首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoaffinity labeling of the nucleotide binding site of actin   总被引:5,自引:0,他引:5  
G Hegyi  L Szilagyi  M Elzinga 《Biochemistry》1986,25(19):5793-5798
Rabbit skeletal muscle actin was photoaffinity-labeled by the nucleotide analogue 8-azidoadenosine 5'-triphosphate. In both G-actin and F-actin about 25% covalent incorporation was achieved. The labeled actins were digested with cyanogen bromide, and the labeled peptides were isolated and sequenced. In F-actin the label was bound primarily to Lys-336, while in G-actin the label was bound to Lys-336 or to Trp-356. The results indicate that the nucleotide binding site is near the phalloidin binding site of actin [Vanderkerckhove, J., Deboben, A., Nassal, M., & Wieland, T. (1985) EMBO J. 4, 2815-2818]. The binding of the azido group to Trp-356 in G-actin but not in F-actin may indicate that a change in the conformation of actin occurs in this region.  相似文献   

2.
E Kim  E Reisler 《Biophysical journal》1996,71(4):1914-1919
The recently reported structural connectivity in F-actin between the DNase I binding loop on actin (residues 38-52) and the C-terminus region was investigated by fluorescence and proteolytic digestion methods. The binding of copper to Cys-374 on F- but not G-actin quenched the fluorescence of dansyl ethylenediamine (DED) attached to Gin-41 by more than 50%. The blocking of copper binding to DED-actin by N-ethylmaleimide labeling of Cys-374 on actin abolished the fluorescence quenching. The quenching of DED-actin fluorescence was restored in copolymers (1:9) of N-ethylmaleimide-DED-actin with unlabeled actin. The quenching of DED-actin fluorescence by copper was also abolished in copolymers (1:4) of DED-actin and N-ethylmaleimide-actin. These results show intermolecular coupling between loop 38-52 and the C-terminus in F-actin. Consistent with this, the rate of subtilisin cleavage of actin at loop 38-52 was increased by the bound copper by more than 10-fold in F-actin but not in G-actin. Neither acto-myosin subfragment-1 (S1) ATPase activity nor the tryptic digestion of G-actin and F-actin at the Lys-61 and Lys-69 sites were affected by the bound copper. These observations suggest that copper binding to Cys-374 does not induce extensive changes in actin structure and that the perturbation of loop 38-52 environment results from changes in the intermolecular contacts in F-actin.  相似文献   

3.
Structural models of F-actin suggest that three segments in actin, the DNase I binding loop (residues 38-52), the hydrophobic plug (residues 262-274) and the C-terminus, contribute to the formation of an intermolecular interface between three monomers in F-actin. To test these predictions and also to assess the dynamic properties of intermolecular contacts in F-actin, Cys-374 pyrene-labeled skeletal alpha-actin and pyrene-labeled yeast actin mutants, with Gln-41 or Ser-265 replaced with cysteine, were used in fluorescence experiments. Large differences in Cys-374 pyrene fluorescence among copolymers of subtilisin-cleaved (between Met-47 and Gly-48) and uncleaved alpha-actin showed both intra- and intermolecular interactions between the C-terminus and loop 38-52 in F-actin. Excimer band formation due to intermolecular stacking of pyrene probes attached to Cys-41 and Cys-265, and Cys-41 and Cys-374, in mutant yeast F-actin confirmed the proximity of these residues on the paired sites (to within 18 A) in accordance with the models of F-actin structure. The dynamic properties of the intermolecular interface in F-actin formed by loop 38-52, plug 262-274 and the C-terminus may account for the observed cross-linking of these sites with reagents < 18 A. The functional importance of actin filament dynamics was demonstrated by the inhibition of the in vitro motility in the Gln-41-Cys-374 cross-linked actin filaments.  相似文献   

