首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The degradation of polycyclic aromatic hydrocarbons (PAHs) by an undefined culture obtained from a PAH-polluted soil and the same culture bioaugmented with three PAH-degrading strains was studied in carbon-limited chemostat cultures. The PAHs were degraded efficiently by the soil culture and bioaugmentation did not significantly improve the PAH degrading performance. The presence of PAHs did, however, influence the bacterial composition of the bioaugmented and non-bioaugmented soil cultures, resulting in the increase in cell concentration of sphingomonad strains. the initial enhancement of the degradation of the PAHs by biostimulation gradually disappeared and only the presence of salicylate in the additional carbon sources had a lasting slightly stimulating effect on the degradation of phenanthrene. The results suggest that bioaugmentation and biostimulation have limited potential to enhance PAH bioremediation by culture already proficient in the degradation of such contaminants.  相似文献   

2.
在土培盆栽条件下,以野生大麦磷高效利用基因型IS-22-30、IS-22-25和低效基因型IS-07-07为材料,研究不施磷(CK)、无机磷(KH2PO4,Pi)、有机磷(phytate,Po)及二者混合(KH2PO4+phytate,Pi+Po)的方式施磷30 mg·kg-1时,磷高效基因型野生大麦对磷素吸收利用能力及土壤磷组分特征.结果表明: Pi处理野生大麦干物质量和磷素积累量最大,Pi+Po处理其次,Po处理最小,均显著高于CK处理,且磷高效基因型物质生产和磷素吸收能力显著高于磷低效基因型.土壤有效磷在不同磷源处理间差异显著,Pi处理时含量最高,Pi+Po处理次之,且磷高效基因型野生大麦根际有效磷含量显著高于磷低效基因型.磷高效基因型野生大麦根际有效磷呈现亏缺现象,在Pi和Pi+Po处理时亏缺程度较大.根际与非根际土壤无机磷组分含量为Ca10-P>O-P>Fe-P>Al-P>Ca2-P>Ca8-P,且其含量随着Pi的增加而增加.各磷源处理下,磷高效基因型野生大麦根际土壤Ca2-P、Ca8-P出现亏缺;Pi处理磷高效基因型野生大麦根际土壤Al-P、Fe-P出现富集.土壤中有机磷各组分含量为中活性有机磷>中稳性有机磷、高稳性有机磷>活性有机磷.野生大麦根际土壤活性有机磷和中活性有机磷呈现富集,其富集量在Pi处理时最大;中稳性有机磷和高稳性有机磷呈现亏缺.各磷源处理下,磷高效基因型野生大麦根际土壤活性有机磷含量显著高于磷低效基因型,中稳性有机磷和高稳性有机磷在基因型间差异不显著.Pi缺乏时,磷高效基因型野生大麦活化吸收Ca2-P、Ca8-P、Al-P和活性有机磷的能力较强.  相似文献   

3.
Plants develop strategies to recycle phosphorus so that all organs receive adequate amounts of phosphorus, especially new growing organs. To evaluate the metabolic adaptation of rice plants under phosphorus deficient conditions, we selected several genes related to phosphorus utilization efficiency in the cell. Phosphoenolpyruvate carboxylase, triose phosphate translocator, phosphoenolpyruvate/phosphate translocator (PPT), pyruvate kinase, NAD dependent glyceraldehyde-3-phosphate dehydrogenase, and NADP dependent glyceraldehyde-3-phosphate dehydrogenase were selected because of their important roles in phosphorus utilization by the cell, and because they are part of the proposed bypass pathways by which the cells save phosphate. The most dramatic change was observed in the expression level of PPT (which transports phosphoenolpyruvate (PEP) from the cytosol into the chloroplast); thus we believe that PEP may play an important role in maintaining carbon metabolism under phosphate deficient conditions.  相似文献   

