首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the last 10 years, biodegradable aliphatic polyesters, such as poly(lactic-co-glycolic acid) (PLGA), have attracted increasing attention for their use as scaffold materials in bone tissue engineering because their degradation products can be removed by natural metabolic pathways. However, one main concern with the use of these specific polymers is that their degradation products reduce local pH, which in turn induces an inflammatory reaction and damages bone cell health at the implant site. Thus, the objective of the present in vitro study was to investigate the degradation behavior of PLGA when added with dispersed titania nanoparticles. The results of this study provided the first evidence that the increased dispersion of nanophase titania in PLGA decreased the harmful change in pH normal for PLGA degradation. Moreover, previous studies have demonstrated that the increased dispersion of titania nanoparticles into PLGA significantly improved osteoblast (bone-forming cell) functions (such as adhesion, collagen synthesis, alkaline phosphatase activity, and calcium-containing minerals deposition). In this manner, nanophase titania-PLGA composites may be promising scaffold materials for more effective orthopedic tissue engineering applications.  相似文献   

2.
This study investigated the in vitro degradation of both solid PPF networks and porous PPF scaffolds formed by photoinitiated cross-linking of PPF polymer chains. Three formulations of scaffolds of differing porosity and pore size were constructed by varying porogen size and content. The effects of pore size and pore volume on scaffold mass, geometry, porosity, mechanical properties, and water absorption were then examined. Throughout the study, the solid networks and porous scaffolds exhibited continual mass loss and slight change in length. Porogen content appeared to have the greatest effect upon physical degradation. For example, scaffolds initially fabricated with 80 wt % porogen content lost approximately 30% of their initial PPF content after 32 weeks of degradation, whereas scaffolds fabricated with 70 wt % porogen content lost approximately 18% after 32 weeks of degradation. For all scaffold formulations, water absorption capacity, porosity, and compressive modulus were maintained at constant values following porogen leaching. These results indicate the potential of photo-cross-linked PPF scaffolds in tissue engineering applications which require maintenance of scaffold structure, strength, and porosity during the initial stages of degradation.  相似文献   

3.
Aiming to achieve suitable polymeric biomaterials with controlled physical properties for hard and soft tissue replacements, we have developed a series of blends consisting of two photo-cross-linkable polymers: polypropylene fumarate (PPF) and polycaprolactone fumarate (PCLF). Physical properties of both un-cross-linked and UV cross-linked PPF/PCLF blends with PPF composition ranging from 0% to 100% have been investigated extensively. It has been found that the physical properties such as thermal, rheological, and mechanical properties could be modulated efficiently by varying the PPF composition in the blends. Thermal properties including glass transition temperature (T g) and melting temperature (T m) have been correlated with their rheological and mechanical properties. Surface characteristics such as surface morphology, hydrophilicity, and the capability of adsorbing serum protein from culture medium have also been examined for the cross-linked polymer and blend disks. For potential applications in bone and nerve tissue engineering, in vitro cell studies including cytotoxicity, cell adhesion, and proliferation on cross-linked disks with controlled physical properties have been performed using rat bone marrow stromal cells and SPL201 cells, respectively. In addition, the role of mechanical properties such as surface stiffness in modulating cell responses has been emphasized using this model blend system.  相似文献   

4.
Mechanical properties of a biodegradable bone regeneration scaffold   总被引:9,自引:0,他引:9  
Poly (Propylene Fumarate) (PPF), a novel, bulk erosion, biodegradable polymer, has been shown to have osteoconductive effects in vivo when used as a bone regeneration scaffold (Peter, S. J., Suggs, L. J., Yaszemski, M. J., Engel, P. S., and Mikos, A. J., 1999, J. Biomater. Sci. Polym. Ed., 10, pp. 363-373). The material properties of the polymer allow it to be injected into irregularly shaped voids in vivo and provide mechanical stability as well as function as a bone regeneration scaffold. We fabricated a series of biomaterial composites, comprised of varying quantities of PPF, NaCl and beta-tricalcium phosphate (beta-TCP), into the shape of right circular cylinders and tested the mechanical properties in four-point bending and compression. The mean modulus of elasticity in compression (Ec) was 1204.2 MPa (SD 32.2) and the mean modulus of elasticity in bending (Eb) was 1274.7 MPa (SD 125.7). All of the moduli were on the order of magnitude of trabecular bone. Changing the level of NaCl from 20 to 40 percent, by mass, did not decrease Ec and Eb significantly, but did decrease bending and compressive strength significantly. Increasing the beta-TCP from 0.25 g/g PPF to 0.5 g/g PPF increased all of the measured mechanical properties of PPF/NVP composites. These results indicate that this biodegradable polymer composite is an attractive candidate for use as a replacement scaffold for trabecular bone.  相似文献   