4.
Changes in the actin-myosin interface are thought to play an important role in microfilament-linked cellular movements. In this study, we compared the actin binding properties of the motor domain of Dictyostelium discoideum (M765) and rabbit skeletal muscle myosin subfragment-1 (S1). The Dictyostelium motor domain resembles S1(A2) (S1 carrying the A2 light chain) in its interaction with G-actin. Similar to S1(A2), none of the Dictyostelium motor domain constructs induced G-actin polymerization. The affinity of monomeric actin (G-actin) was 20-fold lower for M765 than for S1(A2) but increasing the number of positive charges in the loop 2 region of the D. discoideum motor domain (residues 613-623) resulted in equivalent affinities of G-actin for M765 and for S1. Proteolytic cleavage and cross-linking approaches were used to show that M765, like S1, interacts via the loop 2 region with filamentous actin (F-actin). For both types of myosin, F-actin prevents trypsin cleavage in the loop 2 region and F-actin segment 1-28 can be cross-linked to loop 2 residues by a carbodiimide-induced reaction. In contrast with the S1, loop residues 559-565 of D. discoideum myosin was not cross-linked to F-actin, probably due to the lower number of positive charges. These results confirm the importance of the loop 2 region of myosin for the interaction with both G-actin and F-actin, regardless of the source of myosin. The differences observed in the way in which M765 and S1 interact with actin may be linked to more general differences in the structure of the actomyosin interface of muscle and nonmuscle myosins.  相似文献   

5.
Cofilin, a member of the actin-depolymerizing factor (ADF)/cofilin family of proteins, is a key regulator of actin dynamics. Cofilin binds to monomer (G-) and filamentous (F-) actin, severs the filaments, and increases their turnover rate. Electron microscopy studies suggested cofilin interactions with subdomains 2 and 1/3 on adjacent actin protomers in F-actin. To probe for the presence of a cryptic cofilin binding site in subdomain 2 in G-actin, we used transglutaminase-mediated cross-linking, which targets Gln41 in subdomain 2. The cross-linking proceeded with up to 85% efficiency with skeletal alpha-actin and WT yeast actin, yielding a single product corresponding to a 1:1 actin-cofilin complex but was strongly inhibited in Q41C yeast actin (in which Q41 was substituted with cysteine). LC-MS/MS analysis of the proteolytic fragments of this complex mapped the cross-linking to Gln41 on actin and Gly1 on recombinant yeast cofilin. The actin-cofilin (AC) heterodimer was purified on FPLC for analytical ultracentrifugation and electron microscopy analysis. Sedimentation equilibrium and velocity runs revealed oligomers of AC in G-actin buffer. In the presence of excess cofilin, the covalent AC heterodimer bound a second cofilin, forming a 2:1 cofilin/actin complex, as revealed by sedimentation results. Under polymerizing conditions the cross-linked AC formed mostly short filaments, which according to image reconstruction were similar to uncross-linked actin-cofilin filaments. Although a majority of the cross-linking occurs at Gln41, a small fraction of the AC cross-linked complex forms in the Q41C yeast actin mutant. This secondary cross-linking site was sequenced by MALDI-MS/MS as linking Gln360 in actin to Lys98 on cofilin. Overall, these results demonstrate that the region around Gln41 (subdomain 2) is involved in a weak binding of cofilin to G-actin.  相似文献   