4.
5.
6.
The influence of P on N2 fixation and dry matter production of young pea ( Pisum sativum L. cv. Bodil) plants grown in a soil-sand mixture was investigated in growth cabinet experiments. Nodule dry weight, specific C2H2 reduction and P concentration in shoots responded to P addition before any growth response could be observed. The P concentration in nodules responded only slightly to P addition. A supply of P to P-deficient plants increased both the nodule dry weight, specific C2H2 reduction and P concentration in shoots relatively faster than it increased shoot dry weight and P concentration in nodules. Combined N applied to plants when N2 fixation had commenced, increased shoot dry weight only at the highest P levels. This indicates that the smaller plant growth at the low P levels did not result from N deficiency. The reduced nodulation and N2 fixation in P-deficient plants seem to be caused by impaired shoot metabolism and not by a direct effect of P deficiency of the nodules.  相似文献   

7.
Phenanthrene mineralization rates were found to vary widely among four soils; differences in soil nutrient levels was one hypothesis to explain this variation. To test this hypothesis, phenanthrene mineralization rates were measured in these soils with, and without, added nitrogen and phosphorus. Mineralization rates either remained unchanged or were depressed by the addition of nitrogen and phosphorus. Phenanthrene degradation rates remained unchanged in the soil which had the highest indigenous levels of nitrogen and phosphorus and which showed the largest increase in phosphorus levels after nutrients were added. The soils in which degradation rates were depressed had lower initial phosphorus concentrations and showed much smaller or no measurable increase in phosphorus levels after nutrients were added to the soils. To understand the response of phenanthrene degradation rates to added nitrogen and phosphorus, it may be necessary to consider the bioavailability of added nutrients and nutrient induced changes in microbial metabolism and ecology.  相似文献   

8.
A pot experiment confirmed that pigeonpea could efficiently utilize various sources of phosphorus (P) (aluminium phosphate, iron phosphate and apatite), irrespective of genotype. A qualitative assay method for iron (Fe)-P solubilizing activity showed that root exudates collected from P-deficient pigeonpea contained Fe-P solubilizing substances and that they were released mainly from root tips. Citric, malic, malonic, succinic and piscidic acids were identified in root exudates. Citric and piscidic acids release from roots was increased by low-P treatment in all the genotypes tested. The release rates of citric and piscidic acids were affected by the P concentration of shoots rather than that of roots. The pigeonpea roots released approximately 5–100 times more piscidic acid than citric acid depending on P stress status, plant age and genotype. When organic acids were added to Alfisols, citric acid was most capable of mobilizing P from the soil, followed by piscidic acid and malic acid. No correlation was found between genotypic variability in the release rates of citric and piscidic acids from the roots under low-P treatment at hydroponic culture and in the growth and P uptake of plants on Alfisols. Although citric and piscidic acids released from pigeonpea roots may play a partial role in solubilizing unavailable insoluble P in soils, the releases were thought to be an unsatisfactory strategy for explaining genotypic variation in low P availability of pigeonpea.  相似文献   