5.
In this study it was investigated whether hydrogels could be used for an accommodating lens. The requirements of such a hydrogels are a low modulus, high refractive index, transparency, and strength. Since conventional hydrogels do not possess this combination of properties, a novel preparation method and new polymers are introduced. As starting materials poly(1-hydroxy-1,3-propanediyl), poly(ethylene-co-vinyl alcohol), poly(vinyl alcohol), and poly(allyl alcohol) were used. The first three were cross-linked with a number of diisocyanate compounds. Network formation was performed at low concentrations in a good solvent. Mixing of the polymer solution and cross-linker appeared to be crucial for transparency. Poly(1-hydroxy-1,3-propanediyl), cross-linked with a slow reacting diisocyanate block, shows the most promising properties with respect to refractive index, transparency, tensile strength, and modulus. Poly(allyl alcohol) hydrogel was made by compression molding. The hydrogel was transparent and had a high refractive index and low modulus. It was concluded that hydrogels could be used as accommodating lens material.  相似文献   

6.
While biodegradable, biocompatible polyesters such as poly (lactic-co-glycolic acid) (PLGA) are popular materials for the manufacture of tissue engineering scaffolds, their surface properties are not particularly suitable for directed tissue growth. Although a number of approaches to chemically modify the PLGA surface have been reported, their applicability to soft tissue scaffolds, which combine large volumes, complex shapes, and extremely fine structures, is questionable. In this paper, we describe two wet-chemical methods, base hydrolysis and aminolysis, to introduce useful levels of carboxylic acid or primary and secondary amine groups, respectively, onto the surface of PLGA with minimal degradation. The effects of temperature, concentration, pH, and solvent type on the kinetics of these reactions are studied by following changes in the wettability of the PLGA using contact angle measurements. In addition, the treated surfaces are studied using X-ray photoelectron spectroscopy (XPS) to determine the effect on the surface chemical structure. Furthermore, we show using XPS analysis that these carboxyl and amine groups are readily activated to allow the covalent attachment of biological macromolecules.  相似文献   

7.
We have previously demonstrated the feasibility of blending bioerodible polyphosphazenes with poly(lactide-co-glycolide) (PLGA) to form versatile polymeric materials with altered bioerosion properties. These studies demonstrated the effective neutralization of the acidic degradation products of PLGA by the polyphosphazene hydrolysis products. In the present study, five new polymers of dipeptide polyphosphazenes poly[(ethyl glycinato)x(glycyl-ethyl glycinato)yphosphazene] and novel blends of these polyphosphazenes with poly(lactide-co-glycolide) (PLGA) were synthesized and fabricated. The miscibility was analyzed using differential scanning calorimetry and scanning electron microscopy. Hydrogen bonding within the blends was assessed by attenuated total reflectance infrared spectroscopy. The phosphazene component of the blend contained varying ratios of the glycyl-glycine ethyl ester to the glycine ethyl ester. Poly[(ethyl glycinato)0.5(glycine ethyl glycinato)1.5phosphazene formed completely miscible blends with PLGA (50:50) and PLGA (85:15). This is ascribed to the multiple hydrogen-bonding sites within the side groups of the polyphosphazene. The components of the blend act as plasticizers for each other because a glass transition temperature for each blend was detected at a lower temperature than for each individual polymer. A hydrolysis study showed that unblended solid poly[(ethyl glycinato)0.5(glycyl ethyl glycinato)1.5phosphazene] hydrolyzed in less than 1 week. However, the blends degraded at a slower rate than both parent polymers. This is attributed to the buffering capacity of the polyphosphazene hydrolysis products, which increases the pH of the degradation media from 2.5 to 4, thereby slowing the degradation rate of PLGA.  相似文献   

8.
Polyglycolide (PGA)/poly(lactide-co-glycolide) (PLGA) scaffolds were fabricated by a solvent casting/particulate leaching method using hexafluoroisopropanol (HFIP) or acetone for material dissolution and NaCl particles as porogen. The results revealed that the mechanical strength increased as the PGA percentage in a HFIP-processed scaffold increased. Chemical ingredients did not substantially affect the mechanical strength of acetone-processed scaffolds. Large NaCl particles led to weak mechanical strength, low porosity, and small specific surface area. For a fixed composition, PGA crystals in a HFIP-processed scaffold were smaller than those in an acetone-processed scaffold. High PGA fractions yielded partly fused PGA/PLGA scaffolds. A faster degradation rate of a scaffold could result from a higher PGA percentage, smaller NaCl particles, or the existence of chondrocytes. The combination of PGA and PLGA, which compensated each other for bioactivity, would be beneficial to cartilage regeneration.  相似文献   