6.
Intrastrand cross-linking of actin filaments by ANP, N-(4-azido-2-nitrophenyl) putrescine, between Gln-41 in subdomain 2 and Cys-374 at the C-terminus, was shown to inhibit force generation with myosin in the in vitro motility assays [Kim et al. (1998) Biochemistry 37, 17801-17809]. To clarify the immobilization of which of these two sites inhibits the actomyosin motor, the properties of actins with partially overlapping cross-linked sites were examined. pPDM (N,N'-p-phenylenedimaleimide) and ABP [N-(4-azidobenzoyl) putrescine] were used to obtain actin filaments cross-linked ( approximately 50%) between Cys-374 and Lys-191 (interstrand) and Gln-41 and Lys-113 (intrastrand), respectively. ANP, ABP, and pPDM cross-linked filaments showed similar inhibition of their sliding speeds and force generation with myosin ( approximately 25%) in the in vitro motility assays. In analogy to ANP cross-linking of actin, pPDM and ABP cross-linkings did not change the strong S1 binding to actin and the V(max) and K(m) parameters of actomyosin ATPase. The similar effects of these three cross-linkings reveal the tight coupling between structural elements of the subdomain 2/subdomain 1 interface and show the importance of its dynamic flexibility to force generation with myosin. The possibility that actin cross-linkings inhibit rate-limiting steps in motion and force generation during myosin cross-bridge cycle was tested in stopped-flow experiments. Measurements of the rates of mantADP release from actoS1 and ATP-induced dissociation of actoS1 did not reveal any differences between un-cross-linked and ANP cross-linked actin in these complexes. These findings are discussed in terms of the uncoupling between force generation and other aspects of actomyosin interactions due to a constrained dynamic flexibility of the subdomain 2/subdomain 1 interface in cross-linked actin filaments.  相似文献   

7.
Structural effects of yeast cofilin on skeletal muscle and yeast actin were examined in solution. Cofilin binding to native actin was non-cooperative and saturated at a 1:1 molar ratio, with K(d)相似文献   

8.
We have previously demonstrated that the two heads of chicken gizzard heavy meromyosin (HMM) in a rigor complex with rabbit skeletal F-actin could be cross-linked by the water-soluble carbodiimide 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide. Here, we report the location of the cross-linked sites in the amino acid sequence of the HMM heavy chain. One of the cross-linked residues was identified as Glu-168 by sequencing the CN1.CN6 cross-linked peptide containing residues 1-77 (CN1) and 164-203 (CN6). This site is located close to the ATP-binding site of HMM. Since the other site was further into the amino acid sequence of CN1, another cross-linked peptide corresponding to residues 53-66 and 145-182 was isolated from the 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide-treated acto-tryptic gizzard HMM digested further by other proteolytic enzymes. The amino acid sequence of this peptide and its cyanogen bromide fragment indicated that the cross-linking occurred between Glu-168 and Lys-65. Our results suggests that these two amino acid side chains are in contact with each other in the acto-gizzard HMM rigor complex and participate in the electrostatic interaction between the two HMM heads bound to F-actin. Based on the head-to-head contact, we propose a three-dimensional model for the attachment of gizzard HMM heads to F-actin.  相似文献   

9.
Cofilin is a major cytoskeletal protein that binds to both monomeric actin (G-actin) and polymeric actin (F-actin) and is involved in microfilament dynamics. Although an atomic structure of the G-actin-cofilin complex does not exist, models of the complex have been built using molecular dynamics simulations, structural homology considerations, and synchrotron radiolytic footprinting data. The hydrophobic cleft between actin subdomains 1 and 3 and, alternatively, the cleft between actin subdomains 1 and 2 have been proposed as possible high-affinity cofilin binding sites. In this study, the proposed binding of cofilin to the subdomain 1/subdomain 3 region on G-actin has been probed using site-directed mutagenesis, fluorescence labeling, and chemical cross-linking, with yeast actin mutants containing single reactive cysteines in the actin hydrophobic cleft and with cofilin mutants carrying reactive cysteines in the regions predicted to bind to G-actin. Mass spectrometry analysis of the cross-linked complex revealed that cysteine 345 in subdomain 1 of mutant G-actin was cross-linked to native cysteine 62 on cofilin. A cofilin mutant that carried a cysteine substitution in the α3-helix (residue 95) formed a cross-link with residue 144 in actin subdomain 3. Distance constraints imposed by these cross-links provide experimental evidence for cofilin binding between actin subdomains 1 and 3 and fit a corresponding docking-based structure of the complex. The cross-linking of the N-terminal region of recombinant yeast cofilin to actin residues 346 and 374 with dithio-bis-maleimidoethane (12.4 Å) and via disulfide bond formation was also documented. This set of cross-linking data confirms the important role of the N-terminal segment of cofilin in interactions with G-actin.  相似文献   

