首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This experimental study reports about production selectivity in the fermentation of glucose to citric acid by Yarrowia lipolytica as a function of substrate concentration. Batch runs featuring biomass growth and one or two citric acid production phases were carried out in a 15-l stirred tank fermentor. The presented results demonstrate that working at high initial substrate concentration in the production phase is beneficial both in terms of a higher production rate of citric acid, the desired metabolite (reaching 0.077 h(-1)) and of a higher utilization degree of the employed carbon source (yield up to 0.384 g(c.a.)/g(glucose)). The production rate of isocitric acid, the major undesired metabolite, was found to be practically constant over the tested initial substrate concentration range.  相似文献   

2.
Citric acid was produced from glucose in repeated-batch shake-flask and continuous air-lift cultivations by calcium-alginate-immobilized Yarrowia lipolytica A-101 yeast. The medium composition was systematically studied in a batch system by using experimental design and empiric modelling. The highest citric acid product concentration of 39 g/l was reached with a medium containing 150 g/l of glucose, 0.105 g/l of potassium dihydrogen phosphate, 0.84 g/l of magnesium sulphate and 21 mg/l of copper sulphate (5.2 mg/l of copper). The results were further improved by hardening the alginate carrier beads with glutaraldehyde, and by activation of the immobilized biocatalyst in a nutrient solution. In continuous air-lift bioreactors with varying height-to-diameter ratio the highest productivity of 350 mg/l per hour with a dilution rate of 0.023 l/h and a citric acid product concentration of 12 g/l was reached with a ratio of 3. Correspondence to: H. Kautola  相似文献   

3.
During continuous cultivation of Yarrowia lipolytica N 1, oxygen requirements for growth and citric acid synthesis were found to depend on the iron concentration in the medium. A coupled effect of oxygen and iron concentrations on the functioning of the mitochondrial electron transport chain in Y. lipolytica N 1 was established. Based on the results obtained in continuous culture, conditions for citric acid production in a batch culture of Y. lipolytica N 1 were proposed. At relatively low pO(2) value and a high iron concentration, citric acid accumulation was as high as 120 g l(-1); the specific rate of citric acid synthesis reached 120 mg citric acid (g cells h)(-1). The mass yield coefficient was 0.87 and the energy yield coefficient was 0.31.  相似文献   

4.
After analysis of batch culture and identification of the ways for prolongation of citric acid active synthesis by yeast, repeat-batch (RB) cultivation was suggested. Yarrowia lipolytica strain RB cultivation was studied and optimal conditions for cultivation selected. It was shown that when applying RB cultivation, better results were obtained than for batch cultivation. The activity of the culture remained stable after cultivation for more than 700 h. Comparative analysis of enzyme activities confirmed the regularity of the effect described, as the activity of practically of all the enzymes participating in ethanol oxidation and citric acid biosynthesis remained stable over time during RB cultivation. Advantages of RB cultivation for the production of citric acid by yeast are discussed. Received: 1 March 1999 / Received revision: 28 June 1999 / Accepted: 5 July 1999  相似文献   

5.
The aim of the study was to examine how the dilution rate and the chemical composition of the production medium impacts on the synthesis of citric acid by the Yarrowia lipolytica strain Wratislavia AWG7 from glycerol in a chemostat culture. The yeast Y. lipolytica Wratislavia AWG7, an acetate (acet(-)) and morphological (fil(-)) mutant, was cultured in a nitrogen- and phosphorus-limited medium at the dilution rate of 0.009-0.031h(-1) in the chemostat. Under steady-state conditions, the increase in the dilution rate was paralleled by the decrease in citric acid concentration (from 86.5 to 51.2gL(-1)), as well as by the increase in the volumetric rate (from 0.78 to 1.59gL(-1)h(-1)) and specific rate (from 0.05 to 0.18gg(-1)h(-1)) of citric acid production. The yield of the production process varied from 0.59 to 0.67gg(-1). In a 550-h continuous culture of the yeast test, at a dilution rate of 0.01h(-1), in a medium with enhanced concentrations of carbon, nitrogen and phosphorus sources, the concentration of citric acid, the concentration of biomass and the volumetric rate of citric acid production were 97.8gL(-1), 22.2gL(-1) and 0.98gL(-1)h(-1), respectively. The yield of the process decreased to 0.49gg(-1). The number of dead cells did not exceed 1% while that of the budding cells accounted for about 20%. Owing to the low content of isocitric acid and polyols, the fermentation process was characterized by a high purity. This study has produced the following finding: the double mutant Y. lipolytica AWG7 is an effective citric acid producer, with the ability to preserve its properties unchanged during the long run of the continuous chemostat process. This is a valued technological feature of such mutants.  相似文献   

