首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparative work among nonhominid primates has demonstrated that the basicranium becomes more flexed with increasing brain size relative to basicranial length and as the -upper and lower face become more ventrally deflected (Ross and Ravosa [1993] Am. J. Phys. Anthropol. 91:305–324). In order to determine whether modern humans and fossil hominids follow these trends, the cranial base angle (measure of basicranial flexion), angle of facial kyphosis, and angle of orbital axis orientation were measured from computed tomography (CT) scans of fossil hominids (Sts 5, MLD 37/38, OH9, Kabwe) and lateral radiographs of 99 extant humans. Brain size relative to basicranial length was calculated from measures of neurocranial volume and basicranial length taken from original skulls, radiographs, CT scans, and the literature. Results of bivariate correlation analyses revealed that among modern humans basicranial flexion and brain size/basicranial length are not significantly correlated, nor are the angles of orbital axis orientation and facial kyphosis. However, basicranial flexion and orbit orientation are significantly positively correlated among the humans sampled, as are basicranial flexion and the angle of facial kyphosis. Relative to the comparative sample from Ross and Ravosa (1993), all hominids have more flexed basicrania than other primates: Archaic Homo sapiens, Homo erectus, and Australopithecus africanus do not differ significantly from Modern Homo sapiens in their degree of basicranial flexion, although they differ widely in their relative brain size. Comparison of the hominid values with those predicted by the nonhominid reduced major-axis equations reveal that, for their brain size/basicranial length, Archaic and Modern Homo sapiens have less flexed basicrania than predicted. H. erectus and A. africanus have the degree of basicranial flexion predicted by the nonhominid reduced major-axis equation. Modern humans have more ventrally deflected orbits than all other primates and, for their degree of basicranial flexion, have more ventrally deflected orbits than predicted by the regression equations for hominoids. All hominoids have more ventrally deflected orbital axes relative to their palate orientation than other primates. It is argued that hominids do not strictly obey the trend for basicranial flexion to increase with increasing relative brain size because of constraints on the amount of flexion that do not allow it to decrease much below 90°. Therefore, if basicranial flexion is a mechanism for accommodating an expanding brain among non-hominid primates, other mechanisms must be at work among hominids. © 1995 Wiley-Liss, Inc.  相似文献   

2.
Although quantitative variations exist between living Man ( Homo sapiens sapiens ) and the extant great apes ( Pongo, Pan, Gorilla ) in such features of the articular surface of the temporal bone (a part of the temporomandibular joint) as the proportionate development of the postglenoid tubercle, the relative prominence of the articular tubercle and the slope of its posterior face, these do not individually effect a clear differentiation between the four extant genera. But in multivariate combination of these features, although Pan and Pongo are relatively closely associated, Gorilla and Homo sapiens sapiens are distinct, and also clearly differentiated from each other. The differences between genera of extant apes are, on average, as great as those between extant Man and individual apes.
As portrayed by such multivariate compound, this anatomical region in four fossil groups displays a unique configuration differentiating Homo sapiens neanderthalensis, Homo erectus pekinensis, Australopithecus africanus and Australopithecus robustus both from one another and from extant types. The differences are such that the fossil species lie uniquely and not intermediate between extant groups.
Definable age changes in this multivariate compound occur in both Man and apes but neither these, nor overall differences between adults, appear to be associated with marked contrasts in the pattern of jaw movement. It would thus seem improbable that inferences can be made from these features about the type of jaw movement that characterized the several fossil groups.  相似文献   