9.
Semi-interpenetrating networks (semi-IPNs), where poly(lactide-co-glycolide) (PLGA) molecules were entrapped in the crosslinked matrices of poly(3-hydroxyundecenoate) (PHU), were prepared by irradiating homogeneous solutions of PHU and PLGA in chloroform with UV light. Attenuated total reflectance infrared spectroscopy showed that the PLGA chains were entrapped in PHU networks. The semi-IPNs showed enhanced mechanical strength as the PLGA content increased. The semi-IPNs were incubated at 37 °C in a 0.01N NaOH solution, and the extent of hydrolytic degradation was investigated by monitoring changes in various parameters such as water uptake, pH, mass, and morphology. Hydrolysis of semi-IPNs were significantly affected by the presence of PLGA. A semi-IPN prepared from a 9:1 (by weight) mixture of PHU and PLGA lost 25% of its original weight in 12 weeks while a PHU sample containing no PLGA lost only 5% of its weight during the same period under identical conditions. The hydrolysis was most likely accelerated when the pH of the medium was lowered by the hydrolyzed products of PLGA, 2-hydroxyalkanoic acids. These results showed that hydrolysis of PHA could be enhanced by incorporating a second component that lowered the pH of the hydrolysis system.  相似文献   

10.
We have investigated the dispersion of single-walled carbon nanotubes (SWNTs) and functionalized SWNTs (F-SWNTs) in the unsaturated, biodegradable polymer poly(propylene fumarate) (PPF) and examined the rheological properties of un-cross-linked nanocomposite formulations as well as the electrical and mechanical properties of cross-linked nanocomposites. F-SWNTs were produced from individual SWNTs by a diazonium-based method and dispersed better than unmodified SWNTs in both un-cross-linked and cross-linked PPF matrix. Cross-linked nanocomposites with F-SWNTs were superior to those with unmodified SWNTs in terms of their mechanical properties. Specifically, nanocomposites with 0.1 wt % F-SWNTs loading resulted in a 3-fold increase in both compressive modulus and flexural modulus and a 2-fold increase in both compressive offset yield strength and flexural strength when compared to pure PPF networks, whereas the use of 0.1 wt % SWNTs gained less than 37% mechanical reinforcement. These extraordinary mechanical enhancements considered together with Raman scattering and sol fraction measurements indicate strong SWNT-PPF interactions and increased cross-linking densities resulting in effective load transfer. With enhanced mechanical properties and capabilities of in situ injection and cross-linking, these SWNT/polymer nanocomposites hold significant implications for the fabrication of bone tissue engineering scaffolds.  相似文献   

11.
New bone for the repair or the restoration of the function of traumatized, damaged, or lost bone is a major clinical need, and bone tissue engineering has been heralded as an alternative strategy for regenerating bone. A novel web-like structured biodegradable hybrid sheet has been developed for bone tissue engineering by preparing knitted poly(DL-lactic-co-glycolic acid) sheets (PLGA sheets) with collagen microsponges in their openings. The PLGA skeleton facilitates the formation of the hybrid sheets into desired shapes, and the collagen microsponges in the pores of the PLGA sheet promote cell adhesion and uniform cell distribution throughout the sheet. A large number of osteoblasts established from marrow stroma adhere to the scaffolds and generate the desired-shaped bone in combination with these novel sheets. These results indicate that the web-like structured novel sheet shows promise for use as a tool for custom-shaped bone regeneration in basic research on osteogenesis and for the development of therapeutic applications.This work was supported in part by a grant from the Ministry of Education, Culture, Sports, Science, and Technology of Japan, Health and Labour Sciences Research Grants (translational research), and the Organization for Pharmaceutical Safety and Research (to A.U.)  相似文献   