10.
Movements of different areas of polypeptide chains within F-actin monomers induced by S1 or pPDM-S1 binding were studied by polarized fluorimetry. Thin filaments of ghost muscle were reconstructed by adding G-actin labeled with fluorescent probes attached alternatively to different sites of actin molecule. These sites were: Cys-374 labeled with 1,5-IAEDANS, TMRIA or 5-IAF; Lys-373 labeled with NBD-Cl; Lys-113 labeled with Alexa-488; Lys-61 labeled with FITC; Gln-41 labeled with DED and Cys-10 labeled with 1,5-IAEDANS, 5-IAF or fluorescein-maleimid. In addition, we used TRITC-, FITC-falloidin and e-ADP that were located, respectively, in filament groove and interdomain cleft. The data were analysed by model-dependent and model-independent methods (see appendixes). The orientation and mobility of fluorescent probes were significantly changed when actin and myosin interacted, depending on fluorophore location and binding site of actomyosin. Strong binding of S with actin leads to 1) a decrease in the orientation of oscillators of derivatives of falloidin (TRITC-falloidin, FITC-falloidin) and actin-bound nucleotide (e-ADP); 2) an increase in the orientation of dye oscillators located in the "front' surface of the small domain (where actin is viewed in the standard orientation with subdomains 1/2 and 3/4 oriented to the right and to the left, respectively); 3) a decrease in the angles of dye oscillators located on the "back" surface of subdomain-1. In contrast, a weak binding of S1 to actin induces the opposite effects in orientation of these probes. These data suggest that during the ATP hydrolysis cycle myosin heads induce a change in actin monomer (a tilt and twisting of its small domain). Presumably, these alterations in F-actin conformation play an important role in muscle contraction.  相似文献   

11.
Isolation and characterization of covalently cross-linked actin dimer   总被引:5,自引:0,他引:5  
Covalently cross-linked actin dimer was isolated from rabbit skeletal muscle F-actin reacted with phenylenebismaleimide (Knight, P., and Offer, G. (1978) Biochem. J. 175, 1023-1032). The UV spectrum of the purified cross-linked actin dimer, in a nonpolymerizing buffer, was very similar to that of native F-actin and not to the spectrum of G-actin. Cross-linked actin dimer polymerized to filaments that were indistinguishable in the electron microscope from F-actin made from native G-actin and that were similar to native F-actin in their ability to activate the Mg2+-ATPase of myosin subfragment-1. The critical concentrations of polymerization of cross-linked actin dimer in 0.5 mM and 2.0 mM MgCl2, 2 to 4 microM, and 1 to 2 microM, respectively, were similar to the values for native G-actin. Cross-linked actin dimer contained 2 mol of bound nucleotide/mol of dimer. One bound nucleotide exchanged with ATP in solution with a t 1/2 of 55 min and with ADP with a t 1/2 of 5 h. The second bound nucleotide exchanged much more slowly. The more rapidly exchangeable site contained 10 to 15% bound ADP.Pi and 85 to 90% bound ATP while the second site contained much less, if any, bound ADP.Pi. Cross-linked actin dimer had an ATPase activity in 0.5 mM MgCl2 that was 7 times greater than the ATPase activity of native G-actin and that was also stimulated by cytochalasin D. These data are discussed in relation to the possible role of ATP in actin polymerization and function with the speculation that the cross-linked actin dimer may serve simultaneously as a useful model for each of the two different ends of native F-actin.  相似文献   