3.
Previous studies have recognized two patterns of distal femoral morphology among the specimens from Hadar (Ethiopia) assigned to Australopithecus afarensis. Size and shape differences between the well-preserved large (AL 333-4) and small (AL 129-1a) distal femora have been used to invoke both taxonomic and functional differences within the A. afarensis hypodigm. Nevertheless, prior studies have not analyzed these specimens in a multivariate context, nor have they compared the pattern of shape differences between the fossils to patterns of sexual dimorphism among extant taxa (i.e., the manner in which males and females differ). This study reexamines morphometric differences between the above specimens in light of observed levels of variation and patterns of sexual dimorphism among extant hominoids. Eight extant reference populations were sampled to provide a standard by which to consider size and shape differences between the fossils. Samples include three populations of modern humans, two subspecies of Pan troglodytes, three subspecies of Gorilla gorilla, Pan paniscus, and Pongo pygmaeus. Using size ratios and scale-free "shape" data (both derived from 2-D coordinate landmarks), size and shape differences between the fossils were evaluated against variation within each reference population using an exact randomization procedure. Growth Difference Matrix Analysis (GDMA) was used to test whether the pattern of morphological differences between the fossils differs significantly from patterns of sexual dimorphism observed among the ten extant groups. Overall morphometric affinities of the fossils to extant taxa were explored using canonical variates analysis (CVA).Results of the randomization tests indicate that the size difference between the Hadar femora can be easily accommodated within most hominoid taxa at the subspecific level (though not within single-sex samples). In addition, the magnitude of shape differences between the fossils can be commonly sampled even within most single-sex samples of a single hominoid subspecies. The pattern of morphological differences between the fossils does not differ statistically from any average pattern of femoral shape dimorphism observed among living hominoids. Moreover, contrary to prior claims, and despite a size disparity between the fossils greater than is typically observed within some chimpanzee and human populations, the two Hadar fossils appear to be much more similar to one another in overall shape than either specimen is to any extant hominoid group.  相似文献   

4.
An isolated petrosal bone belonging to a diminutive primate is reported from Middle Eocene fissure-fills near Shanghuang (southern Jiangsu Province, People's Republic of China), the type locality of several newly described primates (Eosimias sinensis, a basal anthropoid; Adapoides troglodytes, a basal adapinan; Tarsius eocaenus, a congener of extant tarsiers; and Macrotarsius macrorhysis, the first Asian representative of an otherwise exclusively North American genus). Because of its fragmentary condition and unique combination of characters, the Shanghuang petrosal cannot be assigned unambiguously to any of the Shanghuang primate taxa known from dental remains. However, the possibility that the petrosal represents either an adapid or a tarsiid can be dismissed because it lacks defining basicranial apomorphines of these groups. By contrast, the element does present arterial features consistent with its being haplorhine. Deciding between the likeliest candidates for its allocation—Omomyidae and Eosimiidae—is difficult, in part because it is not known what (or even whether) basicranial characters can be used to distinguish these clades. If the Shanghuang petrosal is that of an cosimiid, as both direct and indirect evidence appears to indicate, the following implications emerge: (1) as long suspected on other grounds, anthropoids share a closer evolutionary history with Omomyidae (and Tarsiiformes) than they do with Adapidae (and Strepsirhini); (2) the specialised basicranial anatomy of extant anthropoids and their immediate cladistic relatives is derived from a primitive precursor whose otic morphology was like that of omomyids in most known respects; (3) the evolution of the defining dental and basicranial apomorphies of extant Anthropoidea has been distinctly mosaic in pattern.  相似文献   

5.
This study examines the functional morphology of the olecranon process in hominoids and fossil hominins. The length of the bony lever of the triceps brachii muscle (TBM) is measured as the distance between the trochlear articular center and the most distant insertion site of the TBM, and olecranon orientation is measured as the angle that this bony lever makes with the long axis of the ulna. Results show that Homo, Pan, Gorilla, most monkeys, and the Australopithecus fossils studied have similar relative olecranon lengths. Suspensory hominoids and Ateles have shorter olecranons, suggesting, in some instances, selection for greater speed in extension. The orientation that the lever arm of the TBM makes with the long axis of the ulna varies with preferred locomotor mode. Terrestrial primates have olecranons that are more posteriorly oriented as body size increases, fitting general models of terrestrial mammalian posture. Arboreal quadrupeds have more proximally oriented lever arms than any terrestrial quadrupeds, which suggests use of the TBM with the elbow in a more flexed position. Olecranon orientation is not consistent in suspensory hominoids, although they are all characterized by orientations that are either similar or more posterior than those observed in quadrupeds. Homo and the fossils have olecranons that are clearly more proximally oriented than expected for a quadruped of their size. This suggests that Homo and Australopithecus used their TBM in a flexed position, a position most consistent with manipulatory activities.  相似文献   