12.
Poly(lactide-co-glycolide) (PLGA) is extensively used in pharmaceutical applications, for example, in targeted drug delivery, because of biocompatibility and degradation rate, which is easily tuned by the copolymer composition. Nevertheless, synthesis of sugar-labeled amphiphilic copolymers with a PLGA backbone is quite a challenge because of high sensitivity to hydrolytic degradation. This Article reports on the synthesis of a new amphiphilic copolymer of PLGA grafted by mannosylated poly(ethylene oxide) (PEO). A novel building block, that is, α-methoxy-ω-alkyne PEO-clip-N-hydroxysuccinimide (NHS) ester, was prepared on purpose by photoreaction of a diazirine containing molecular clip. This PEO block was mannosylated by reaction of the NHS ester groups with an aminated sugar, that is, 2-aminoethyl-α-d-mannopyroside. Then, the alkyne ω-end-group of PEO was involved in a copper alkyne- azide coupling (CuAAC) with the pendent azides of the aliphatic copolyester. The targeted mannose-labeled poly(lactide-co-glycolide-co-ε-caprolactone)-graft-poly(ethylene oxide) copolymer was accordingly formed. Copolymerization of d,l-lactide and glycolide with α-chloro-ε-caprolactone, followed by substitution of chlorides by azides provided the azido-functional PLGA backbone. Finally, micelles of the amphiphilic mannosylated graft copolymer were prepared in water, and their interaction with Concanavalin A (ConA), a glyco-receptor protein, was studied by quartz crystal microbalance. This study concluded to the prospect of using this novel bioconjugate in targeted drug delivery.  相似文献   

13.
The development of three-dimensional (3-D) scaffolds with highly open porous structure is one of the most important issues in tissue engineering. In this study, 3-D macroporous gelatin/hyaluronic acid (GE/HA) hybrid scaffolds with varying porous morphology were prepared by freeze-drying their blending solutions and subsequent chemical crosslinking by using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC). The resulting scaffolds were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Their swelling, in vitro degradation properties and compressive strength were also investigated. To evaluate in vitro cytocompatibility of scaffolds, mouse L929 fibroblasts were seeded onto the scaffolds for cell morphology and cell viability studies. It was found that the porous structure of scaffolds can be tailored by varying the ratios of gelatin to HA, both the swelling ratios and degradation rate increased with the increase of HA content in hybrid scaffolds, and crosslinking the scaffolds with EDC improved the degradation resistance of the scaffold in culture media and increased the mechanical strength of scaffolds. The in vitro results revealed that the prepared scaffolds do not induce cytotoxic effects and suitable for cell growth, especially in the case of scaffolds with higher gelatin content. The combined results of the physicochemical and biological studies suggested that the developed GE/HA hybrid scaffolds exhibit good potential and biocompatibility for soft tissue engineering applications.  相似文献   

14.
A novel composite material has been fabricated for bone tissue engineering scaffolds utilizing the biodegradable polymer poly(propylene fumarate)/poly(propylene fumarate)-diacrylate (PPF/PPF-DA) and surface-modified carboxylate alumoxane nanoparticles. Various surface-modified nanoparticles were added to the polymer including a surfactant alumoxane, an activated alumoxane, a mixed alumoxane containing both activated and surfactant groups, and a hybrid alumoxane containing both groups within the same substituent. These nanocomposites, as well as polymer resin and unmodified boehmite composites, underwent flexural and compressive mechanical testing and were examined using electron microscopy. Hybrid alumoxane nanoparticles dispersed in PPF/PPF-DA exhibited over a 3-fold increase in flexural modulus at 1 wt % loading compared to polymer resin alone. No significant loss of flexural or compressive strength was observed with increased loading of hybrid alumoxane nanoparticles. These dramatic improvements in flexural properties may be attributed to the fine dispersion of nanoparticles into the polymer and increased covalent interaction between polymer chains and surface modifications of nanoparticles.  相似文献   

15.
We report the development of a new method of alkali‐catalyzed low temperature wet crosslinking of plant proteins to improve their breaking tenacity without using high temperatures or phosphorus‐containing catalysts used in conventional poly(carboxylic acid) crosslinking of cellulose and proteins. Carboxylic acids are preferred over aldehyde‐containing crosslinkers for crosslinking proteins and cellulose because of their low toxicity and cost and ability to improve the desired properties of the materials. However, current knowledge in carboxylic acid crosslinking of proteins and cellulose requires the use of carboxylic acids with at least three carboxylic groups, toxic phosphorous‐containing catalysts and curing at high temperatures (150–185°C). The use of high temperatures and low pH in conventional carboxylic acid crosslinking has been reported to cause substantial strength loss and/or undesired changes in the properties of the crosslinked materials. In this research, gliadin, soyprotein, and zein fibers have been crosslinked with malic acid, citric acid, and butanetetracarboxylic acid to improve the tenacity of the fibers without using high temperatures and phosphorus‐containing catalysts. The new method of wet crosslinking using carboxylic acids containing two or more carboxylic groups will be useful to crosslink proteins for various industrial applications. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

