首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y Itzhak 《Life sciences》1988,42(7):745-752
The pharmacological specificity of representative psychotomimetic agents such as phencyclidine (PCP) analogs, opiate benzomorphans and several antipsychotic agents was assessed for the sigma and PCP binding sites. In a series of binding experiments, in rat brain membranes, sigma and PCP binding sites were labeled with [3H]-1-[1-(3-hydroxyphenyl)cyclohexyl]piperidine [( 3H]PCP-3-OH), (+) [3H]-N-allylnormetazocine [(+) [3H]SKF 10047] and (+) [3H]-3-[3-hydroxy-phenyl]-N-(1-propyl)piperidine [(+) [3H]-3-PPP]. PCP analogs inhibit potently high affinity [3H]PCP-3-OH binding and (+) [3H]SKF 10047 binding, moderately the low affinity binding component of [3H]PCP-3-OH and very weakly (+) [3H]-3-PPP binding. (+)SKF 10047 and cyclazocine are potent to moderate inhibitors of (+) [3H]SKF 10047, high affinity [3H]PCP-3-OH and (+) [3H]-3-PPP binding, but extremely weak inhibitors of low affinity [3H]PCP-3-OH binding. The antipsychotic agents display high affinity for (+) [3H]-3-PPP binding sites, moderate affinity for (+) [3H]SKF 10047 sites and have no effect on either the high or low affinity [3H]PCP-3-OH binding. The present data further support the existence of multiple sigma and PCP binding sites.  相似文献   

2.
M S Starr 《Life sciences》1985,37(24):2249-2255
Slices of rat substantia nigra were preloaded with tritiated gamma-aminobutyrate (GABA) or dopamine (DA) and perfused with Krebs solution containing 5 microM aminooxyacetic acid or 10 microM nialamide to inhibit the catabolism of GABA and DA respectively. Repeated brief exposures to high potassium medium (+ 30 mM K+ for 1 min) evoked a consistent pattern of calcium-dependent 3H efflux against which the effects of opiates (10-400 microM) were assessed. Opiate agonists inhibited K+-induced 3H-GABA efflux in the following decreasing order of potency: bremazocine greater than D-Ala2-Met5-enkephalinamide (ENK) greater than SKF 10047 much greater than morphine, consistent with the participation of kappa, delta, sigma and to a lesser extent mu opiate receptors respectively. Naloxone (1 microM) partially antagonised the response to morphine and ENK, while ICI 154129 attenuated ENK only. Save for a GABA-releasing action of SKF 10047 at high doses, none of the compounds altered basal outflow of 3H-GABA. Naloxone, in the dose range 10-400 microM, also significantly inhibited depolarisation-induced release of 3H-GABA. In parallel experiments none of the compounds tested were found to influence 3H-DA release in concentrations up to 40 microM, but thereafter suppressed K+-induced 3H-DA outflow indiscriminately. The results are discussed with reference to the possible mechanism(s) via which injected and endogenous opiates may affect motor performance by attenuating GABA transmission in the nigra.  相似文献   

3.
M S Ahmed  T Schoof  D H Zhou  C Quarles 《Life sciences》1989,45(25):2383-2393
Human placental villus tissue is non-innervated, yet it contains components of the opiate and cholinergic systems. We investigated whether opioids modulate a calcium dependent acetylcholine release from the villus tissue in a manner similar to that demonstrated by the parasympathetic nerve-smooth muscle junction. We reported that the kappa receptor agonist ethylketocyclazocine (EKC) inhibits acetylcholine release, and that the inhibition is reversed by the selective antagonist, Mr2266. Findings reported here substantiate the role of opioids as modulators of acetylcholine release from villus tissue. The nonselective agonist, morphine, also inhibits acetylcholine release. Inhibition caused by morphine is reversed by low concentrations of non-selective antagonists, naloxone and naltrexone. Naloxone at high concentrations potentiates the inhibition of acetylcholine release caused by morphine. In addition, the calcium channel blocker, diltiazem, was found to inhibit the release of acetylcholine. The combination of morphine and diltiazem resulted in a greater inhibition of acetylcholine release than by either alone. These results suggest that opiate cholinergic interactions occur in non-neural tissue with a mechanism similar to that known to occur at certain cholinergic synapses.  相似文献   