6.
Previous analyses have suggested that Australopithecus africanus possessed more apelike limb proportions than Australopithecus afarensis. However, due to the errors involved in estimating limb length and body size, support for this conclusion has been limited. In this study, we use a new Monte Carlo method to (1) test the hypothesis that A. africanus had greater upper:lower limb-size proportions than A. afarensis and (2) assess the statistical significance of interspecific differences among these taxa, extant apes, and humans. Our Monte Carlo method imposes sampling constraints that reduce extant ape and human postcranial measurements to sample sizes comparable to the fossil samples. Next, composite ratios of fore- and hindlimb geometric means are calculated for resampled measurements from the fossils and comparative taxa. Mean composite ratios are statistically indistinguishable (alpha=0.05) from the actual ratios of extant individuals, indicating that this method conserves each sample's central tendency. When applied to the fossil samples, upper:lower limb-size proportions in A. afarensis are similar to those of humans (p=0.878) and are significantly different from all great ape proportions (p< or =0.034), while Australopithecus africanus is more similar to the apes (p> or =0.180) and significantly different from humans and A. afarensis (p< or =0.031). These results strongly support the hypothesis that A. africanus possessed more apelike limb-size proportions than A. afarensis, suggesting that A. africanus either evolved from a more postcranially primitive ancestor than A. afarensis or that the more apelike limb-size proportions of A. africanus were secondarily derived from an A. afarensis-like ancestor. Among the extant taxa, limb-size proportions correspond with observed levels of forelimb- and hindlimb-dominated positional behaviors. In conjunction with detailed anatomical features linked to arboreality, these results suggest that arboreal posture and locomotion may have been more important components of the A. africanus behavioral repertoire relative to that of A. afarensis.  相似文献   

7.
Fossils impact as hard as living taxa in parsimony analyses of morphology   总被引:3,自引:0,他引:3  
Systematists disagree whether data from fossils should be included in parsimony analyses. In a handful of well-documented cases, the addition of fossil data radically overturns a hypothesis of relationships based on extant taxa alone. Fossils can break up long branches and preserve character combinations closer in time to deep splitting events. However, fossils usually require more interpretation than extant taxa, introducing greater potential for spurious codings. Moreover, because fossils often have more "missing" codings, they are frequently accused of increasing numbers of MPTs, frustrating resolution and reducing support. Despite the controversy, remarkably little is known about the effects of fossils more generally. Here we provide the first systematic study, investigating empirically the behavior of fossil and extant taxa in 45 published morphological data sets. First-order jackknifing is used to determine the effects that each terminal has on inferred relationships, on the number of MPTs, and on CI' and RI as measures of homoplasy. Bootstrap leaf stabilities provide a proxy for the contribution of individual taxa to the branch support in the rest of the tree. There is no significant difference in the impact of fossil versus extant taxa on relationships, numbers of MPTs, and CI' or RI. However, adding individual fossil taxa is more likely to reduce the total branch support of the tree than adding extant taxa. This must be weighed against the superior taxon sampling afforded by including judiciously coded fossils, providing data from otherwise unsampled regions of the tree. We therefore recommend that investigators should include fossils, in the absence of compelling and case specific reasons for their exclusion.  相似文献   

8.
As a well-preserved juvenile and the type specimen of Australopithecus africanus, the Taung child figures prominently in taxonomic, ontogenetic, and phylogenetic analyses of fossil hominins. Despite general agreement about allocation of Sterkfontein and Makapansgat fossils to this species, limited morphological comparisons have been possible between these adult specimens and the juvenile Taung. Here, we used developmental simulation to estimate the adult form of the Taung child, and directly compare its morphology to that of other fossil hominins. Specimens were represented by 50 three-dimensional landmarks superimposed by generalized Procrustes analysis. The simulation process applied developmental trajectories from extant hominine species to the Taung fossil in order to generate its adult form. Despite differences found in the developmental patterns of these modern species, simulations tested on extant juveniles-transforming them into "adults" using trajectories from other species-revealed that these differences have negligible impact on adult morphology. This indicates that morphology already present by occlusion of the first permanent molar is the primary determinant of adult form, thereby supporting use of extant trajectories to estimate the morphology of an extinct species. The simulated Taung adult was then compared to other adult fossils. As these comparisons required assumptions about the pattern and magnitude of developmental change, additional analyses were performed to evaluate these two parameters separately. Results of all analyses overwhelmingly rejected the possibility that the Taung child was a juvenile robust australopith, but were consistent with the hypothesis that the Taung and Sterkfontein fossils are conspecific. Between Sts 5 and Sts 71, the latter is more likely to resemble the adult form of the Taung child.  相似文献   