6.
The possibility of obtaining mutant yeasts Yarrowia lipolytica VKM Y-2373 with increased ability to synthesize citric acid from glucose by using UV irradiation and N-methyl-NT-nitro-N-nitrosoguanidine was studied. Of 1500 colonies of the Y. lipolytica treated with either UV or N-methyl-NT-nitro-N-nitrosoguanidine, three mutants were selected that displayed higher (by 23%) biosynthetic ability as compared with the initial strain. Additionally, three mutants were selected from 1000 colonies of the Y. lipolytica exposed to a combined action of UV and N-methyl-NT-nitro-N-nitrosoguanidine; their biosynthetic activity exceeded that of the initial strain by 43.9%. The selective media with citrate and acetate were developed for a rapid selection of mutants as well as the express methods for the detection of active citric acid producers on the solid media with chalk and bromocresol containing a limiting concentration of amine nitrogen and an excess of glucose.  相似文献   

7.
Summary The spores of Aspergillus niger were entrapped in calcium-alginate beads and precultivated in growth media with various amounts of nitrogen. During the following citric acid production in shaking cultures an optimum of acid formation and yield was observed after the precultivation with 100–200 mg/l NH4NO3. The productivity of the immobilized Aspergillus was found to be 1.5 times higher than in the case of free pellets. The outgrowth of free mycelia into the medium could be provided by increasing the ratio particle-volume: medium volume, using a 1-l air-lift fermenter, by which means the productivity was increased twice as much as obtained in shaking culture.  相似文献   

8.
AIMS: To study the biochemical response of Yarrowia lipolytica LGAM S(7)1 during growth on raw glycerol (the main by-product of bio-diesel production units) in order to produce metabolic products of industrial significance. METHODS AND RESULTS:Yarrowia lipolytica was cultivated on raw glycerol or glucose in flasks. Although nitrogen-limited media were employed, growth was not followed by production of reserve lipid. Nitrogen limitation led to citric acid excretion. Growth and citric acid production parameters on glycerol were similar to those obtained on glucose. When high initial glycerol media were used, citric acid up to 35 g l(-1) (yield 0.42-0.44 g acid g(-1) glycerol consumed) was produced. CONCLUSIONS: Raw glycerol was an adequate substrate for Y. lipolytica. Growth was not followed by reserve lipid accumulation, but amounts of citric acid were produced. SIGNIFICANCE AND IMPACT OF THE STUDY: Raw glycerol is an industrial feedstock appearing in increasing quantities as the main by-product of bio-diesel production facilities. The present study describes an alternative way of glycerol valorization, with the production of remarkable amounts of citric acid, in addition to its main valorization way (production of 1,3-propanediol by bacteria).  相似文献   

9.
An acetate negative mutant of Yarrowia lipolytica Wratislavia AWG7 was found to be suitable for the production of high amounts of citric acid in long-term repeated-batch cultures. When 40% of fresh replaced medium was fed, this strain produced 154 g l−1, on average, which corresponded to a 0.78 g g−1 yield and a productivity of 1.05 g l−1 h−1. The activity of the culture remained stable for more than 1,650 h, i.e., 16 cycles of the repeated-batch bioreactors.  相似文献   