4.
The phencyclidine (PCP) receptor acylator, metaphit, has been reported to act as a PCP antagonist. Recent electrophysiological and behavioral assessments of metaphit action have revealed, however, that this compound can also act as a PCP-like agonist. The present study examined the effects of metaphit on the inhibition of N-methyl-D-aspartate (NMDA)-induced 3H-acetylcholine (ACh) release, 3H-TCP binding and synaptosomal 3H-dopamine (DA) uptake in the rat striatum. Preincubation of striatal slices for 10 min in the presence of metaphit, followed by a prolonged washout, produced a concentration-dependent inhibition of the ACh release evoked by 300 microM NMDA. At high concentrations, preincubation with PCP also resulted in inhibition of this measure. However, this could be reduced by extending the washout period, a procedure which had no effect on the inhibition produced by metaphit. At 10 microM, metaphit resulted in a 53% reduction in NMDA-evoked ACh release while PCP had no effect under identical conditions. Preincubation of slices in 10 microM PCP and metaphit reduced the metaphit inhibition by 62%. The effects of PCP and metaphit, alone or in combination, on NMDA-induced ACh release were paralleled by a loss of 3H-TCP binding sites in striatal tissue incubated under identical conditions suggesting that metaphit exerts long-lasting agonist-like actions on PCP receptors coupled to NMDA receptors. Although these results do not explain the ability of metaphit to antagonize PCP effects in other assays, we did observe that preincubation of striatal synaptosomes with metaphit also resulted in an irreversible inhibition of 3H-DA uptake. These data are discussed in relation to the interaction of metaphit with PCP receptors in various systems.  相似文献   

5.
Naloxone inhibits superoxide release from human neutrophils   总被引:12,自引:0,他引:12  
C O Simpkins  N Ives  E Tate  M Johnson 《Life sciences》1985,37(15):1381-1386
Using the superoxide dismutase inhibitable reduction of cytochrome c assay, we studied, the effect of (-) naloxone on N-formyl-methionyl-leucyl-phenylalanine (FMLP) stimulated superoxide (O2-) release from human neutrophils. Neutrophils were pre-incubated with the range of concentrations of (-) naloxone that is administered in models of experimental sepsis (10(-6) - 10(-4.5) M). (-) Naloxone inhibited O2- release in a dose dependent manner. 02- produced by a cell-free xanthine-xanthine oxidase system was not inhibited by (-) naloxone, indicating that (-) naloxone was not scavanging O2-. There was no difference between the effect of (-) and (+) naloxone suggesting that the inhibition of O2- was not specific for an opiate receptor. Another opiate antagonist, nalorphine, as well as the opiate agonist, morphine, also inhibited O2- release in the same concentration range. There was no difference between the effect of naloxone and morphine.  相似文献   

6.
A sigma-opioid receptor ligand, N-allylnormetazocine (SKF 10047), binds specifically and reversibly to rat liver membranes. The rat liver binding sites for SKF 10047 are similar to sigma-opioid CNS receptors. They fail to interact with classical opiates (morphine, naloxone) and opioid peptides but bind with high affinity benzomorphans (bremazocine, SKF 10047) and various psychotropic drugs (haloperidol, imipramine, phencyclidine etc).  相似文献   

7.
The sites of analgesic action of the mu agonist morphine and the purported kappa agonist ethylketazocine (EKC) were compared. Using local drug injections and parenteral administration of drugs to spinalized rats, our data support a predominantly spinal site of action for EKC and a major supraspinal action for morphine in antinociceptive tests. This spinal analgesic action of EKC was dose dependent and naloxone reversible indicating opiate receptor involvement. The possibility that EKC activates a spinal kappa receptor population is under further study.  相似文献   

