首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Raman spectra of model compounds and of 2',5'-oligoadenylates in D2O were utilized to assign the Raman bands of 2',5'-oligoadenylates. The Raman spectra of A2'pA2'pA, pA2'pA2'pA, and pppA2'pA2'pA contained features that were similar to those of adenosine, adenosine 5'-monophosphate (AMP), and adenosine 5'-triphosphate, respectively. When AMP and pA2'pA2'pA were titrated from pH 2 to 9, the normalized Raman intensity of their ionized (980 cm-1) and protonated (1080 cm-1) phosphate bands revealed similar pKa's for the 5'-monophosphates. The Raman spectrum of pA2'pA2'pA was altered slightly by elevations in temperature, but not in a manner supporting the postulate that 2-5A possesses intermolecular base stacking. Major differences in the Raman spectrum of 2',5'- and 3',5'-oligoadenylates were observed in the 600-1200-cm-1 portion of the spectrum that arises predominately from ribose and phosphate vibrational modes. Phosphodiester backbone modes in A3'pA3'pA and pA3'pA3'pA produced a broad band at 802 cm-1 with a shoulder at 820 cm-1, whereas all 2',5'-oligoadenylates contained a major phosphodiester band at 823 cm-1 with a shoulder at 802 cm-1. The backbone mode of pppA2'pA2'pA contained the sharpest band at 823 cm-1, suggesting that the phosphodiester backbone may be more restrained in the biologically active, 5'-triphosphorylated molecule. The Raman band assignments for 2',5'-oligoadenylates provide a foundation for using Raman spectroscopy to explore the mechanism of binding of 2',5'-oligoadenylates to proteins.  相似文献   

2.
A novel 125I-labeled derivative of 2',5'-triadenylate 5'-triphosphate, pppA2'p5'A2'p5'A, with high specific radioactivity was synthesized by coupling of periodate-oxidized pA2'p5'A2'p5'A with beta-alanyltyrosine methyl ester followed by 5'-triphosphorylation and iodination with 125I. Antisera toward 2',5'-oligoadenylate 5'-triphosphate were produced in rabbits by immunization with the conjugate of pppA2'p5'A2'p5'A2'p5'A with bovine serum albumin, and an antiserum with high specificity and high sensitivity for 2',5'-oligoadenylates was selected and tested extensively. Radioimmuno assaying of 2',5'-oligoadenylates was carried out by a competitive double antibody method in which the amount of the antibody bound to the 125I-labeled probe was measured after precipitation with goat anti-rabbit IgG. The concentration of pppA2'p5'A2'p5'A required for 50% inhibition of the binding between the antiserum and the probe was 0.6 nM. The cross reactivity of the antiserum with the 3',5'-triadenylate was more than 10,000 times weaker compared to in the case of 2',5'-oligoadenylates. Very low or no cross reaction was observed with ATP, AMP, and adenosine. The radioimmuno assay using the 125I-labeled compound and the antiserum allows the direct analysis of 2',5'-oligoadenylates in the range of 4 fmol to 1 pmol (0.04-10 nM in a 100 microliter sample). This assay was applied to the measurement of the activity of 2',5'-oligoadenylate synthetase in cells stimulated by interferon. The properties of the 125I-labeled derivative of pppA2'p5'A2'p5'A are described.  相似文献   