9.
Optimizing phosphorus (P) utilization in pigs requires improving our capacity to predict the amount of P absorbed and retained, with the main modulating factors taken into account, as well as precisely determining the P requirements of the animals. Given the large amount of published data on P utilization in pigs, a meta-analysis was performed to quantify the impact of the different dietary P forms, calcium (Ca) and exogenous phytases on the digestive and metabolic utilization criteria for dietary P in growing pigs. Accordingly, the amount of phytate P (PP) leading to digestible P (g/kg) was estimated to be 21%, compared with 73% for non-phytate P (NPP) from plant ingredients and 80% for NPP from mineral and animal ingredients (P < 0.001). The increase in total digestible dietary P following the addition of microbial phytase (PhytM) from Aspergillus niger (P < 0.001) was curvilinear and about two times higher than the increase following the addition of plant phytase, which leads to a linear response (P < 0.001). The response of digestible P to PhytM also depends on the amount of substrate, PP (PhytM2 × PP, P < 0.001). The digestibility of dietary P decreased with dietary Ca concentration (P < 0.01) independently of phytase but increased with body weight (BW, P < 0.05). Although total digestible dietary P increased linearly with total NPP concentration (P < 0.001), retained P (g/kg), average daily gain (ADG, g/day) and average daily feed intake (ADFI, g/day) increased curvilinearly (P < 0.001). Interestingly, whereas dietary Ca negatively affected P digestibility, the effect of dietary Ca on retained P, ADG and ADFI depended on total dietary NPP (NPP × Ca, P < 0.01, P < 0.05 and P < 0.01, respectively). Increasing dietary Ca reduced retained P, ADG and ADFI at low NPP levels, but at higher NPP concentrations it had no effect on ADG and ADFI despite a positive effect on retained P. Although the curvilinear effect of PhytM on digestible P increased with PP (P < 0.001), this effect was lessened by total NPP for ADG and ADFI (PhytM × NPP and PhytM2 × NPP, P < 0.05) and depended on both total NPP and Ca for retained P (PhytM2 × NPP × Ca, P < 0.01). This meta-analysis improves our understanding of P utilization, with major modulating factors taken into account. The information generated will be useful for the development of robust models to formulate environmentally friendly diets for growing pigs.  相似文献   

10.
On soils of low P supply organic P (Po) makes up a similar or even larger part in soil solution than inorganic P (Pi). The ability of wheat (Triticum aestivum L., cv. Star) plants to hydrolyze and absorb this Po in comparison to similar concentrations of Pi was studied. Four concentration levels of Pi and Po were obtained by extracting two soils with deionized water in a ratio of 1:1 and concentrating the resulting filtrate by freeze drying to different degrees. The concentration of Pi varied between 5 and 36 μM and Po between 3 and 22 μM. Wheat seedlings were grown in these solutions for 12 and 24 h and acid and alkaline phosphatase activity determined. The reduction of Po concentration in solution expressed on a root length basis gave the rate of Po hydrolysis and the reduction in concentration of Pi and Po gave the P inflow into the roots. No alkaline phosphatase activity was detected. The activity of wheat root acid phosphatase increased with Po concentration in solution. Phosphorus uptake was 2 to 6 fold higher from Pi than from Po at similar concentrations of both. The rate of uptake from Pi, the inflow, as well as the rate of hydrolysis of Po increased linearly with concentration but at similar concentration the inflow was 2 to 4 times higher than the rate of Po hydrolysis. Results suggest that plants can utilize Po after hydrolysis by phosphatase, but Pi is more important and preferentially used by plants; Po may be essential for plant nutrition especially in high P-fixing soils.  相似文献   

11.
Summary This study examined the microbial degradation of fuel oil by nine highly adapted different commercially available mixed bacterial cultures (DBC-plus, Flow Laboratories, Meckenheim, F.R.G.) and a bacterial community from a domestic sewage sludge sample. All mixed cultures were cultivated under aerobic batch conditions shaking (110 rpm) at 20°C in a mineral base medium containing 1 or 5% (v/v) fuel oil as the sole carbon source. Percent degradation of fuel oil and the n-alkane fraction was recorded for the nine DBC-plus cultures and the mixed population of the activated sludge sample. The increase in colony counts, protein, and optical density was studied during a 31-day incubation period for DBC-plus culture A, DBC-plus culture A2 and the activated sludge sample. The activated sludge mixed culture was most effective in degrading fuel oil, but various isolated bacterial strains from this bacterial community were not able to grow on fuel oil as the sole carbon source. In contrast, the n-alkane degradation rates of the DBC-cultures were lower, but single strains from the commercially available mixed cultures were able to mineralize fuel oil hydrocarbons. Strains ofPseudomonas aeruginosa were isolated most frequently and these organisms were able to grow very rapidly on fuel oil as a complex sole carbon source. The results indicate that fuel oil degradation in domestic sewage sludge is performed by mixed populations of naturally occurring bacteria and does not depend on the application of highly adapted commercially available cultures.  相似文献   