8.
Previous studies have documented direct vascular effects of opiate substances in the systemic circulation. Because opiate receptors have been identified in the lung, we wondered whether opiate substances might affect vasoreactivity in the lung circulation. We studied the pulmonary vascular effects of three opiate agonists: morphine, leucine-enkephalin, and dynorphin, as well as the opiate receptor antagonist naloxone, in isolated rat lungs perfused with a cell- and plasma-free salt solution. Because of previous reports of the smooth muscle effects of the methyl- and propylparaben preservatives in the naloxone preparation, we also studied the pulmonary vascular effects of these preservatives in the rat lung circulation. We found that morphine, a mu-receptor agonist, leucine-enkephalin, a delta-receptor agonist, and dynorphin, a kappa-receptor agonist, caused no immediate vascular effect when injected into the pulmonary artery. In addition, morphine did not affect the pulmonary vasoconstrictions induced by hypoxia, angiotensin II, or potassium chloride. The commercial preparation of naloxone, Narcan, caused a marked vasodilation during hypoxic pulmonary vasoconstriction. However, this effect was entirely attributable to the preservatives methyl- and propylparaben, as pure naloxone had no effect on either the baseline pulmonary vascular tone or the vasoconstrictive response to hypoxia. We conclude that opiate receptor agonists and antagonists do not affect vasoreactivity in the rat lung circulation and that the methyl- and propylparaben preservatives in Narcan are pulmonary vasodilators.  相似文献   

9.
In isolated bovine adrenal chromaffin cells, beta-endorphin, dynorphin, and levorphanol caused a dose-dependent inhibition of catecholamine (CA) secretion elicited by acetylcholine (ACh), with an ID50 of 50, 1.3, and 4.3 microM, respectively. The inhibition by the opiate compounds was specific for the release evoked by ACh and nicotinic drugs and was noncompetitive with ACh. Stereospecific binding sites for the opiate agonist [3H]etorphine were found in homogenates of bovine adrenal medulla (KD = 0.59 nM). beta-Endorphin, dynorphin, levorphanol, and naloxone were potent inhibitors of the binding of [3H]etorphine with an ID50 of 12, 0.4, 5.2, and 6.2 nM, respectively. However, [3,5-I2Tyr1]-beta-endorphin, [3,5-I2Tyr1]-dynorphin, and dextrorphan, three opiate compounds with no or little activity in the guinea pig ileum assay, were relatively ineffective in inhibiting the binding of [3H]etorphine (ID50 700, 600, and 10,000 nM, respectively). On the other hand, these three compounds were equipotent with beta-endorphin, dynorphin, and levorphanol, respectively, in inhibiting the ACh-evoked release of CA from the adrenal chromaffin cells (ID50 of 10, 1.5, and 6 microM, respectively). Inhibition of CA release was also obtained with naloxone (ID50 = 14) microM) and naltrexone (ID50 greater than 10(-4) M), two classical antagonists of opiate receptors, and this effect was additive to that of beta-endorphin. These data indicate that the opiate modulation of CA release from adrenal chromaffin cells is not related to the stimulation of the high affinity stereospecific opiate binding sites of the adrenal medulla. The physiological function of these sites remains to be determined.  相似文献   

10.
T.F. Murray  M.E. Leid 《Life sciences》1984,34(20):1899-1911
The potencies of several dextrorotatory opioids, including four pairs of enantiomers, as inhibitors of specific [3H]PCP binding to rat brain synaptic membranes has been determined. Of the compounds tested unlabeled phencyclidine (PCP) was the most potent followed by (?)? cyclazocine > dextrorphan > (+) ketamine > (+) cyclazocine > (+)? SKF10,047 > levorphanol > dextromethorphan > (?) SKF10,047 > (?)? ketamine > (±) pentazocine and > (±) ethylketocyclazocine. The opiate mu receptor ligands, morphine, naloxone and naltrexone were virtually inactive as competitors of specific [3H]PCP binding. Unlike the stereostructural requirements for opiate mu receptors where activity resides predominantly in the levorotatory enantiomers, the present results support the contention that binding to the [3H]PCP labeled recognition site may reside in either the levorotatory or the dextrorotatory enantiomer. The specific binding of [3H]PCP which was defined as total binding minus that occurring in the presence of 10μM dextrorphan was found to be of a high affinity, saturable, reversible and sensitive to thermal degradation. These results suggest that certain dextrorotatory morphian derivatives may prove to be useful probes in further investigations of the molecular characteristics of the [3H]PCP binding site in brain membrane preparations.  相似文献   