9.
Priapulids and their extinct relatives, the archaeopriapulids and palaeoscolecids, are vermiform, carnivorous ecdysozoans with an armoured, extensible proboscis. These worms were an important component of marine communities during the Palaeozoic, but were especially abundant and diverse in the Cambrian. Today, they comprise just seven genera in four families. Priapulids were among the first groups used to test hypotheses concerning the morphological disparity of Cambrian fossils relative to the extant fauna. A previous study sampled at the generic level, concluding that Cambrian genera embodied marginally less morphological diversity than their extant counterparts. Here, we sample predominantly at the species level and include numerous fossils and some extant forms described in the last fifteen years. Empirical morphospaces for priapulids, archaeopriapulids and palaeoscolecids are relatively insensitive to changes in the taxon or character sample: their overall form has altered little, despite the markedly improved sampling. Cambrian and post-Cambrian genera occupy adjacent rather than broadly overlapping regions of these spaces, and Cambrian species still show lower morphological disparity than their post-Cambrian counterparts. Crucially, the significance of this difference has increased with improved taxon sampling over research time. In contrast with empirical morphospaces, the phylogeny of priapulids, archaeopriapulids and palaeoscolecids derived from morphological characters is extremely sensitive to details of taxon sampling and the manner in which characters are weighted. However, the extant Priapulidae and Halicryptidae invariably resolve as sister families, with this entire clade subsequently being sister group to the Maccabeidae. In our most inclusive trees, the extant Tubiluchidae are separated from these other living taxa by a number of small, intervening fossil clades.  相似文献   

10.
The magnitude and meaning of morphological variation among Plio-Pleistocene hominid distal humeri have been recurrent points of disagreement among paleoanthropologists. Some researchers have found noteworthy differences among fossil humeri that they believe merit taxonomic separation, while others question the possiblity of accurately sorting these fossils into different species and/or functional groups. Size and shape differences among fossil distal humeri are evaluated here to determine whether the magnitude and patterns of these differences can be observed within large-bodied, living hominoids. Specimens analyzed in this study have been assigned to various taxa (Australopithecus afarensis, A. africanus, A. anamensis, Paranthropus, and early Homo) and include AL 288-1m, AL 288-1s, AL 137-48a, AL 322-1, Gomboré IB 7594, TM 1517, KNM-ER 739, KNM-ER 1504, KMN-KP 271 (Kanapoi), and Stw 431. Five extant hominoid populations are sampled to provide a standard by which to consider differences found between the fossils, including two modern human groups (Native American and African American), one group of Pan troglodytes, and two subspecies of Gorilla gorilla (G. g. beringei, G. g. gorilla). All possible pairwise d values (average Euclidean distances) are calculated within each of the reference populations using an exact randomization procedure. This is done using both raw linear measurements as well as scale-free shape data created as ratios of each measurement to the geometric mean. Differences between each pair of fossil humeri are evaluated by comparing their d values to the distribution of d values found within each of the reference populations. Principal coordinate analysis and an unweighted pair group method with arithmetic averages (UPGMA) cluster analysis are utilized to further assess similarities and differences among the fossils. Finally, canonical variates analysis and discriminant analysis are employed using all hominoid samples in order to control for correlations among variables and to identify those variables that discriminate among groups; possible affinities of individual fossils with specific extant species are also examined. The largest size differences, those between the small Hadar specimens and the two largest fossils (KNM-ER 739, IB 7594), can be accommodated easily within the ranges of variation of the two Gorilla samples, but are extreme relative to the other reference samples. The d values between most of the fossils based on shape data, with the notable exception of those associated with KNM-ER 739 and KNM-ER 1504, can be sampled safely within all five reference samples. Subsequent analyses further support the inference that KNM-ER 739 and KNM-ER 1504 are different from the other hominid humeri and possess a unique total morphometric pattern. In overall shape, the distal humeri of the other fossils (non-Koobi Fora) are most similar to living chimpanzees. The distal humerus of Paranthropus from Kromdraai (TM 1517e) is most similar to one of the Hadar specimens of A. afarensis (AL 137-48a), whereas the first specimen of A. africanus from Sterkfontein (Stw 431) is not closely linked to any of the other australopithecines. The A. anamensis humerus from Kanapoi exhibits no special affinities to A. afarensis or to modern humans. © 1996 Wiley-Liss, Inc.  相似文献   

