.01 M CaCl2 extractable Al. The PR dissolution did not reduce total soil solution Al, but did release Al complexing anions into soil solution, which along with increased pH, shifted Al speciation from toxic to nontoxic forms. These results suggest that North Carolina PR should contribute to amelioration of soil acidity in acidic, low CEC soils of the Appalachian region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号