11.
The binding of labelled naloxone, morphine and (D-Ala2,D-Leu5)enkephalin (DADL) to oocyte membranes of the toad Bufo viridis was investigated. The opiate antagonist naloxone binds to the membranes much more effectively than morphine or DADL. The binding of [3H]naloxone is reversible and saturating. The bound [3H]naloxone is readily replaced by unlabelled naloxone or bremazocine (kappa-agonist), far less effectively by morphine (mu-agonist) and SKF 10.047 (sigma-agonist) and is not practically replaced by DADL (delta-agonist), beta-endorphin (epsilon-agonist) and other neuropeptides. Analysis of experimental results in Scatchard plots revealed two types of binding sites with a high (Kd = 15 nM) and low (Kd = 10(3) nM) affinity for naloxone. The number of sites responsible for the binding of naloxone possessing a high affinity is 16 pmol-/mg of oocyte homogenate protein, i.e., 20-50 times as great as in the toad or rat brain. Trypsin and p-chloromercurybenzoate decrease the binding of [3H]naloxone. The oocyte extract is capable of replacing the membrane-bound [3H]naloxone, on the one hand, and of inhibiting the smooth muscle contracture of the rabbit vas deferens, on the other. This inhibition is reversed by naloxone and can also be induced by bremazocine, but not by morphine, DADL and SKF 10.047. In all probability oocytes contain compounds that are similar to opiate kappa-agonists. It may also be possible that these compounds mediate their effects via specific receptors and are involved in the control over maturation of oocytes and early development of toad eggs.  相似文献   

12.
The opiate agonist morphine caused a dose- and time-dependent suppression of lordosis responding in ovariectomized guinea pigs treated with estradiol-17 beta and progesterone. The suppression of lordosis by morphine appears to be mediated by opiate receptors since the opiate antagonist naloxone blocked its effects both in terms of the percentage of animals showing lordosis and the duration of individual responses. Naloxone, when given alone, did not affect lordosis responding in estradiol-17 beta + progesterone-primed animals and did not induce lordosis in animals primed with estradiol-17 beta alone. Thus, endogenous opioids might not tonically inhibit lordosis under the physiological conditions examined. The alpha-noradrenergic agonist clonidine did not reverse the effects of morphine on lordosis. Thus, the inhibitory effects of morphine on this behavior might be independent of its presynaptic effects on norepinephrine release in brain.  相似文献   

13.
The effect of the serotonergic receptor agonist 1-(m-trifluoromethylphenyl)piperazine (TFMPP) was studied on the K(+)-evoked [3H]acetylcholine [( 3H]ACh) release from guinea pig hippocampal synaptosomes loaded with [3H]choline. TFMPP (5-1,000 microM) inhibited the evoked ACh release in a dose-dependent manner (IC50 = 81.8 microM). The inhibitory effect of TFMPP was mimicked by CGS-12066B (10, 30, and 100 microM), a 5-hydroxytryptamine1B (5-HT1B)/5-HT1D receptor agonist; 1-(m-chlorophenyl)piperazine (100 microM), a 5-HT1C/5-HT1B receptor agonist; and 5-carboxamidotryptamine (10 microM), a nonselective 5-HT1 receptor agonist. 8-Hydroxy-2-(di-n-propylamino)tetralin (10 and 100 microM), a 5-HT1A receptor agonist, and quipazine (10 and 100 microM), a 5-HT2 receptor agonist, did not have any significant effect. Serotonergic antagonists, such as dihydroergotamine (0.1 and 1 microM), metergoline (0.1 microM), methysergide (0.5 and 1 microM), or yohimbine (1 and 10 microM), blocked the TFMPP effect dose-dependently. In contrast, methiotepine (0.3 and 1 microM), propranolol (1 microM), ketanserin (0.1 microM), mesulergine (0.1 microM), ICS 205930 (0.1 and 1 microM), and spiroperidol (1 and 7 microM) did not affect the TFMPP-induced inhibition of the evoked ACh release. These data suggest that, in guinea pig hippocampus, the K(+)-evoked ACh release is modulated by a 5-HT1 receptor distinct from the 5-HT1A, 5-HT1B, and 5-HT1C subtypes.  相似文献   