11.
Abstract. A tiny neomenioid postlarva (Neomeniomorpha, or Solenogastres) collected from the water column 3 to 6 m above the east Pacific seamount Fieberling Guyot has 6 iterated, transverse groups of spicules and 7 regions devoid of spicules between the transverse groups and the anterior-and posteriormost spicules. Three pairs of ventral, longitudinal zones with columns of single spicules, each pair with its own distinctive spicule morphology, lack transverse iteration. The 7 regions bare of spicules are compared to shell fields in developing polyplacophorans, and spicule arrangement is compared to sclerite arrangement on the Cambrian fossils Wiwaxia corrugata and Halkieria evangelista and to the spines and shell plates of the Silurian Acaenoplax hayae. The term iteration is used to denote processes that result in both metameric segments and repeated ectodermal skeletal structures. Iterative morphogenesis was probably present in bilateral animals before the Cambrian. Comparisons of iterated ectodermal skeletal structures among fossil and extant forms are suggested to indicate evolutionary relationship.  相似文献   

12.
This study uses macroscopic and microscopic methods to analyze the expression of linear enamel hypoplasia (LEH) in Plio-Pleistocene South African hominins. LEH is a developmental defect of enamel that is used in many anthropological contexts as a physiological stress indicator. Previous research has not settled the question as to whether differences in LEH expression exist between Paranthropus and Australopithecus and if they exist, to what extent these differences might be explained simply by taxonomic differences in enamel development and morphology rather than by differential stress experience. In this study, the analysis of LEH is conducted with respect to differences between Paranthropus and Australopithecus in aspects of enamel development and morphology that are thought to influence LEH expression. Two factors impacting LEH expression are considered: the duration of enamel formation, and the spacing of perikymata. It is predicted that if the first factor strongly influences the expression of LEH, then there should be fewer defects per tooth in Paranthropus because of its abbreviated crown formation spans (and fast extension rates) relative to Australopithecus. It is also predicted that because Australopithecus has more densely packed perikymata in comparable regions of the crown than Paranthropus, this taxon should, on average, have narrower defects than Paranthropus. To address these questions, 200 Australopithecus and 137 Paranthropus teeth were examined for LEH, and the analysis of defect width with respect to perikymata spacing was conducted on tooth impressions examined under a scanning electron microscope using INCA (Oxford Instruments) measurement software. Data support the first prediction: Australopithecus does have significantly more defects per canine tooth than Paranthropus. Data do not support the second prediction in large part because several Australopithecus specimens have wide groove defects in which perikymata are not visible and enamel is irregular. Such wide grooves are not predicted by perikymata spacing such that alternative explanations, including taxonomic differences in ameloblast sensitivity and the duration/severity of disruptions to enamel growth, must be considered.  相似文献   