12.
The trials to use Azolla as a green manure for rice culture were made in the Niger basin.Azolla pinnata (Niger isolate) was used for the experiments. The effect of phosphorus on the growth and N2-fixation was examined in the field and in the laboratory. The growth rate and N content were maximum with P 3.1 ppm culture solution under laboratory conditions. The threshold P content for the growth was 0.5–0.6% in the dry matter. Maximum N content was 4.1% in the laboratory culture. In the field culture, the effect of P fertilizer on the growth and N yield of Azolla was tested. The split application of 6.5 kg P ha−1 per 13 days was most effective in stimulating the growth of Azolla. One kg of P as triple superphosphate produced 3.66 kg N in the Azolla. Maximum growth rate and N content in the field trials was 4.3 days (doubling time) and 2.3%, respectively. The lower productivity in the field in comparison with the laboratory culture was considered to be due to higher temperature and light intensity. the growth of Azolla was suppressed in the hot season in the Niger basin. The growth rate and N content were reduced during the high temperature period over 30°C on an average. The effect of inoculation of Azolla on rice yield was tested in the field experiment. The grain yield was increased 27% by Azolla incolation over the treatment without Azolla inoculation in — N fertilizer treatments. While the growth of Azolla with rice plants did not attain saturated density (1.8 kg fresh weight m−2), the effect on the grain yield was comparable to 40 kg N ha−1 as urea.  相似文献   

13.
Macklon  A.E.S.  Grayston  S.J.  Shand  C.A.  Sim  A.  Sellars  S.  Ord  B.G. 《Plant and Soil》1997,190(1):163-167
Cultures of the soil bacterium Serratia liquifaciens grimesii were grown with32 P labelled phosphate, to produce a uniformly32 P labelled source of microbial P. Extracts of the bacteria were prepared by sonication, dialysis and filtration to provide a clear sterile solution which was characterised in terms of dissolved organic and condensed P (DOP and DCP) and molecular weight range. The extract was used as a source of P to Agrostis capillaris L. seedlings in nutrient solution from which orthophosphate was omitted. In a time course experiment, root surface phosphatase activity increased as soon as extract was added to the root medium, DOP was rapidly hydrolysed and orthophosphate concentration increased rapidly. These processes were complete within about 8 h, after which phosphatase activity fell to its original level, and the plants absorbed molybdate reactive P from the nutrient solution so that it reached its original concentration over 48 h. DCP concentrations did not change significantly throughout the experiment. This work clearly demonstrated that DOP but not DCP, as a component of a bacterial extract produced by a relatively straightforward method, was quickly hydrolysed and the P made available for plant uptake.  相似文献   

