共查询到20条相似文献,搜索用时 0 毫秒
1.
A supramodal number representation in human intraparietal cortex 总被引:9,自引:0,他引:9
The triple-code theory of numerical processing postulates an abstract-semantic "number sense." Neuropsychology points to intraparietal cortex as a potential substrate, but previous functional neuroimaging studies did not dissociate the representation of numerical magnitude from task-driven effects on intraparietal activation. In an event-related fMRI study, we presented numbers, letters, and colors in the visual and auditory modality, asking subjects to respond to target items within each category. In the absence of explicit magnitude processing, numbers compared with letters and colors across modalities activated a bilateral region in the horizontal intraparietal sulcus. This stimulus-driven number-specific intraparietal response supports the idea of a supramodal number representation that is automatically accessed by presentation of numbers and may code magnitude information. 相似文献
2.
3.
Haxby JV Guntupalli JS Connolly AC Halchenko YO Conroy BR Gobbini MI Hanke M Ramadge PJ 《Neuron》2011,72(2):404-416
We present a high-dimensional model of the representational space in human ventral temporal (VT) cortex in which dimensions are response-tuning functions that are common across individuals and patterns of response are modeled as weighted sums of basis patterns associated with these response tunings. We map response-pattern vectors, measured with fMRI, from individual subjects' voxel spaces into this common model space using a new method, "hyperalignment." Hyperalignment parameters based on responses during one experiment--movie viewing--identified 35 common response-tuning functions that captured fine-grained distinctions among a wide range of stimuli in the movie and in two category perception experiments. Between-subject classification (BSC, multivariate pattern classification based on other subjects' data) of response-pattern vectors in common model space greatly exceeded BSC of anatomically aligned responses and matched within-subject classification. Results indicate that population codes for complex visual stimuli in VT cortex are based on response-tuning functions that are common across individuals. 相似文献
4.
Crossmodal processing of object features in human anterior intraparietal cortex: an fMRI study implies equivalencies between humans and monkeys 总被引:11,自引:0,他引:11
The organization of macaque posterior parietal cortex (PPC) reflects its functional specialization in integrating polymodal sensory information for object recognition and manipulation. Neuropsychological and recent human imaging studies imply equivalencies between human and macaque PPC, and in particular, the cortex buried in the intraparietal sulcus (IPS). Using functional MRI, we tested the hypothesis that an area in human anterior intraparietal cortex is activated when healthy subjects perform a crossmodal visuo-tactile delayed matching-to-sample task with objects. Tactile or visual object presentation (encoding and recognition) both significantly activated anterior intraparietal cortex. As hypothesized, neural activity in this area was further enhanced when subjects transferred object information between modalities (crossmodal matching). Based on both the observed functional properties and the anatomical location, we suggest that this area in anterior IPS is the human equivalent of macaque area AIP. 相似文献
5.
V A Konyshev 《Genetika》1983,19(1):17-25
The correlations between genetic codes of amino acids and pathways of synthesis and catabolism of carbon backbone of amino acids are considered. Codes of amino acids which are synthesized from oxoacids of glycolysis, the Krebs cycle and glyoxalic cycle via transamination without any additional chemical reactions, are initiated with guanine (alanine, glutamic and aspartic acids, glycine). Codons of amino acids which are formed on the branches of glycolysis at the level of compounds with three carbon atoms, begin with uracil (phenylalanine, serine, leucine, tyrosine, cysteine, tryptophan). Codes of amino acids formed from aspartate begin with adenine (methionine, isoleucine, threonine, asparagine, lysine, serine), while those of the amino acids formed from the compounds with five carbon atoms (glutamic acid and phosphoribosyl pyrophosphate) begin with cytosine (arginine, proline, glutamine, histidine). The second letter of codons is linked to catabolic pathways of amino acids: most of amino acids entering glycolysis and the Krebs cycle through even-numbered carbon compounds, have adenine and uracil at the second position of codes (A-U type); most of amino acids entering the glycolysis and the Krebs cycle via odd-numbered carbon compounds, have codons with guanine and cytidine at the second position (G-C type). The usage of purine and pyrimidine as the third letter of weak codones in most of amino acids is linked to the enthropy of amino acid formation. A hypothesis claiming that the linear genetic code was assembled from the purine and pyrimidine derivatives which have acted as participants of primitive control of amino acid synthesis and catabolism, is suggested. 相似文献
6.