10.
The growth of Yarrowia lipolytica yeast as well the biosynthesis of citric acid on rapeseed oil were studied. It was indicated that the initial step of assimilation of rapeseed oil in the yeast Y. lipolytica is their hydrolysis by extracellular lipases with the formation of glycerol and fatty acids, which appear in the medium in the phase of active growth. The concentrations of these metabolites change insignificantly upon further cultivation. Lipase and the key enzymes of glycerol metabolism (glycerol kinase) and the glyoxylate cycle responsible for the metabolism of fatty acids (isocitrate lyase and malate synthase) are induced just at the beginning of the growth phase and remain active in the course of further cultivation. These results, taken together, suggest that glycerol and fatty acids according in the medium do not suppress the metabolism of each other. The fact that glycerol and fatty acids can be consumed simultaneously is of special importance for the development of the efficient regime of oil feeding, Y. lipolytica produced citric acid (175?g/L) with a yield of 150%. It should be noted that the simultaneous utilization of two different substrates is not typical of micro-organisms, which first assimilate one of the two available substrates (commonly, a carbohydrate), whereas the assimilation of the other substrate starts only after the first substrate is fully consumed from the medium. Indeed, upon the cultivation of Y. lipolytica on the mixture of glucose and oleic acid, the latter substrate began to be utilized only when the concentration of glucose decreased. The glycolytic enzyme pyruvate dehydrogenase was induced from the first hours of cultivation and remained at high levels until the exhaustion of glucose in the medium. At the same time, the activities of isocitrate lyase and malate synthase were very low during the metabolism of glucose, but were rapidly induced (approximately in 10 times) after the exhaustion of glucose in the medium. When Y. lipolytica was grown on the mixture of glucose and hexadecane, the dynamics of growth and substrate consumption was typical of the diauxie phenomenon: the utilization of hexadecane began only in several hours after the time when glucose was completely exhausted in the cultivation medium. In this case, the exhaustion of glucose arrested growth and the culture resumed growth only after a lag period. The assay of enzymes showed that the glycolytic enzyme pyruvate dehydrogenase was active during the phase of growth on glucose, whereas the enzymes of the glyoxylate cycle, isocitrate lyase and malate synthase were active during the phase of growth on hexadecane. In recent years in the literature, there are data that the different sugars produce signals which modify the conformation of certain proteins that, in turn, directly or through a regulatory cascade affect the expression of the genes subject to catabolite repression. These genes are not all controlled by a single set of regulatory proteins (Cho et al. 2009), but there are different circuits of repression for different groups of genes (Gancedo 1990). We will discuss the possible metabolic regulation in the case of Y. lipolytica.  相似文献   

11.
Simultaneous production of citric acid (CA) and invertase by Yarrowia lipolytica A-101-B56-5 (SUC+ clone) growing from sucrose, mixture of glucose and fructose, glucose or glycerol was investigated. Among the tested substrates the highest concentration of CA was reached from glycerol (57.15 g/L) with high yield (YCA/S = 0.6 g/g). When sucrose was used, comparable amount of CA was secreted (45 g/L) with slightly higher yield (YCA/S = 0.643 g/g). In all cultures amount of isocitrate (ICA) was below 2% of total citrates. Considering invertase production, the best carbon source appeared to be sucrose (72 380 U/L). The highest yield of CA and invertase biosynthesis calculated for 1 g of biomass was obtained for cells growing from glycerol (9.9 g/g and 4325 U/g, respectively). Concentrates of extra- and intracellular invertase of the highest activity were obtained from sucrose as substrate (0.5 and 1.8 × 106 U/L, respectively).  相似文献   

12.
It was discovered that the addition of 10 g/l acetate to a medium containing 30 g/l sunflower oil caused a drastic increase in citric acid production by Yarrowia lipolytica UOFS Y-1701 i.e. from 0.5 g/l in the absence of acetate to 18.7 g/l in the presence of acetate. Similarly, the ratio of citric acid:isocitric acid increased significantly from 1.7:1 in the absence of acetate to 3.7:1 in the presence of acetate after 240 h of growth.  相似文献   

13.
The optimal cultivation conditions ensuring the maximal rate of citric acid (CA) biosynthesis by glycerol-grown mutant Yarrowia lipolytica NG40/UV7 were found to be as follows: growth limitation by inorganic nutrients (nitrogen, phosphorus, or sulfur), 28 °C, pH 5.0, dissolved oxygen concentration (pO2) of 50 % (of air saturation), and pulsed addition of glycerol from 20 to 80 g L?1 depending on the rate of medium titration. Under optimal conditions of fed-batch cultivation, in the medium with pure glycerol, strain Y. lipolytica NG40/UV7 produced 115 g L?1 of CA with the mass yield coefficient of 0.64 g g?1 and isocitric acid (ICA) amounted to 4.6 g L?1; in the medium with raw glycerol, CA production was 112 g L?1 with the mass yield coefficient of 0.90 g g?1 and ICA amounted to 5.3 g L?1. Based on the activities of enzymes involved in the initial stages of raw glycerol assimilation, the tricarboxylic acid cycle and the glyoxylate cycle, the mechanism of increased CA yield from glycerol-containing substrates in Y. lipolytica yeast was explained.  相似文献   