14.
The effect of opiate peptides on basal and potassium-stimulated endogenous dopamine (DA) release from striatal slices was studied in vitro. Dual stimulation of the striatal slices gave a reproducible increase in DA release that was calcium dependent. Addition of the delta-opiate receptor agonists Met5-enkephalin, [D-Ala2,D-Leu5]enkephalin (DADLE), and [D-Ser2]Leu-enkephalin-Thr (DSLET), increased the basal DA release without affecting potassium-stimulated release in a dose-dependent manner. The effect of DADLE was antagonized by the addition of naloxone. In contrast, the mu-opioid receptor agonist [D-Ala2,N-MePhe4,Gly-ol5]enkephalin (DAGO) and the epsilon-opioid agonist beta-endorphin inhibited the stimulated DA release without changing the basal release. The inhibitory effect of DAGO on potassium-stimulated release was antagonized by naloxone. The addition of ethanol (75 mM) to the incubation media produced a delayed increase of both the basal and stimulated DA release. There was no change in stimulated DA release when the change in basal release was subtracted, suggesting that ethanol produced a dose-dependent, selective increase in basal DA release. Naloxone and the selective delta-opiate antagonist ICI 174864 inhibited the ethanol-induced increase in basal DA release. Naloxone and ICI 174864 added alone did not alter either basal or stimulated DA release. We therefore suggest that the ethanol-induced increase in basal DA release is an indirect effect involving an endogenous delta-opiate agonist.  相似文献   

15.
S Maeda  J Nakamae  R Inoki 《Life sciences》1988,42(4):461-468
The effect of various opioids on Na+, K+ -ATPase partially purified from rat heart was examined. Dynorphin-A (1-13), dynorphin-A (1-17) and ethylketocyclazocine (EKC), which are k-type opiate agonists, markedly inhibited the enzyme activity in a dose-dependent manner; IC50 values were 12 microM, 21 microM and 0.38 mM, respectively. Morphine (mu-type agonist), methionine- and leucine-enkephalin (delta-type agonist) at the concentration of 1 mM did not affect the enzyme activity. The effect of dynorphin-A (1-13) and EKC was not antagonized by naloxone. Dynorphin-A (1-13) mainly decreased Vmax value without the change of Km value in the activation of Na+, K+-ATPase by ATP, Na+ and K+. Dynorphin-A(1-13) inhibited the partial reactions of Na+, K+-ATPase at the different degree of the potency; the inhibition of K+-stimulated phosphatase was greater than that of Na+-dependent phosphorylation. The present study suggests that dynorphin-A and EKC have an effect on cardiovascular system which is mediated by the inhibition of Na+, K+-ATPase in the heart.  相似文献   

16.
The inhibition by opiates of the PGE2-induced formation of cAMP in slices from rat brain striatum was investigated. A maximal, 3.5-fold increase over the basal level of cAMP was obtained with an EC50 for PGE2 of 3 microM. Opiate agonists of both mu and kappa type were inhibitory. The IC50 values for morphine, levorphanol and ethylketocyclazocine (EKC) were 110 nM, 80 nM and 25 nM, respectively. These values were similar to the potencies of the compounds in displacing stereospecifically bound 3H-etorphine in rat brain membranes. As evidenced by the inactivity of dextrorphan, the inhibition of PGE2-dependent cAMP formation was stereospecific. Also ineffective were the opiate antagonists naloxone, naltrexone and MR 2266. These compounds did, however, reverse the inhibition by agonists, displaying thereby selectivity toward the putative mu and kappa opiates. Thus, the inhibition by morphine was antagonized to a greater degree by naloxone than by MR 2266, and the action of EKC was blocked more effectively by MR 2266 relative to naloxone.  相似文献   