3.
The effect of reovirus double-stranded RNA (dsRNA) and 5'-O-monophosphate form of 2',5'-oligoadenylate (pA(2'p5'A)2) on the translation and degradation of reovirus messenger RNA and on protein phosphorylation was examined in extracts prepared from interferon-treated mouse L fibroblasts. The following results were obtained. 1) The enhanced degradation of reovirus [3H]mRNA observed in the presence of either dsRNA or the 5'-O-triphosphate form of 2',5'-oligoadenylate (pppA(2'p5'A)3) was completely blocked by pA(2'p5'A)2. 2) The dsRNA-dependent phosphorylation of protein P1 and the alpha subunit of eukaryotic initiation factor (eIF-2) depended in a similar manner upon the concentration of dsRNA and was optimal at low dsRNA concentrations (0.1 to 1 microgram/ml). However, high concentrations of dsRNA (greater than 100 micrograms/ml) drastically reduced the phosphorylation of both P1 and eIF-2 alpha. Neither P1 nor eIF-2 alpha phosphorylation was affected by either pA(2'p5'A)2 or pppA(2'p5'A)3. 3) The translation of reovirus mRNA in vitro was inhibited by the addition of either low concentrations of dsRNA or pppA(2'p5'A)3. Whereas pA(2'p5'A)2 completely reversed the pppA(2'p5'A)3-mediated inhibition of translation, the inhibition mediated by low concentrations of dsRNA was only partially reversed by pA(2'p5'A)2. Under conditions where the pppA-(2'p5'A)3mediated degradation of reovirus mRNA was blocked, the translation of reovirus mRNA was still inhibited by low but not by high concentrations of dsRNA in a manner that correlated with the activation of P1 and eIF-2 alpha phosphorylation. These results suggest that the pppA(2'p5'A)n-dependent ribonuclease is not required and that protein phosphorylation may indeed be sufficient for the dsRNA-dependent inhibition of reovirus mRNA translation in cell-free systems derived from interferon-treated mouse fibroblasts.  相似文献   

4.
The treatment of Ehrlich ascites tumor cells with mouse interferon increases the level of the latent enzyme (2'-5')(A)n synthetase. If activated by double-stranded RNA, this catalyzes the synthesis from ATP of a series of 2'-5'-oligoadenylates: (2'-5')(A)n where n extends from 2 to about 15. We isolated (2'-5')(A)n synthetase in a homogeneous state. In the presence of double-stranded RNA, the purified enzyme can convert the large majority (about 97%) of the ATP into (2'-5')(A)n and pyrophosphate, although it does not cleave the pyrophosphate. The stoichiometry of the reaction can be formulated as: (n + I) ATP leads to (2'-5') pppA(pA)n + n pyrophosphate. Added pyrophosphate does not inhibit the synthesis of (2'-5')(A)n. The extent of the reverse reaction, i.e. the pyrophosphorolysis of (2'-5')(A)n, was below the level of detection under our conditions. The affinity of the enzyme for ATP is low: the rate of the reaction increases by about 10% when the concentration of ATP is increased from 5 mM to 10 mM. The optimal concentration of double-stranded RNA increases with the concentration of the enzyme. As tested at 0.4, 2, and 10 micrograms/ml of enzyme concentrations, close to maximal (2'-5')(A)n synthesis can be obtained if reovirus double-stranded RNA or poly(I) . poly(C) are used at about half the concentration (in w/v) of the enzyme. The plot of the reaction rate versus enzyme concentration is sigmoidal. It remains to be seen if this reflects on a cooperative behavior of the enzyme.  相似文献   

5.
Double-stranded RNA (dsRNA) inhibits protein synthesis in rabbit reticulocyte lysates by activating the synthesis of the endonuclease effector pppA2' p5' A2' p5' A(2-5A) and a protein kinase which phosphorylates the protein synthesis initiation factor eIF-2. Under certain assay conditions, high concentrations of dsRNA are without inhibitory effect in many lysates (high dsRNA "reversible" lysates). In these lysates natural dsRNA at low concentrations stimulated protein kinase activity to a greater extent than did the synthetic dsRNA poly rI.rC. Synthesis of 2--5A was greater when poly rI.rC was used. However, a number of factors, including the salt concentration and messenger RNA used, combine to determine the overall effect of dsRNA on protein synthesis under any given set of experimental conditions.  相似文献   

6.
Interferon-treated HeLa cells were incubated with [3H]uridine to label mRNA and were then exposed to the double-stranded RNA poly(inosinic acid).poly(cytidylic acid) (In.Cn). The incubation with In.Cn greatly enhanced the decay of mRNA. When the cells were incubated in this way in the presence of cycloheximide, which blocks ribosome movement along mRNA, extensive polysome degradation was detected in interferon-treated cells. Products of degradation of mRNA were recovered from monosomes which were presumably formed as a result of endonucleolytic breaks of mRNA. This endonucleolytic activity was correlated with the formation of 2',5'-oligo(A) by an enzyme induced by interferon and activated by double-stranded RNA; the 2',5'-oligo(A) was previously shown to activate an endonuclease in cell extracts. The 2',5'-oligo(A) levels in cells were measured by a competition-binding assay. Details of the procedure used are described, including synthesis of highly radioactive (2'-5')pppA3[32P]cytidine 3',5'-diphosphate, separation of 2',5'-oligo(A) binding from degrading activities, and specificity of the assay.  相似文献   