12.
The DNase I binding loop (residues 38-52), the hydrophobic plug (residues 262-274), and the C terminus region are among the structural elements of monomeric (G-) actin proposed to form the intermonomer interface in F-actin. To test the proximity and interactions of these elements and to provide constraints on models of F-actin structure, cysteine residues were introduced into yeast actin either at residue 41 or 265. These mutations allowed for specific cross-linking of F-actin between C41 and C265, C265 and C374, and C41 and C265 using dibromobimane and disulfide bond formation. The cross-linked products were visualized on SDS-PAGE and by electron microscopy. Model calculations carried out for the cross-linked F-actins revealed that considerable flexibility or displacement of actin residues is required in the disulfide cross-linked segments to fit these filaments into model F-actin structures. The calculated, cross-linked structures showed a better fit to the Holmes rather than the refined Lorenz model of F-actin. It is predicted on the basis of such calculations that image reconstruction of electron micrographs of disulfide cross-linked C41-C374 F-actin should provide a conclusive test of these two similar models of F-actin structure.  相似文献   

13.
R Takashi 《Biochemistry》1988,27(3):938-943
By peptide isolation and analysis, it has been shown that the dansyl fluorophore of dansylcadaverine [N-(5-aminopentyl)-5-(dimethylamino)naphthalene-1-sulfonamide] transfers to Gln-41 of actin from rabbit skeletal muscle when the reaction is catalyzed by guinea pig liver transglutaminase. As a function of time, the degree of labeling asymptotically approaches 1 mol of dansyl/l mol of actin. About 80-85% of the attached dansyl fluorophore was found at Gln-41. Such labeled G-actin polymerizes to the same extent as control actin, but the polymerization rate is greater and the critical concentration is less than for control actin. Complete polymerization is accompanied by a 1.5-2.0-fold increase in the emission intensity of the attached fluorophore. Labeled F-actin thus obtained activates myosin subfragment 1 (S-1) Mg2+-ATPase activity with the same Kapp, and to the same Vmax, as control actin; moreover, when such labeled F-actin is cross-linked to S-1 by 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide, the resulting superactivation of Mg2+-ATPase is the same as that attained with control actin. The attributes of this label thus make it an ideal reporter of events in the N-terminal 10-kilodalton region of actin, and a new topological point for proximity mapping.  相似文献   

14.
Several structural and functional properties of the covalent complex, formed upon cross-linking of the myosin heads (S-1) to F-actin with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, were characterized. The elevated Mg2+-ATPase activity was measured during a 1-month storage of the complex under various conditions. In aqueous medium it showed a rapid time-dependent decrease but it was significantly more stable in the presence of 50% ethylene glycol at -20 degrees C. The ATPase loss most likely reflects a progressive conformational change within the S-1 ATPase site resulting from its greater exposure to the medium, induced by the permanently bound F-actin. The covalent acto-S1 complex was submitted to depolymerization-repolymerization experiments using different depolymerizing agents (0.6 M KI; 4.7 M NH4Cl; low-ionic-strength solution). The depolymerization led to an immediate loss of the enhanced Mg2+-ATPase activity; this activity was almost entirely recovered upon repolymerization of the complex. The protein material formed upon depolymerization of the covalent acto-S1 was analyzed by gel chromatography, gel electrophoresis, analytical ultracentrifugation and electron microscopy. It comprised mainly small-sized actin oligomers associated with the covalently bound S-1 and only a limited amount of free G-actin. The results illustrate the relationships between the filamentous state of actin and its ability to stimulate the Mg2+-ATPase activity of S-1. They also indicate that the binding of S-1 to F-actin is transmitted to several neighbouring actin subunits and strengthens the interactions between actin monomers. Acto-S1 cross-linked complexes were prepared in the presence of tropomyosin and the tropomyosin-troponin system. Under the conditions employed, the regulatory proteins were not cross-linked to actin or S-1 and did not affect the extent or the pattern of S-1 cross-linking to F-actin. Measurements of the elevated Mg2+-ATPase activity of the cross-linked preparations revealed that tropomyosin and the tropomyosin-troponin complex, in the absence of Ca2+, inhibit ATP hydrolysis; the extent of ATPase inhibition (up to 50%) was dependent on the amount of covalently bound S-1, being larger at low level of S-1 cross-linking; the addition of Ca2+ restored the ATPase activity to the control value. The data provide direct evidence that the regulatory proteins can modulate directly the kinetics of ATP hydrolysis by the covalent acto-S1 complex as has earlier been suggested for the reversible complex [Chalovich, J. M. and Eisenberg, E. (1982) J. Biol. Chem. 257, 2432-2437].(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Assembled actin filaments support cellular signaling, intracellular trafficking, and cytokinesis. ATP hydrolysis triggered by actin assembly provides the structural cues for filament turnover in vivo. Here, we present the cryo-electron microscopic (cryo-EM) structure of filamentous actin (F-actin) in the presence of phosphate, with the visualization of some α-helical backbones and large side chains. A complete atomic model based on the EM map identified intermolecular interactions mediated by bound magnesium and phosphate ions. Comparison of the F-actin model with G-actin monomer crystal structures reveals a critical role for bending of the conserved proline-rich loop in triggering phosphate release following ATP hydrolysis. Crystal structures of G-actin show that mutations in this loop trap the catalytic site in two intermediate states of the ATPase cycle. The combined structural information allows us to propose a detailed molecular mechanism for the biochemical events, including actin polymerization and ATPase activation, critical for actin filament dynamics.  相似文献   