13.
Understanding variation in the basicranium is of central importance to paleoanthropology because of its fundamental structural role in skull development and evolution. Among primates, encephalisation is well known to be associated with flexion between midline basicranial elements, although it has been proposed that the size or shape of the face influences basicranial flexion. In particular, brain size and facial size are hypothesized to act as antagonists on basicranial flexion. One important and unresolved problem in hominin skull evolution is that large-brained Neanderthals and some Mid-Pleistocene humans have slightly less flexed basicrania than equally large-brained modern humans. To determine whether or not this is a consequence of differences in facial size, geometric morphometric methods were applied to a large comparative data set of non-human primates, hominin fossils, and humans (N = 142; 29 species). Multiple multivariate regression and thin plate spline analyses suggest that basicranial evolution is highly significantly influenced by both brain size and facial size. Increasing facial size rotates the basicranium away from the face and slightly increases the basicranial angle, whereas increasing brain size reduces the angles between the spheno-occipital clivus and the presphenoid plane, as well as between the latter and the cribriform plate. These interactions can explain why Neanderthals and some Mid-Pleistocene humans have less flexed cranial bases than modern humans, despite their relatively similar brain sizes. We highlight that, in addition to brain size (the prime factor implicated in basicranial evolution in Homo), facial size is an important influence on basicranial morphology and orientation. To better address the multifactorial nature of basicranial flexion, future studies should focus on the underlying factors influencing facial size evolution in hominins.  相似文献   

14.
The elucidation of patterns of cranial skeletal maturation and growth in fossil hominids is possible not only through dental studies but also by mapping different aspects of ossification in both extant African apes and humans. However, knowledge of normal skeletal development in large samples of extant great apes is flimsy. To remedy this situation, this paper offers an extensive survey and thorough discussion of the ossification of the posterior border of the sphenoid greater wing. Indeed, this area provides much information about basicranial skeletal maturation. We investigate three variants: the absence of the foramen spinosum and the position of both the foramen spinosum and the foramen ovale in relation to the sphenosquamosal suture. Providing original data about humans and 1,425 extant great ape skulls and using a sample of 64 fossil hominids, this study aimed to test whether different ossification patterns occurred during the course of human evolution. The incidence of three derived morphologies located on the posterior border of the sphenoid greater wing increases during human evolution at different geological periods. The evolutionary polarity of these three derived morphologies is assessed by outgroup comparison and ontogenetic methods. During human evolution, there is a clear trend for the foramen spinosum to be present and wholly located on the posterior area of the sphenoid greater wing. Moreover, in all the great ape species and in Australopithecus afarensis, the sphenosquamosal suture may split the foramen ovale. Inversely, the foramen ovale always lies wholly within the sphenoid greater wing in Australopithecus africanus, robust australopithecines, early Homo, H. erectus (and/or H. ergaster), and Homo sapiens. From ontogenetic studies in humans, we conclude that, during human evolution, the ossification of the posterior area of the sphenoid greater wing progressively surrounded the middle meningeal artery (passing through the foramen spinosum) and the small meningeal artery (passing through the foramen ovale). Am J Phys Anthropol 107:387–399, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
Two mandibular fragments with associated milk teeth assigned to the late Miocene hominoid primate Ouranopithecus macedoniensis are analyzed. The fossils, which belong to a single individual, were found in the Vallesian locality of "Ravin de la Pluie" of the Axios Valley (Macedonia, Greece). The material is described here and compared with extant and extinct hominoids, allowing assessment of the evolutionary trends in the deciduous lower dentition within the Hominoidea. Hylobatids represent the more primitive pattern. Gorilla is slightly more derived than hylobatids, but less derived than Pongo and Pan, the latter being the most derived. With relatively smaller deciduous canines and more molarized deciduous premolars, Ouranopithecus is more derived than both Pan and Gorilla. Among the fossil hominoids, Proconsul, representing the primitive condition, has a very simple dp(3)and a dp(4)that has a trigonid that is taller than the talonid and which lacks a hypoconulid. Griphopithecus is more derived than Proconsul in having a dp(4) with a lower trigonid, a hypoconulid, and a less oblique cristid obliqua. Australopithecus and Paranthropus possess a similar morphology to that of Homo, while Ardipithecus appears to be more primitive than the latter genera. Ouranopithecus has a more derived lower milk dentition than Proconsul and Griphopithecus, but less derived than Australopithecus and Paranthropus. The comparison of the lower milk dentition of Ouranopithecus confirms our previous conclusions suggesting that this fossil hominoid shares derived characters with Australopithecus and Homo.  相似文献   