14.
Biosensor-controlled substrate feeding was used in a citric acid production process with the yeast strain Yarrowia lipolytica H222 with glucose as the carbon source. The application of an online glucose biosensor measurement facilitated the performance of long-time repeated fed-batch process with automated bioprocess control. Ten cycles of repeated fed-batch fermentation were carried out in order to validate both the stability of the microorganism for citric acid production and the robustness of the glucose biosensor in a long-time experiment. In the course of this fermentation with a duration of 553 h, a slight loss of productivity from 1.4 g/(L×h) to 1.1 g/(L×h) and of selectivity for citric acid from 91% to 88% was observed. The glucose biosensor provided 6,227 measurements without any loss of activity.  相似文献   

15.
Our study aimed at the development of an effective method for citric acid production from glucose by use of the yeast Yarrowia lipolytica. The new method included an automated bioprocess control using a glucose biosensor. Several fermentation methodologies including batch, fed‐batch, repeated batch and repeated fed‐batch cultivation were tested. The best results were achieved during repeated fed‐batch cultivation: Within 3 days of cycle duration, approximately 100 g/L citric acid were produced. The yields reached values between 0.51 and 0.65 g/g and the selectivity of the bioprocess for citric acid was as high as 94%. Due to the elongation of the production phase of the bioprocess with growth‐decoupled citric acid production, and by operating the fermentation in cycles, an increase in citric acid production of 32% was achieved compared with simple batch fermentation.  相似文献   

16.
Bioprocess and Biosystems Engineering - Nitrogen-limiting condition is essential for citric acid production by Yarrowia lipolytica. Mitochondrial protein expression profiles of Y. lipolytica IMUFRJ...  相似文献   

17.
The INU1 gene encoding exo-inulinase cloned from Kluyveromyces marxianus CBS 6556 was ligated into the surface display plasmid and expressed in the cells of the marine-derived yeast Yarrowia lipolytica which can produce citric acid. The expressed inulinase was immobilized on the yeast cells. The activity of the immobilized inulinase with 6 × His tag was found to be 22.6 U mg?1 of cell dry weight after cell growth for 96 h. The optimal pH and temperature of the displayed inulinase were 4.5 and 50 °C, respectively and the inulinase was stable in the pH range of 3–8 and in the temperature range of 0–50 °C. During the inulin hydrolysis, the optimal inulin concentration was 12.0% and the optimal amount of added inulinase was 181.6 U g?1 of inulin. Under such conditions, over 77.9% of inulin was hydrolyzed within 10 h and the hydrolysate contained main monosaccharides and disaccharides, and minor trisaccharides. During the citric acid production in the flask level, the recombinant yeast could produce 77.9 g L?1 citric acid and 5.3 g L?1 iso-citric acid from inulin while 68.9 g L?1 of citric acid and 4.1 g L?1 iso-citric acid in the fermented medium were attained within 312 h of the 2-L fermentation, respectively.  相似文献   

18.
单细胞油脂是生产生物柴油最理想的原料,随着化石能源的日益枯竭,单细胞油脂的生产受到广泛关注。解脂耶罗维亚酵母是生产单细胞油脂的最佳菌株,它能够利用诸多廉价底物作为碳源,在工业上有极大的应用前景。其遗传背景清晰,全基因组测序已完成,基因表达系统已构建。在此基础上对油脂累积途径进行了深入研究,多株油脂含量更高的菌株被构建。深入了解解脂耶罗维亚酵母的基因表达及油脂代谢系统,对日后对其进一步的代谢改造具有重要意义。  相似文献   

19.
20.
Summary Immobilization followed by drying was fried as a new technique for obtaining small beads which might be more suitable for industrial fermentations and for the storage of the immobilized microorganisms.Aspergillus niger NRRL 2270 was used to produce citric acid in free, immobilized, and immobilized dried reactivated (IDR) forms. The productivity based on the bead volume used increased several folds with the use of IDR cells although the absolute level of citric acid did not increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号