7.
beta-Alanyltyrosine derivative of 2',5'-tetraadenylate 5'-triphosphate, pppA2'p5'A2'-p5'A2'p5'A-beta-Ala-Tyr was prepared by coupling of periodate-oxidized pppA2'p5'-A2'p5'A2'p5'A with beta-alanyltyrosine methyl ester, followed by reduction with sodium cyanoborohydride. Its stability to 2',5'-phosphodiesterase and phosphatase was investigated in mouse L cell extract. The 5'-triphosphate of the compound was cleaved gradually to form the 5'-dephosphorylated derivative, A2'p5'A2'p5'A2'p5'A-beta-Ala-Tyr, followed by slow degradation of the 2',5'-phosphodiester bond. On the other hand, pppA2'p5'A2'p5'A2'p5'A was hydrolyzed very quickly under the same conditions. The tetramer derivative bound tightly to the 2',5'-oligoadenylate-dependent endoribonuclease in rabbit reticulocyte lysate or mouse L cell extract and inhibited protein synthesis of mouse L cells more effectively than the unmodified 2',5'-tetraadenylate 5'-triphosphate. The corresponding trimer derivative had slightly weaker activities than the unmodified trimer for binding to the endoribonuclease and for inhibition of protein synthesis. The compound, pppA2'p5'A2'p5'-A2'p5'A-beta-Ala-Tyr, was iodinated easily at the tyrosine residue with 125I, giving a high-specific-radioactivity derivative which was used as a radio-labeled probe in a radiobinding assay for 2',5'-oligoadenylate.  相似文献   

8.
Y Yagi  K Mizumoto    Y Kaziro 《The EMBO journal》1983,2(4):611-615
An RNA 5'-triphosphatase activity hydrolyzing gamma-phosphate from pppN-RNA was found to be associated with mRNA guanylyltransferase partially purified from rat liver nuclei. The activity specifically removed 32P as inorganic phosphate from [gamma-32P]pppA(pA)n, but not from [beta-32P]pppA(pA)n or from [gamma-32P]ATP. Free SH group(s) were required for its activity, and the reaction was inhibited by N-ethylmaleimide. Divalent cations were not required, but were rather inhibitory for the reaction. The RNA 5'-triphosphatase activity could not be separated from the guanylyltransferase activity through successive chromatographies on Sephadex G-150, CM-Sephadex and blue dextran-Sepharose columns. Both activities remained physically associated during sedimentation in glycerol density gradients after high salt treatment. The heat stability of the RNA 5'-triphosphatase activity was almost identical with that of the guanylyltransferase activity. These results indicate that the 69000 mol. wt. protein purified from rat liver nuclei as guanylyltransferase possesses both mRNA capping and RNA 5'-triphosphatase activities.  相似文献   

9.
Binding and activation efficacies to the 2-5A-dependent endonucease by chemically synthesized partially inosine-substituted 2-5A analogs, namely, pppI2'p5'A2'p5'A, pppA2'p5'I2'p5'A and pppA2'p5'A2'p5'I were compared with that of native 2-5A in mouse L cell and human lymphoblastoid cell extracts. The results obtained in this study indicated that the first adenine amino group from the 5' terminus of 2-5A molecule plays critical role in binding to the endonuclease, whereas the third adenine amino group has a function for the activation of this enzyme.  相似文献   