Numerical information can be conveyed by either symbolic or nonsymbolic representation. Some symbolic numerals can also be identified as nonsymbolic quantities defined by the number of lines (e.g., I, II, III in Roman and -, =, ≡ in Japanese Kanji and Chinese). Here we report that such multi-representation of magnitude can facilitate the processing of these numerals under certain circumstances. In a magnitude comparison task judging 1 to 9 (except 5) Chinese and Arabic numerals presented at the foveal (at the center) or parafoveal (3° left or right of the center) location, multi-representational small-value Chinese numerals showed a processing advantage over single-representational Arabic numerals and large-value Chinese numerals only in the parafoveal condition, demonstrated by lower error rates and faster reaction times. Further event-related potential (ERP) analysis showed that such a processing advantage was not reflected by traditional ERP components identified in previous studies of number processing, such as N1 or P2p. Instead, the difference was found much later in a N400 component between 300-550 msec over parietal regions, suggesting that those behavioral differences may not be due to early processing of visual identification, but later processing of subitizing or accessing mental number line when lacking attentional resources. These results suggest that there could be three stages of number processing represented separately by the N1, P2p and N400 ERP components. In addition, numerical information can be represented simultaneously by both symbolic and nonsymbolic systems, which will facilitate number processing in certain situations. 相似文献
7.
Number, like color or movement, is a basic property of the environment. Recently, single neurons tuned to number have been observed in animals. We used both psychophysics and neuroimaging to examine whether a similar neural coding scheme is present in humans. When participants viewed sets of items with a variable number, the bilateral intraparietal sulci responded selectively to number change. Functionally, the shape of this response indicates that humans, like other animal species, encode approximate number on a compressed internal scale. Anatomically, the intraparietal site coding for number in humans is compatible with that observed in macaque monkeys. Our results therefore suggest an evolutionary basis for human elementary arithmetic. 相似文献
8.
9.
Interactions between number and space in parietal cortex 总被引:11,自引:0,他引:11
Since the time of Pythagoras, numerical and spatial representations have been inextricably linked. We suggest that the relationship between the two is deeply rooted in the brain's organization for these capacities. Many behavioural and patient studies have shown that numerical-spatial interactions run far deeper than simply cultural constructions, and, instead, influence behaviour at several levels. By combining two previously independent lines of research, neuroimaging studies of numerical cognition in humans, and physiological studies of spatial cognition in monkeys, we propose that these numerical-spatial interactions arise from common parietal circuits for attention to external space and internal representations of numbers. 相似文献
10.
11.
On the basis of the recent discovery that precisely replicating triplets of impulses present in All-Interval histograms of spike trains generated by visual cortex cells of Rhesus monkeys are surrounded by multiple copies of ghost doublets of such triplets, we have examined and compared in detail, the spike trains generated by four complex cells in the striate cortex of curarized monkeys with respect to: (1) The number of precisely replicating triplet patterns embedded in trains of discharges generated in response to specific Hubel-Wiesel stimulation; (2) The effect of time separating the occurrence of such replicating triplets on the number and time distribution of their ghost doublets; (3) The effect of decreasing the precision criterion for the detection of replicating (parent) triplets (from the standard 0.14 ms criterion to 0.5 ms) on the relationships between triplets and their ghosts and (4) The comparison of the distributions in time of ghost doublets around the first and second copies of triplets when the time intervals separating them were greater than or less than 0.5 s. We found that the precision of replication of triplets varies somewhat from one cell to another, and that ghosts doublets are more copiously associated with replicating triplets emitted near in time to each other than with triplets emitted after larger time intervals, except in the case of one cell. In order to assess the statistical significance of our findings, we systematically shuffled the order of occurrence of intervals in every burst of all the records of one of the studied cells and repeated the analysis. Both the number of replicating triplets and of associated ghost doublets is significantly depressed (but not totally obliterated) by the above shuffling procedure. Finally, further implications based on a model of neural information transmission in the form of temporal correlations between spikes are discussed. 相似文献
12.
Functional neuroimaging studies show that perceptual judgments about time and space activate similar prefrontal and parietal areas, and it is known that perceptions in these two cognitive domains interfere with each other. These findings have led to the theory that temporal and spatial perceptions, among other metrics, draw on a common representation of magnitude. Our results indicate that an alternative principle applies to the prefrontal cortex. Analysis at the single-cell level shows that separate, domain-specific populations of neurons encode relative magnitude in time and space. These neurons are intermixed with each other in the prefrontal cortex, along with a separate intermixed population that encodes the goal chosen on the basis of these perceptual decisions. As a result, domain-specific neural processing at the single-cell level seems to underlie domain generality as observed at the regional level, with a common representation of prospective goals rather than a common representation of magnitude. 相似文献
13.
14.
Orchestrating a movement towards a sensory target requires many computational processes, including a transformation between reference frames. This transformation is important because the reference frames in which sensory stimuli are encoded often differ from those of motor effectors. The posterior parietal cortex has an important role in these transformations. Recent work indicates that a significant proportion of parietal neurons in two cortical areas transforms the sensory signals that are used to guide movements into a common reference frame. This common reference frame is an eye-centred representation that is modulated by eye-, head-, body- or limb-position signals. A common reference frame might facilitate communication between different areas that are involved in coordinating the movements of different effectors. It might also be an efficient way to represent the locations of different sensory targets in the world. 相似文献
15.