14.
《植物生态学报》2017,41(8):815
Aims Arbuscular mycorrhizal (AM) symbiosis plays an important role in plant adaptation to phosphorus (P) deficiency. The mycorrhizal fungi can directly regulate P stress response of the host plants, and can also indirectly influence neighbor plants via AM exudates. This study aimed to reveal the regulation mechanisms of plant response to P deficiency by AM associations. Methods In a compartmentation cultivation experiment with Zea mays ‘B73’ and AM fungus Rhizophagus irregularis ‘DAOM197198’, we investigated mycorrhizal effects on plant P nutrition and the expression of plant and fungal genes related to P and carbon (C) metabolisms under both low P (10 mg?kg-1) and high P (100 mg?kg-1) conditions. The cultivation system consisted of three compartments, namely donor compartment, buffer compartment and receiver compartment divided by two pieces of microporous filters with pore size of 0.45 μm. Maize plant in donor compartment inoculated with AM fungus served as a source of AM exudates. The microporous filters could restrict the development of extraradical mycelium of AM fungi, but allow diffusion of AM exudates. Real-time PCR was performed to quantify the gene expression levels both in maize plants and AM fungi. Important findings The experimental results indicated that under low P conditions mycorrhizal colonization increased plant dry weight and P concentration in donor plants, and up-regulated plant genes encoding P transporters Pht1;2, Pht1;6, phosphoenolpiruvate carboxylase (PEPC), inorganic pyrophosphatase (TC289), glycerol-3-phosphate transporter (G3PT) and malate synthase (MAS1). The expression of AM fungal genes encoding P transporter (GiPT), GlcNAc transporter (NGT1), GlcNAc kinase (HXK1b), GlcNAc phosphomutase (AGM1), UDP GlcNAc pyrophosphorylase (UAP1), chitin synthase (CHS1), GlcNAc-6-phosphate deacetylase (DAC1) and glucosamine-6-phosphate isomerase (NAG1) was significantly higher under low P conditions compared with high P conditions. However, for the receiver plants, plant dry mass and P concentration were only significantly increased by higher P addition, while inoculation treatment significantly up-regulated the expression of P transporter genes Pht1;2 and Pht1;6, C metabolism related genes G3PT, PEPC, TC289 and MAS1. The study proved that AM exudates could potentially stimulate plant response to P deficiency by regulating functional genes relevant to P and C metabolisms in the mycorrhizal associations.  相似文献   

15.
Surface and bottom samples were collected twice a month over a period of one year from three stations in Bayou Texar, Pensacola, Florida. Samples were analyzed for primary productivity, inorganic carbon, bacterioplankton heterotrophic productivity, dissolved glucose, and bacterial numbers. Dissolved glucose concentrations were generally high and displayed a seasonal pattern with variations being accompanied by corresponding changes in rates of glucose uptake by bacteria. A relationship between dissolved glucose and carbon fixation was found to exist at the upper station but diminishes toward the lower stations. It is believed that this is most likely the result of increased mixing by wind action.  相似文献   

16.
Phosphorus (P) is a major limiting nutrient for plants in boreal forest ecosystems where a substantial part of the total P is sequestered in organic compounds. Some ectomycorrhizal (ECM) fungi are known to produce phosphomonoesterases, enzymes that degrade organic P sources. Here, we test 16 ECM species for this enzymatic activity by growing them on media containing orthophosphate, phytic acid or apatite. A method with an overlay gel that determined both phosphomonoesterase activity and its spatial distribution was developed. The phosphomonoesterase activity was not significantly higher when growing on organic P; conversely some isolates only produced measurable enzyme activity when grown on apatite. Species-specific variations with respect to phosphomonoesterase activity as well as growth responses to different substrates were found. The production of phosphomonoesterases was found to be widespread in ECM fungi and the enzyme activity did not need induction by organic P. The enzyme activity was highest in the central parts of the mycelia, potentially reflecting breakdown and recycling of phospholipids from old hyphae or potentially higher mycelial density.  相似文献   

17.
* The incidence of species that develop specialised 'dauciform' lateral roots, which are hypothesised to be important for phosphorus (P) acquisition, is uncertain. We investigated their occurrence in Australian reed, rush and sedge species, grown at low P concentration in nutrient solution, and studied the response of Schoenus unispiculatus (Cyperaceae) to a range of P concentrations. * We assessed the fraction of root biomass invested in dauciform roots, their respiration and net P-uptake rate, and the P status of roots and leaves. * Dauciform-root development occurred only in particular genera of Cyperaceae when grown at low P supply. Increased P supply was associated with increased growth of S. unispiculatus and increased leaf [P]. Dauciform-root growth was reduced by increased P supply, and reduced P uptake co-occurred with the complete suppression of dauciform roots. * The P-induced suppression of dauciform roots in Cyperaceae is similar to that observed for proteoid roots in members of Proteaceae and Lupinus albus. The response of dauciform roots to altered P supply and their absence from root systems of some sedge species are discussed in terms of managed and natural systems.  相似文献   