16.
Until recently, our understanding of the evolution of human growth and development derived from studies of fossil juveniles that employed extant populations for both age determination and comparison. This circular approach has led to considerable debate about the human-like and ape-like affinities of fossil hominins. Teeth are invaluable for understanding maturation as age at death can be directly assessed from dental microstructure, and dental development has been shown to correlate with life history across primates broadly. We employ non-destructive synchrotron imaging to characterize incremental development, molar emergence, and age at death in more than 20 Australopithecus anamensis, Australopithecus africanus, Paranthropus robustus and South African early Homo juveniles. Long-period line periodicities range from at least 6–12 days (possibly 5–13 days), and do not support the hypothesis that australopiths have lower mean values than extant or fossil Homo. Crown formation times of australopith and early Homo postcanine teeth fall below or at the low end of extant human values; Paranthropus robustus dentitions have the shortest formation times. Pliocene and early Pleistocene hominins show remarkable variation, and previous reports of age at death that employ a narrow range of estimated long-period line periodicities, cuspal enamel thicknesses, or initiation ages are likely to be in error. New chronological ages for SK 62 and StW 151 are several months younger than previous histological estimates, while Sts 24 is more than one year older. Extant human standards overestimate age at death in hominins predating Homo sapiens, and should not be applied to other fossil taxa. We urge caution when inferring life history as aspects of dental development in Pliocene and early Pleistocene fossils are distinct from modern humans and African apes, and recent work has challenged the predictive power of primate-wide associations between hominoid first molar emergence and certain life history variables.  相似文献   

17.
Prior work has shown that the degree of basicranial flexion among primates is determined by relative brain size, with anatomically modern humans possibly having a less flexed basicranium than expected for their relative brain size. Basicranial flexion has also been suggested to be adaptive in that it maintains a spheroid brain shape, thereby minimizing connections between different parts of the brain. In addition, it has been argued that the degree of flexion might be constrained such that increases in relative brain size beyond that seen in Australopithecus africanus were accommodated by mechanisms other than basicranial flexion. These hypotheses were evaluated by collating an extensive data set on basicranial flexion and relative brain size in primates and other mammals. The data were analyzed using standard least squares regression, geometric and curvilinear modeling, and phylogenetically independent contrasts (PICs). Geometric modeling does not support the hypothesis that flexion is an adaptation that facilitates enlargement of a spheroid brain. Whether humans have a less flexed basicranium than expected for their relative brain size depends on the phylogenetic vantage point from which it is evaluated. They are as flexed as expected for a descendant of the last common ancestor of the Paranthropus-Homo clade, but their degree of flexion cannot be predicted from the basal hominoid node, even if their relative brain size is specified. Humans undoubtedly occupy an unusual part of morphospace in terms of basicranial flexion and relative brain size, but this does not mean that their degree of flexion is or is not constrained. Curvilinear regression models and standard linear regression models describe the relationship between flexion and relative brain size equally well. Hypotheses that the degree of flexion is or is not constrained cannot be discriminated at present. Consideration of recently published ontogenetic data in the context of the interspecific data for adults suggests that much of the variance in basicranial flexion can still be explained as a mechanical consequence of brain enlargement relative to basicranial length.  相似文献   