16.
Excessive accumulation of neurofilaments in the cell bodies and proximal axons of motor neurons is a major pathological hallmark of motor neuron diseases. In this communication we provide evidence that the neurofilament light subunit (68 kDa) and G-actin are capable of forming a stable interaction. Cytochalasin B, a cytoskeleton disrupting agent that interrupts actin-based microfilaments, caused aggregation of neurofilaments in cultured mesencephalic dopaminergic neurons, suggesting a possible interaction between neurofilaments and actin; which was tested further by using crosslinking reaction and affinity chromatography techniques. In the cross-linking experiment, G-actin interacted with individual neurofilament subunits and covalently cross-linked disuccinimidyl suberate, a homobifunctional cross-linking reagent. Furthermore, G-actin was extensively cross-linked to the light neurofilament subunit with this reagent. The other two neurofilament subunits showed no cross-linking to G-actin. Moreover, neurofilament subunits were retained on a G-actin coupled affinity column and were eluted from this column by increasing salt concentration. All three neurofilament subunits became bound to the G-actin affinity column. However, a portion of the 160 and 200 kDa neurofilament subunits did not bind to the column, and the remainder of these two subunits eluted prior to the 68 kDa subunit, suggesting that the light subunit exhibited the highest affinity for G-actin. Moreover, neurofilaments demonstrated little or no binding to F-actin coupled affinity columns. The phosphorylation of neurofilament proteins with protein kinase C reduced its cross-linking to G-actin. The results of these studies are interpreted to suggest that the interaction between neurofilaments and actin, regulated by neurofilament phosphorylation, may play a role in maintaining the structure and hence the function of dopaminergic neurons in culture.  相似文献   

17.
To probe the effect of nucleotide on the formation of ionic contacts between actin and the 567-578 residue loop of the heavy chain of rabbit skeletal muscle myosin subfragment 1 (S1), the complexes between F-actin and proteolytic derivatives of S1 were submitted to chemical cross-linking with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. We have shown that in the absence of nucleotide both 45 kDa and 5 kDa tryptic derivatives of the central 50 kDa heavy chain fragment of S1 can be cross-linked to actin, whereas in the presence of MgADP.AlF4, only the 5 kDa fragment is involved in cross-linking reaction. By the identification of the N-terminal sequence of the 5-kDa fragment, we have found that trypsin splits the 50 kDa heavy chain fragment between Lys-572 and Gly-573, the residues located within the 567-578 loop. Using S1 preparations cleaved with elastase, we could show that the residue of 567-578 loop that can be cross-linked to actin in the presence of MgADP.AlF4 is Lys-574. The observed nucleotide-dependent changes of the actin-subfragment 1 interface indicate that the 567-578 residue loop of skeletal muscle myosin participates in the communication between the nucleotide and actin binding sites.  相似文献   