17.
The objective of the present study was to examine the effects of perfusion of dopamine (DA) D1- and D2-like receptor agonists in the nucleus accumbens (ACB) on the long-loop negative feedback regulation of mesolimbic somatodendritic DA release in the ventral tegmental area (VTA) of Wistar rats employing ipsilateral dual probe in vivo microdialysis. Perfusion of the ACB for 60 min with the D1-like receptor agonist SKF 38393 (SKF, 1-100 microM) dose-dependently reduced the extracellular levels of DA in the ACB, whereas the extracellular levels of DA in the VTA were not changed. Similarly, application of the D2-like receptor agonist quinpirole (Quin, 1-100 microM) through the microdialysis probe in the ACB reduced the extracellular levels of DA in the ACB in a concentration-dependent manner, whereas extracellular levels of DA in the VTA were not altered. Co-application of SKF (100 microM) and Quin (100 microM) produced concomitant reductions in the extracellular levels of DA in the ACB and VTA. The reduction in extracellular levels of DA in the ACB and VTA produced by co-infusion of SKF and Quin was reversed in the presence of either 100 microM SCH 23390 (D1-like antagonist) or 100 microM sulpiride (D2-like antagonist). Overall, the results suggest that (a) activation of dopamine D1- or D2-like receptors can independently regulate local terminal DA release in the ACB, whereas stimulation of both subtypes is required for activation of the negative feedback pathway to the VTA.  相似文献   

18.
Mr2034 has been proposed as a kappa opiate. While Mr2034 inhibited the binding of the kappa opiate 3H-ethylketocyclazocine better than unlabeled ethylketocyclazocine, it also displaced the binding of 3H-dihydromorphine and 3H-SKF 10047 more potently than morphine and SKF 10047, respectively. 3H-D-ala2-D-leu5-enkephalin was displaced equally well by Mr2034 and D-ala2-D-leu5-enkephalin. Saturation studies of 3H-Mr2034 binding demonstrated curvilinear Scatchard plots which could be dissected into two components by computer: KD1 0.06 nM, Bmax1 2.49 fmoles/mg tissue; and KD2 2.4 nM, Bmax2 6.57 fmoles/mg tissue. A portion of the higher affinity (KD 0.06 nM) component was inhibited by naloxonazine treatment in vitro (50 nM), suggesting that 3H-Mr2034 bound with very high affinity to mu1 sites. Displacement of 3H-Mr2034 binding by opioids was multiphasic, again implying that 3H-Mr2034 was binding to more than one class, of site. In view of its similar potency in inhibiting mu (3H-dihydromorphine), kappa (3H-ethylketocycla-zocine), sigma (3H-SKF 10047) and delta (3H-D-ala2-D-leu5-enkephalin) opioids Mr2034 might be considered a universal opiate.  相似文献   

19.
Abstract: In the present communication we report that Ca2+-dependent acetylcholine release from K+-depolarized Torpedo electric organ synaptosomes is inhibited by morphine, and that this effect is blocked by the opiate antagonist naloxone. This finding suggests that the purely cholinergic Torpedo electric organ neurons contain pre-synaptic opiate receptors whose activation inhibits acetylcholine release. The mechanisms underlying this opiate inhibition were investigated by comparing the effects of morphine on acetylcholine release induced by K+ depolarization and by the Ca2+ ionophore A23187 and by examining the effect of morphine on 45Ca2+ influx into Torpedo nerve terminals. These experiments revealed that morphine inhibits 45Ca2+ influx into K+-depolarized Torpedo synaptosomes and that this effect is blocked by naloxone. The effects of morphine on K+ depolarization-mediated 45Ca2+ influx and on acetylcholine release have similar dose dependencies (half-maximal inhibition at 0.5–1 μ M ), suggesting that opiate inhibition of release is due to blockage of the presynaptic voltage-dependent Ca2+ channel. This conclusion is supported by the finding that morphine does not inhibit acetylcholine release when the Ca2+ channel is bypassed by introducing Ca2+ into the Torpedo nerve terminals via the Ca2+ ionophore.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号