10.
Adenosine 5'-polyphosphates have been identified in vitro, as products of certain enzymatic reactions, and in vivo. Although the biological role of these compounds is not known, there exist highly specific hydrolases that degrade nucleoside 5'-polyphosphates into the corresponding nucleoside 5'-triphosphates. One approach to understanding the mechanism and function of these enzymes is through the use of specifically designed phosphonate analogues. We synthesized novel nucleotides: alpha,beta-methylene-adenosine 5'-tetraphosphate (pppCH2pA), beta,gamma-methylene-adenosine 5'-tetraphosphate (ppCH2ppA), gamma,delta-methylene-adenosine 5'-tetraphosphate (pCH2pppA), alphabeta,gammadelta-bismethylene-adenosine 5'-tetraphosphate (pCH2ppCH2pA), alphabeta, betagamma-bismethylene-adenosine 5'-tetraphosphate (ppCH2pCH2pA) and betagamma, gammadelta-bis(dichloro)methylene-adenosine 5'-tetraphosphate (pCCl2pCCl2ppA), and tested them as potential substrates and/or inhibitors of three specific nucleoside tetraphosphatases. In addition, we employed these p4A analogues with two asymmetrically and one symmetrically acting dinucleoside tetraphosphatases. Of the six analogues, only pppCH2pA is a substrate of the two nucleoside tetraphosphatases (EC 3.6.1.14), from yellow lupin seeds and human placenta, and also of the yeast exopolyphosphatase (EC 3.6.1.11). Surprisingly, none of the six analogues inhibited these p4A-hydrolysing enzymes. By contrast, the analogues strongly inhibit the (asymmetrical) dinucleoside tetraphosphatases (EC 3.6.1.17) from human and the narrow-leafed lupin. ppCH2ppA and pCH2pppA, inhibited the human enzyme with Ki values of 1.6 and 2.3 nm, respectively, and the lupin enzyme with Ki values of 30 and 34 nm, respectively. They are thereby identified as being the strongest inhibitors ever reported for the (asymmetrical) dinucleoside tetraphosphatases. The three analogues having two halo/methylene bridges are much less potent inhibitors for these enzymes. These novel nucleotides should prove valuable tools for further studies on the cellular functions of mono- and dinucleoside polyphosphates and on the enzymes involved in their metabolism.  相似文献   

11.
Heterogeneous nuclear RNA contains double-stranded regions that are not found in mRNA and that may serve as recognition elements for processing enzymes. The double-stranded regions of heterogeneous nuclear RNA prepared from HeLa cells promoted the synthesis of (2',5')oligoadenylate [(2',5')oligo(A) or (2'5')An] when incubated with (2',5')An polymerase. This enzyme is present in elevated levels in interferon-treated cells, and labeled heterogeneous nuclear RNA incubated with extracts of these cells is preferentially cleaved, since mRNA included in the same incubations is not appreciably degraded. The cleavage of heterogenous nuclear RNA is caused by the synthesis of (2'5')An and by a "localized" activation of the (2',5')An-dependent endonuclease, since it was enhanced by ATP, the substrate of the (2',5')An polymerase, and inhibited by 2'-dATP and ethidium bromide. Both of these compounds suppress the synthesis of (2',5')An, the first by competitive inhibition and the latter by intercalating into double-stranded RNA. The possible role of double-stranded regions and of the (2',5')An polymerase-endonuclease system in the processing of heterogeneous nuclear RNA is discussed.  相似文献   

12.
The occurrence of distinct (2'-5')(A)n-synthetase activities has recently been documented in cytoplasmic and nuclear extracts of several interferon (IFN)-treated cell lines. Since a role has been proposed for (2'-5')(A)n synthetase in the control of cell growth and differentiation, we examined the subcellular distribution of (2'-5')(A)n-synthetase activity both in IFN-treated undifferentiated Friend leukemia cells (FLCs) and during dimethyl-sulfoxide (DMSO)-induced erythroid differentiation of FLCs. Both the nuclear and cytoplasmic (2'-5')(A)n activities were modulated to the same extent by IFNs and DMSO. No evidence for a causal relationship between enzyme activation and FLC differentiation was found.  相似文献   