18.
It is widely acknowledged that integrating fossils into data sets of extant taxa is imperative for proper placement of fossils, resolution of relationships, and a better understanding of character evolution. The importance of this process has been further magnified because of the crucial role of fossils in dating divergence times. Outstanding issues remain, including appropriate methods to place fossils in phylogenetic trees, the importance of molecules versus morphology in these analyses, as well as the impact of potentially large amounts of missing data for fossil taxa. In this study we used the angiosperm clade Juglandaceae as a model for investigating methods of integrating fossils into a phylogenetic framework of extant taxa. The clade has a rich fossil record relative to low extant diversity, as well as a robust molecular phylogeny and morphological database for extant taxa. After combining fossil organ genera into composite and terminal taxa, our objectives were to (1) compare multiple methods for the integration of the fossils and extant taxa (including total evidence, molecular scaffolds, and molecular matrix representation with parsimony [MRP]); (2) explore the impact of missing data (incomplete taxa and characters) and the evidence for placing fossils on the topology; (3) simulate the phylogenetic effect of missing data by creating "artificial fossils"; and (4) place fossils and compare the impact of single and multiple fossil constraints in estimating the age of clades. Despite large and variable amounts of missing data, each of the methods provided reasonable placement of both fossils and simulated "artificial fossils" in the phylogeny previously inferred only from extant taxa. Our results clearly show that the amount of missing data in any given taxon is not by itself an operational guideline for excluding fossils from analysis. Three fossil taxa (Cruciptera simsonii, Paleoplatycarya wingii, and Platycarya americana) were placed within crown clades containing living taxa for which relationships previously had been suggested based on morphology, whereas Polyptera manningii, a mosaic taxon with equivocal affinities, was placed firmly as sister to two modern crown clades. The position of Paleooreomunnea stoneana was ambiguous with total evidence but conclusive with DNA scaffolds and MRP. There was less disturbance of relationships among extant taxa using a total evidence approach, and the DNA scaffold approach did not provide improved resolution or internal support for clades compared to total evidence, whereas weighted MRP retained comparable levels of support but lost crown clade resolution. Multiple internal minimum age constraints generally provided reasonable age estimates, but the use of single constraints provided by extinct genera tended to underestimate clade ages.  相似文献   

19.
This paper documents Early Oligocene fossilized foliage and ovulate cones from Lea River, Tasmania and identifies them as belonging to two extant southern hemisphere Cupressaceae genera, Callitris and Fitzroya. Most importantly, it sheds some light on evolutionary trends within Callitris, a genus with numerous extant Australian species and two extant New Caledonian species. Callitris has a very poor fossil record and, because of the present absence of a molecular data set that includes all species, its phylogeny remains somewhat ambiguous. Although Fitzroya foliage has previously been described from a number of Tasmanian sites, this is the first recording of fertile material. The ovulate cones of the Callitris and Fitzroya macrofossils are characterized by bract-scale complexes in two whorls of three and are subtended by scale-like leaves in whorls of three. The fossilized foliage specimens consist of scale-like leaves in whorls of three. These morphological characteristics are only exhibited by three extant southern hemisphere cupressaceous genera, Callitris, Actinostrobus, and Fitzroya. The assignment of the fossils to extinct Callitris and Fitzroya species is made by comparisons with species from these three extant genera. Although much of the Lea River flora are wet rainforest taxa, the Callitris fossils have characteristics of both wet- and dry-adapted extant species.  相似文献   

20.
The identification and application of reliable fossil calibrations represents a key component of many molecular studies of evolutionary timescales. In studies of plants, most paleontological calibrations are associated with macrofossils. However, the pollen record can also inform age calibrations if fossils matching extant pollen groups are found. Recent work has shown that pollen of the myrtle family, Myrtaceae, can be classified into a number of morphological groups that are synapomorphic with molecular groups. By assembling a data matrix of pollen morphological characters from extant and fossil Myrtaceae, we were able to measure the fit of 26 pollen fossils to a molecular phylogenetic tree using parsimony optimisation of characters. We identified eight Myrtaceidites fossils as appropriate for calibration based on the most parsimonious placements of these fossils on the tree. These fossils were used to inform age constraints in a Bayesian phylogenetic analysis of a sequence alignment comprising two sequences from the chloroplast genome (matK and ndhF) and one nuclear locus (ITS), sampled from 106 taxa representing 80 genera. Three additional analyses were calibrated by placing pollen fossils using geographic and morphological information (eight calibrations), macrofossils (five calibrations), and macrofossils and pollen fossils in combination (12 calibrations). The addition of new fossil pollen calibrations led to older crown ages than have previously been found for tribes such as Eucalypteae and Myrteae. Estimates of rate variation among lineages were affected by the choice of calibrations, suggesting that the use of multiple calibrations can improve estimates of rate heterogeneity among lineages. This study illustrates the potential of including pollen-based calibrations in molecular studies of divergence times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号