18.
Actin-fragmin interactions as revealed by chemical cross-linking   总被引:6,自引:0,他引:6  
K Sutoh  S Hatano 《Biochemistry》1986,25(2):435-440
A one to one complex of actin and fragmin (a capping protein from Physarum polycephalum plasmodia) was cross-linked with 1-ethyl-3-[3-(dimethylamino)propyl] carbodiimide. The cross-linking reaction generated two cross-linked products with slightly different molecular weights (88 000 and 90 000) as major species. They were cross-linked products of one actin and one fragmin. The cross-linking site of fragmin in the actin sequence was determined by peptide mappings [Sutoh, K. (1982) Biochemistry 21, 3654-3661] after partial chemical cleavages of cross-linked products with hydroxylamine. The results indicated that the N-terminal segment of actin spanning residues 1-12 participated in cross-linking with fragmin. The cross-linker used in this study covalently bridges lysine side chains and side chains of acidic residues when they are in direct contact. Therefore, it seems that acidic residues in the N-terminal segment of actin (Asp-1, Glu-2, Asp-3, Glu-4, and Asp-11), at least some of them, are in the binding site of fragmin. It has already been shown that the same acidic segment of actin is in the binding site of myosin or depactin (an actin-depolymerizing protein isolated from starfish oocytes). We suggest that the unusual amino acid sequence of the N-terminal segment of actin makes its N-terminal region a favorable anchoring site for various types of actin-binding proteins.  相似文献   

19.
Recent publication of the atomic structure of G-actin (Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F., & Holmes, K. C., 1990, Nature 347, 37-44) raises questions about how the conformation of actin changes upon its polymerization. In this work, the effects of various quenchers of etheno-nucleotides bound to G- and F-actin were examined in order to assess polymerization-related changes in the nucleotide phosphate site. The Mg(2+)-induced polymerization of actin quenched the fluorescence of the etheno-nucleotides by approximately 20% simultaneously with the increase in light scattering by actin. A conformational change at the nucleotide binding site was also indicated by greater accessibility of F-actin than G-actin to positively, negatively, and neutrally charged collisional quenchers. The difference in accessibility between G- and F-actin was greatest for I-, indicating that the environment of the etheno group is more positively charged in the polymerized form of actin. Based on calculations of the change in electric potential of the environment of the etheno group, specific polymerization-related movements of charged residues in the atomic structure of G-actin are suggested. The binding of S-1 to epsilon-ATP-G-actin increased the accessibility of the etheno group to I- even over that in Mg(2+)-polymerized actin. The quenching of the etheno group by nitromethane was, however, unaffected by the binding of S-1 to actin. Thus, the binding of S-1 induces conformational changes in the cleft region of actin that are different from those caused by Mg2+ polymerization of actin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
E Kim  M Motoki  K Seguro  A Muhlrad    E Reisler 《Biophysical journal》1995,69(5):2024-2032
Gln-41 on G-actin was specifically labeled with a fluorescent probe, dansyl ethylenediamine (DED), via transglutaminase reaction to explore the conformational changes in subdomain 2 of actin. Replacement of Ca2+ with Mg2+ and ATP with ADP on G-actin produced large changes in the emission properties of DED. These substitutions resulted in blue shifts in the wavelength of maximum emission and increases in DED fluorescence. Excitation of labeled actin at 295 nm revealed energy transfer from tryptophans to DED. Structure considerations and Cu2+ quenching experiments suggested that Trp-79 and/or Trp-86 serves as energy donors to DED. Energy transfer from these residues to DED on Gln-41 increased with the replacement of Ca2+ with Mg2+ and ATP with ADP. Polymerization of Mg-G-actin with MgCl2 resulted in much smaller changes in DED fluorescence than divalent cation substitution. This suggests that the conformation of loop 38-52 on actin is primed for the polymerization reaction by the substitution of Ca2+ with Mg2+ on G-actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号