13.
Detritylation of 2',3'-O-carbonyl-5'-O-trityluridine (Ia) with ethereal hydrogen chloride affords 2',3'-O-carbonyluridine (Ib; 83%) which is converted by mesylation to the 5'-mesylcarbonate Ic (75%). Reaction of compound, Ic with tetrabutylammonium bromide in DMF affords the 5'-bromo carbonate Id (77%) which is reduced with tributyltin hydride to the 5'-deoxyuridine 2',3'-cyclic carbonate Ie (70%). When heated with imidazole, compound Ie affords the 2,2'-anhydro derivative IIa (76%) which is converted to the 2'-chloro derivative IIIa (88%) on heating with HC1/DMF. The tributyltin hydride reduction of compound IIIa gives 2',5'-dideoxyuridine (IIIb; 68%). When heated with NaHCO3 in DMF, the 5'-bromo carbonate Id affords the anhydro bromo derivative IIb (50%) which is converted to the 2',5'-dichloro derivative IIIc (86%) on heating with HC1/DMF. The tributyltin hydride reduction of compound IIIc affords the 2',5'-dideoxy derivative IIIb (59%). Alkaline hydrolysis of the 2,2'-anhydro derivative IIa affords the arabinosyl derivative IVa which is converted to the diacetyl derivative IVb (34%) by acetylation. When refluxed in water, the 2',3'-cyclic carbonates Ib, Id, and Ie are hydrolysed to the parent nucleosides, namely, uridine (Va; 81%), 5'-bromo-5'-deoxyuridine (Vb; 78%), and 5'-deoxyuridine (Vc; 83%). Hydrolysis of carbonates Ib and Ie is accompanied by the formation of the 2,2'-anhydro derivatives IIc (10%) and IIa (5%) as by-products.  相似文献   

14.
Streptomyces nucleotide 3'-pyrophosphokinase does not only transfer the 5'-beta, gamma-pyrophosphoryl group of ATP, ATP 3'-pyrophosphate or dATP to a variety of nucleotides at the 3'-OH site, but also adds 2',3'-cyclic terminal monophosphate to some suitable nucleotides with the use of diadenosine 5',5'-polyphosphates (n = 3-5). Examples are pA greater than p, ppA greater than p, pG greater than p, CpG greater than p, etc.  相似文献   

15.
Absence of 5'' terminal capping in encephalomyocarditis virus RNA.   总被引:9,自引:2,他引:7       下载免费PDF全文
D Frisby  M Eaton    P Fellner 《Nucleic acids research》1976,3(10):2771-2787
The nature of the 5' terminus of encephalomyocarditis (EMC) virion RNA has been investigated. We have failed to detect any capped products or nucleoside polyphosphates arising upon complete digestion of the RNA with T1, T2, and pancreatic ribonucleases, and it would therefore appear that the 5' terminus of EMC virus RNA is not phosphorylated and not capped with m7G. EMC virions do contain, however, large amounts of all four 5'-monosubstituted nucleoside triphosphates (4.2M pppG; 16.4M pppA; 3.OM pppU and 2.5M pppC), of which at least a proportion (about 15-20%) appear to remain bound to fully denatured RNA in the presence of divalent cations.  相似文献   

16.
Treatment of HeLa cells with interferon results in the induction of an enzymatic activity designated 2'5'oligo(A) polymerase. The polymerase requires continuous presence of double-stranded RNA (dsRNA) for activity, since degradation of dsRNA abolishes synthesis of the oligomeric series pppA(2'p5'A)n. These oligonucleotides are formed initially at a constant rate with dimer synthesized faster than trimer, and the latter faster than tetramer. After 45 min, accumulation of the dimer declines whereas that of other oligomers still proceeds at a linear rate. These results suggest that an oligomer remains associated with the enzyme for possible consecutive additions of adenylate, since no significant accumulation of dimer precedes synthesis of trimer. The relative amounts of the different oligomers found at the end of a reaction may reflect an increasing probability of release as the oligomers are elongated. The accumulation of dimer, however, decreases when it becomes a substrate for adenylate addition; incorporation of isolated dimer into 2'5'-oligo(A) was directly shown. Other nucleotides with a blocked p5'A terminus, like A5'ppppp5'A and NADH, can serve as adenylate acceptors in the presence of dsRNA. The adenosine triphosphates 2'-dATP and 3'-dATP are not incorporated efficiently into 2'5'-oligo(A) and inhibit its synthesis.  相似文献   