18.
In glucose-limited continuous cultures, a Crabtree positive yeast such as Saccharomyces cerevisiae displays respiratory metabolism at low dilution rates (D) and respirofermentative metabolism at high D. We hypothesized that the onset of fermentative metabolism is related with the catabolite repression or glucose repression effect. To test this hypothesis, we have investigated the physiological behavior in glucose-limited continuous cultures of S. cerevisiae strain CEN.PK122 and isogenic mutants, snf1 (cat1) and snf4 (cat3), defective in proteins involved in the release from glucose repression and the mutant in glucose repression mig1. We analyzed the behavior of the wild type and mutant strains at steady state in chemostat cultures as a function of D. Wild-type cells displayed respiratory metabolism up to a D of 0.2 h−1. snf1 and snf4 mutants started fermenting after a D of 0.1 and 0.15 h−1, respectively. The latter behavior was not due to an impairment of respiration since their specific rate of oxygen consumption was similar or even higher than that shown by the wild type. The snf1 strain displayed much lower yields than the wild type and the other mutants in the whole range of D studied. We conclude that the onset of fermentative metabolism in yeast growing in chemostat cultures is related with glucose repression.  相似文献   

19.
The effect of the different carbon sources acetate, acetate/glucose or glucose on the enhanced biological phosphorus removal (EBPR) process was studied by experiments under alternating anaerobic–aerobic conditions in one sequencing batch reactor for each carbon source. The glucose was consumed completely within the first 30 min of the anaerobic phase whereas acetate degradation was slow and incomplete. Phosphate was released independently of the carbon source during the whole anaerobic phase. The highest phosphate release (27 mg P l−1) and polyhydroxyalkanoate (PHA) storage (20 mg C g−1 dry matter (DM)) during the anaerobic phase as well as the highest polyphosphate (poly-P) (8 mg P g−1 DM) and glycogen storage (17 mg C g−1 DM) during the aerobic phase were observed with acetate. In contrast to other investigations, glycogen storage did not increase with glucose as substrate but was significantly smaller than with acetate. The PHA composition was also influenced strongly by the carbon source. The polyhydroxyvalerate (PHV) portion of the PHA was maximal 17% for acetate and 82% for glucose. Due to the strong influence of the carbon source on the PHA concentration and composition, PHA storage seems to regulate mainly the phosphate release and uptake. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
A novel selective enrichment method is described for phototrophic green sulfur bacteria even in the presence of purple sulfur and purple nonsulfur bacteria using sulfanilate, which was discovered during efforts to selectively isolate sulfanilate-metabolizing anoxygenic phototrophic bacteria from marine habitats. Samples for these experiments were obtained from beaches, saltpans, subsurface mangrove soils, fish and prawn aquaculture ponds and backwaters of the East and West coasts of India. Photoorganoheterotrophic and photolithoautotrophic enrichments in the absence of sulfanilate predominantly yielded purple bacterial enrichments. In contrast, photolithoautotrophic enrichments in the presence of sulfanilate yielded green-colored enrichments from the same samples. Whole cell absorption spectra of the enrichment cultures revealed the presence of bacteriochlorophyll c and thus green phototrophic bacteria. Microscopic observation demonstrated the presence of sulfur globules outside the bacterial cells and the presence of non-motile cells, some of which had prosthecae. 16S rDNA sequences obtained from green sulfur bacterial strains isolated from enrichment cultures confirmed the presence of representatives of the green sulfur bacterial genera Prosthecochloris and Chlorobaculum. The selective pressure of sulfanilate exerted through inhibition of phototrophic purple sulfur bacteria was demonstrated by inhibition studies using the purple sulfur bacteria Marichromatium indicum JA100 and Marichromatium sp. JA120 (JCM 13533) and the green sulfur bacterium Prosthecochloris sp. JAGS6 (JCM 13299).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号