Tsao DY Vanduffel W Sasaki Y Fize D Knutsen TA Mandeville JB Wald LL Dale AM Rosen BR Van Essen DC Livingstone MS Orban GA Tootell RB 《Neuron》2003,39(3):555-568
Stereopsis, the perception of depth from small differences between the images in the two eyes, provides a rich model for investigating the cortical construction of surfaces and space. Although disparity-tuned cells have been found in a large number of areas in macaque visual cortex, stereoscopic processing in these areas has never been systematically compared using the same stimuli and analysis methods. In order to examine the global architecture of stereoscopic processing in primate visual cortex, we studied fMRI activity in alert, fixating human and macaque subjects. In macaques, we found strongest activation to near/far compared to zero disparity in areas V3, V3A, and CIPS. In humans, we found strongest activation to the same stimuli in areas V3A, V7, the V4d topolog (V4d-topo), and a caudal parietal disparity region (CPDR). Thus, in both primate species a small cluster of areas at the parieto-occipital junction appears to be specialized for stereopsis. 相似文献
16.
Some neurons (delay cells) in the prefrontal cortex elevate their activities throughout the time period during which the animal is required to remember past events and prepare future behavior, suggesting that working memory is mediated by continuous neural activity. It is unknown, however, how working memory is represented within a population of prefrontal cortical neurons. We recorded from neuronal ensembles in the prefrontal cortex as rats learned a new delayed alternation task. Ensemble activities changed in parallel with behavioral learning so that they increasingly allowed correct decoding of previous and future goal choices. In well-trained rats, considerable decoding was possible based on only a few neurons and after removing continuously active delay cells. These results show that neural activity in the prefrontal cortex changes dynamically during new task learning so that working memory is robustly represented and that working memory can be mediated by sequential activation of different neural populations. 相似文献
17.
Bartha M. Knoppers Jennifer R. Harris Isabelle Budin-Ljøsne Edward S. Dove 《Human genetics》2014,133(7):895-903
Fostering data sharing is a scientific and ethical imperative. Health gains can be achieved more comprehensively and quickly by combining large, information-rich datasets from across conventionally siloed disciplines and geographic areas. While collaboration for data sharing is increasingly embraced by policymakers and the international biomedical community, we lack a common ethical and legal framework to connect regulators, funders, consortia, and research projects so as to facilitate genomic and clinical data linkage, global science collaboration, and responsible research conduct. Governance tools can be used to responsibly steer the sharing of data for proper stewardship of research discovery, genomics research resources, and their clinical applications. In this article, we propose that an international code of conduct be designed to enable global genomic and clinical data sharing for biomedical research. To give this proposed code universal application and accountability, however, we propose to position it within a human rights framework. This proposition is not without precedent: international treaties have long recognized that everyone has a right to the benefits of scientific progress and its applications, and a right to the protection of the moral and material interests resulting from scientific productions. It is time to apply these twin rights to internationally collaborative genomic and clinical data sharing. 相似文献
18.
19.
Responses to lightness variations in early human visual cortex 总被引:2,自引:0,他引:2
Lightness is the apparent reflectance of a surface, and it depends not only on the actual luminance of the surface but also on the context in which the surface is viewed [1-10]. The cortical mechanisms of lightness processing are largely unknown, and the role of early cortical areas is still a matter of debate [11-17]. We studied the cortical responses to lightness variations in early stages of the human visual system with functional magnetic resonance imaging (fMRI) while observers were performing a demanding fixation task. The set of dynamically presented visual stimuli included the rectangular version of the classic Craik-O'Brien stimulus [3, 18, 19] and a variant that led to a weaker lightness effect, as well as a pattern with actual luminance variations. We found that the cortical activity in retinotopic areas, including the primary visual cortex (V1), is correlated with context-dependent lightness variations. 相似文献
20.
It has traditionally been assumed that processing within the visual system proceeds in a bottom-up, feedforward manner from retina to higher cortical areas. In addition to feedforward processing, it is now clear that there are also important contributions to sensory encoding that rely upon top-down, feedback (reentrant) projections from higher visual areas to lower ones. By utilizing transcranial magnetic stimulation (TMS) in a metacontrast masking paradigm, we addressed whether feedback processes in early visual cortex play a role in visual awareness. We show that TMS of visual cortex, when timed to produce visual suppression of an annulus serving as a metacontrast mask, induces recovery of an otherwise imperceptible disk. In addition to producing disk recovery, TMS suppression of an annulus was greater when a disk preceded it than when an annulus was presented alone. This latter result suggests that there are effects of the disk on the perceptibility of the subsequent mask that are additive and are revealed with TMS of the visual cortex. These results demonstrate spatial and temporal interactions of conscious vision in visual cortex and suggest that a prior visual stimulus can influence subsequent perception at early stages of visual encoding via feedback projections. 相似文献