16.
The influence of a tertiary amine, namely risperidone (pKa = 7.9) on the degradation of poly(d, l lactide-co-glycolide) (PLGA) microspheres was elucidated. Risperidone and blank microspheres were fabricated at two lactide/glycolide ratios, 65:35 and 85:15. The microspheres were characterized for drug loading by high-performance liquid chromatography, particle size by laser diffractometry, and surface morphology by scanning electron microscopy. Polymer degradation studies were carried out with drug-loaded microspheres and blank microspheres in presence of free risperidone in 0.02 M PBS containing 0.02% Tween®80 at 37°C. Molecular weight was monitored by gel permeation chromatography. Risperidone and blank microspheres had similar size distribution and were spherical with a relatively nonporous smooth surface. The presence of risperidone within the microspheres enhanced the hydrolytic degradation in both polymeric matrices with faster degradation occurring in 65:35 PLGA. The molecular weight decreased according to pseudo-first-order kinetics for all the formulations. During the degradation study, the surface morphology of drug-loaded microspheres was affected by the presence of risperidone and resulted in shriveled microspheres in which there appeared to be an intrabatch variation with the larger microspheres being less shriveled than the smaller ones. When blank microspheres were incubated in free risperidone solutions, a concentration-dependent effect on the development of surface porosity could be observed. Risperidone accelerates the hydrolytic degradation of PLGA, presumably within the microenvironment of the drug-loaded particles, and this phenomenon must be taken into consideration in designing PLGA dosage forms of tertiary amine drugs.Key words: mass loss, microencapsulation, PLGA microspheres, polymer degradation, risperidone, tertiary amine drug  相似文献   

17.
组织工程是一门新兴的边缘学科,它是利用体外培养的人体功能细胞与适当的细胞外基质或支架材料相结合,然后将其移植到体内病损部位以期达到修复目的。微重力组织工程(Microgravity Tis-sue Engineering)是近年来由美国空间生物技术研究人员开创的一个独特研究领域,其核心技术是建立微重力条件下哺乳动物细胞三维(Three Dimen-sion)培养体系。利用外壁转动生物反应器(RotatingWall Vessel Bioreactor,RWVB)模拟微重力培养环境,减少培养液对细胞产生的机械剪切力,增加细胞营养的补充,加速代谢产物的排除,因此可以大大改善离体细胞的培养条件,使在普通重力培养条件下只能二维贴壁生长的哺乳动物细胞表现出三维增殖与分化,这类分化的细胞团可进一步形成有功能的  相似文献   

18.
组织工程是一门新兴的边缘学科,它是利用体外培养的人体功能细胞与适当的细胞外基质或支架材料相结合,然后将其移植到体内病损部位以期达到修复目的。微重力组织工程(Microgravity Tissue Engineering)是近年来由美国空间生物技术研究人员开创的一个独特研究领域,其核心技术是  相似文献   

19.
PLGA/ECM神经支架性质的体外评价   总被引:1,自引:0,他引:1  
以赖氨酸、神经生长因子(NGF)、聚乳酸聚羟基乙酸共聚物(PLGA)、猪皮来源的细胞外基质(ECM)为原料制备了一种复合材料;考察其内部三维结构,生物力学性质,降解特性,雪旺氏细胞黏附状况,以及其对NGF的可控释放作用;从而评价其作为促周围神经损伤修复支架的可行性。扫描电子显微镜(SEM)观察显示,PLGA渗透入去细胞猪皮内部固有的蜂窝状孔隙中,并覆盖在孔隙内表面;孔隙率为68.3%~81.2%,密度为0.62~0.68 g/cm3。复合材料的断裂强度为8.308 MPa,断裂伸长率为38.98%,弹性模量为97.27 MPa;在4周的体外降解测试中,其最大失重率为43.3%;赖氨酸在复合材料中的添加对降解液pH的相对稳定具有显著作用;在30 d中,复合材料对NGF的累积释放率为38%;通过雪旺氏细胞与复合材料的共培养,发现雪旺氏细胞能够在其表面及孔隙中黏附。因此表明本复合材料有望成为一种新型的促周围神经损伤修复支架。  相似文献   

20.
Lee KE  Kim BK  Yuk SH 《Biomacromolecules》2002,3(5):1115-1119
The mixture of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer(F-127) and PLGA (poly(lactide-co-gycolide)) forms a liquid state above their phase transition temperatures, and the phase-separated state is induced by decreasing the temperature below the phase transition temperature. On the basis of the temperature-induced phase transition behavior in the mixture of F-127 and PLGA, a novel method for the preparation of drug-loaded PLGA nanospheres was designed and characterized by measuring the loading amount, the encapsulation efficiency, and the drug release pattern. Paclitaxel, used as a potent anticancer drug, was selected as a model drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号