17.
Two molecular species of repressible extracellular phosphodiesterases showing cyclic 2',3'- and cyclic 3',5'-nucleotide phosphodiesterase activities were detected in mycelial culture media of wild-type Neurospora crassa and purified. The two molecular species were found to be monomeric and polymeric forms of an enzyme constituted of identical subunits having molecular weights of 50,000. This enzyme had the same electrophoretic mobility as repressible acid phosphatase. The enzyme designated repressible cyclic phosphodiesterase showed pH optima of 3.2 to 4.0 with a cyclic 3',5'-AMP substrate and 5.0 to 5.6 with a cyclic 2',3'-AMP substrate. Repressible cyclic phosphodiesterase was activated by MnCl2 and CoCl2 with cyclic 2',3'-AMP as substrate and was slightly activated by MnCl2 with cyclic 3',5'-AMP. The enzyme hydrolyzed cyclic 3',5'- and cyclic 2',3'-nucleotides, in addition to bis-rho-nitrophenyl phosphate, but not certain 5' -and 3'-nucleotides. 3'-GMP and 3'-CMP were hydrolyzed less efficiently. Mutant strains A1 (nuc-1) and B1 (nuc-2), which cannot utilize RNA or DNA as a sole source of phosphorus, were unable to produce repressible cyclic phosphodiesterase. The wild type (74A) and a heterocaryon between strains A1 and B1 produced the enzyme and showed growth on orthophosphate-free media containing cyclic 2',3'-AMP or cyclic 3',5'-AMP, whereas both mutants showed little or no growth on these media.  相似文献   

18.
Specific synthesis of some oligoadenylates including A2'p5'A2'p5'Ap(2'), the 2'-phosphorylated oligoribonucleotide core of the recently discovered protein synthesis inhibitor pppA2'p5'A2'p5'A is described using a novel solid-phase method. The CD spectra of A2'p5'Ap(2'), A2'p5'A2'p5'Ap(2') and A2'p5'A2'p5'A (derived by treatment of the phosphorylated synthetic trimer with E. coli alkaline phosphatase) are presented. Comparison of the latter spectrum with that of A2'p5'A2'p5'A obtained similarly from a biologically derived sample of pppA2'p5'A2'p5'A provides further evidence that this molecule is in fact the first naturally-occurring 2'-5'-linked oligoribonucleotide.  相似文献   

19.
beta-Alanyltyrosine methyl ester derivatives of 2-5 A, ppp-(A2'p5') A-beta-Ala-Tyr, were prepared by coupling of periodate oxidizedn2-5 A with beta-alanyltyrosine methyl ester, followed by reduction with sodium cyanoborohydride. The compounds were resistant to the hydrolysis by 2',5'-phosphodiesterase in the mouse L cells extract. They bound to the 2-5 A dependent RNAse (RNAse L) in the mouse L cells extract and in the rabbit reticulocyte lysate, and displaced by addition of 2-5 A. The compound, pppA2'p5'A2'p5'A2'p5'A-beta-Ala-Tyr, after iodination with 125I, was proved to be useful as a radio-labeled probe for the radiobinding assay for 2-5 A.  相似文献   

20.
A bioluminescent enzyme immunoassay (BLEIA) for 2',5'-oligoadenylate 5'-triphosphate (pppA2'p5'A2'Ap5'A, 2-5A) was developed using a conjugate of 2-5A and firefly luciferase as a probe. The conjugate was prepared from a 2-5A derivative bearing a thiol group at the 2'(or 3') end, and streptavidin (SA) bearing maleimide via a linker-arm and biotinylated luciferase. The thiol group of the 2-5A derivative was relatively stable under aerobic conditions and remained 100% and 56% intact at 25 degrees C after 1 and 96 h, respectively, without dimerization by aerobic oxidation. The thiol-modified 2-5A was coupled with the SA-maleimide conjugate, followed by complex formation with biotinylated firefly luciferase. BLEIA using this conjugate allowed for the direct analysis of 2-5A in a range of 5-500 fmol (0.1-10 nM in a 50 microL sample) and in a reaction time of 15 min. The measurement of microquantities of 2-5 A from various sources is easy to perform by this BLEIA, because no radioisotope labeled 2-5A was required as a probe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号